1
|
Jang H, Kim CM, Hong E, Park HH. Fully closed conformation of penicillin-binding protein revealed by structure of PBP2 from Acinetobacter baumannii. Biochem Biophys Res Commun 2024; 729:150368. [PMID: 38986258 DOI: 10.1016/j.bbrc.2024.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Penicillin-binding protein 2 (PBP2), a vital protein involved in bacterial cell-wall synthesis, serves a target for β-lactam antibiotics. Acinetobacter baumannii is a pathogen notorious for multidrug resistance; therefore, exploration of PBPs is pivotal in the development of new antimicrobial strategies. In this study, the tertiary structure of PBP2 from A. baumannii (abPBP2) was elucidated using X-ray crystallography. The structural analysis demonstrated notable movement in the head domain, potentially critical for its glycosyltransferase function, suggesting that abPBP2 assumes a fully closed conformation. Our findings offer valuable information for developing novel antimicrobial agents targeting abPBP2 that are applicable in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Hyunseok Jang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Min Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Gilman MS, Shlosman I, Guerra DDS, Domecillo M, Fivenson EM, Bourett C, Bernhardt TG, Polizzi NF, Loparo JJ, Kruse AC. MreC-MreD structure reveals a multifaceted interface that controls MreC conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617240. [PMID: 39416049 PMCID: PMC11482812 DOI: 10.1101/2024.10.08.617240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of Thermus thermophilus MreD in complex with another essential Rod complex component, MreC. The structure reveals that a periplasmic-facing pocket of MreD interacts with multiple membrane-proximal regions of MreC. We use single-molecule FRET to show that MreD controls the conformation of MreC through these contacts, inducing a state primed for Rod complex activation. Using E. coli as a model, we demonstrate that disrupting these interactions abolishes Rod complex activity in vivo. Our findings reveal the role of MreD in bacterial cell shape determination and highlight its potential as an antibiotic target.
Collapse
Affiliation(s)
- Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Irina Shlosman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel D. Samé Guerra
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masy Domecillo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claire Bourett
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicholas F. Polizzi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Choi HJ, Ki DU, Yoon SI. Structural and biochemical analysis of penicillin-binding protein 2 from Campylobacter jejuni. Biochem Biophys Res Commun 2024; 710:149859. [PMID: 38581948 DOI: 10.1016/j.bbrc.2024.149859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to β-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that β-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.
Collapse
Affiliation(s)
- Hong Joon Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Lee C, Han SI, Na H, Kim Z, Ahn JW, Oh B, Kim HS. Comprehensive understanding of the mutant 'giant' Arthrospira platensis developed via ultraviolet mutagenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369976. [PMID: 38567133 PMCID: PMC10985164 DOI: 10.3389/fpls.2024.1369976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Introduction Cyanobacteria are typically of a size that can be observed under a microscope. Here, we present cyanobacteria of a size that can be observed with the naked eye. Arthrospira platensis NCB002 strain showed differentiated morphological characteristics compared to previously reported Arthrospira spp. Methods Arthrospira platensis NCB002 was obtained by the UV irradiation of Arthrospira sp. NCB001, which was isolated from freshwater and owned by NCell Co., Ltd. A. platensis NIES-39 was obtained from the National Institute for Environmental Studies (Tsukuba, Japan). We used various analytical techniques to determine its overall characteristics. Results and discussion The draft genome of strain NCB002 consists of five contigs comprising 6,864,973 bp with a G+C content of 44.3 mol%. The strain NCB002 had an average length of 11.69 ± 1.35 mm and a maximum of 15.15 mm, which is 23.4-50.5 times longer than the length (0.3-0.5 mm) of previously known Arthrospira spp., allowing it to be harvested using a thin sieve. Transcriptome analysis revealed that these morphological differences resulted from changes in cell wall formation mechanisms and increased cell division. Our results show that NCB002 has outstanding industrial value and provides a comprehensive understanding of it.
Collapse
Affiliation(s)
- Changsu Lee
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Na
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Zun Kim
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:7008. [PMID: 37894491 PMCID: PMC10609489 DOI: 10.3390/molecules28207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to β-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-β-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (β-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded β-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-β-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.
Collapse
Affiliation(s)
- Shraddha S. Ambade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra 282004, UP, India
| | - Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, MH, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, MH, India
| | - Pramod B. Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | | |
Collapse
|
6
|
Harpring M, Cox JV. Plasticity in the cell division processes of obligate intracellular bacteria. Front Cell Infect Microbiol 2023; 13:1205488. [PMID: 37876871 PMCID: PMC10591338 DOI: 10.3389/fcimb.2023.1205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Most bacteria divide through a highly conserved process called binary fission, in which there is symmetric growth of daughter cells and the synthesis of peptidoglycan at the mid-cell to enable cytokinesis. During this process, the parental cell replicates its chromosomal DNA and segregates replicated chromosomes into the daughter cells. The mechanisms that regulate binary fission have been extensively studied in several model organisms, including Eschericia coli, Bacillus subtilis, and Caulobacter crescentus. These analyses have revealed that a multi-protein complex called the divisome forms at the mid-cell to enable peptidoglycan synthesis and septation during division. In addition, rod-shaped bacteria form a multi-protein complex called the elongasome that drives sidewall peptidoglycan synthesis necessary for the maintenance of rod shape and the lengthening of the cell prior to division. In adapting to their intracellular niche, the obligate intracellular bacteria discussed here have eliminated one to several of the divisome gene products essential for binary fission in E. coli. In addition, genes that encode components of the elongasome, which were mostly lost as rod-shaped bacteria evolved into coccoid organisms, have been retained during the reductive evolutionary process that some coccoid obligate intracellular bacteria have undergone. Although the precise molecular mechanisms that regulate the division of obligate intracellular bacteria remain undefined, the studies summarized here indicate that obligate intracellular bacteria exhibit remarkable plasticity in their cell division processes.
Collapse
Affiliation(s)
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Bertonha AF, Silva CCL, Shirakawa KT, Trindade DM, Dessen A. Penicillin-binding protein (PBP) inhibitor development: A 10-year chemical perspective. Exp Biol Med (Maywood) 2023; 248:1657-1670. [PMID: 38030964 PMCID: PMC10723023 DOI: 10.1177/15353702231208407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including β-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.
Collapse
Affiliation(s)
- Ariane F Bertonha
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Caio C L Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Karina T Shirakawa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Daniel M Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| |
Collapse
|
8
|
Ago R, Tahara YO, Yamaguchi H, Saito M, Ito W, Yamasaki K, Kasai T, Okamoto S, Chikada T, Oshima T, Osaka I, Miyata M, Niki H, Shiomi D. Relationship between the Rod complex and peptidoglycan structure in Escherichia coli. Microbiologyopen 2023; 12:e1385. [PMID: 37877652 PMCID: PMC10561026 DOI: 10.1002/mbo3.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Peptidoglycan for elongation in Escherichia coli is synthesized by the Rod complex, which includes RodZ. Although various mutant strains of the Rod complex have been isolated, the relationship between the activity of the Rod complex and the overall physical and chemical structures of the peptidoglycan have not been reported. We constructed a RodZ mutant, termed RMR, and analyzed the growth rate, morphology, and other characteristics of cells producing the Rod complexes containing RMR. The growth and morphology of RMR cells were abnormal, and we isolated suppressor mutants from RMR cells. Most of the suppressor mutations were found in components of the Rod complex, suggesting that these suppressor mutations increase the integrity and/or the activity of the Rod complex. We purified peptidoglycan from wild-type, RMR, and suppressor mutant cells and observed their structures in detail. We found that the peptidoglycan purified from RMR cells had many large holes and different compositions of muropeptides from those of WT cells. The Rod complex may be a determinant not only for the whole shape of peptidoglycan but also for its highly dense structure to support the mechanical strength of the cell wall.
Collapse
Affiliation(s)
- Risa Ago
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Yuhei O. Tahara
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Honoka Yamaguchi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Motoya Saito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Wakana Ito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Kaito Yamasaki
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Taishi Kasai
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Sho Okamoto
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
| | - Taiki Chikada
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Taku Oshima
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Makoto Miyata
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
| | - Daisuke Shiomi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| |
Collapse
|
9
|
Nygaard R, Graham CLB, Belcher Dufrisne M, Colburn JD, Pepe J, Hydorn MA, Corradi S, Brown CM, Ashraf KU, Vickery ON, Briggs NS, Deering JJ, Kloss B, Botta B, Clarke OB, Columbus L, Dworkin J, Stansfeld PJ, Roper DI, Mancia F. Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex. Nat Commun 2023; 14:5151. [PMID: 37620344 PMCID: PMC10449877 DOI: 10.1038/s41467-023-40483-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chris L B Graham
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Meagan Belcher Dufrisne
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jonathan D Colburn
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph Pepe
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Molly A Hydorn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Silvia Corradi
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas S Briggs
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John J Deering
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY, 10027, USA
| | - Bruno Botta
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Linda Columbus
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Shlosman I, Fivenson EM, Gilman MSA, Sisley TA, Walker S, Bernhardt TG, Kruse AC, Loparo JJ. Allosteric activation of cell wall synthesis during bacterial growth. Nat Commun 2023; 14:3439. [PMID: 37301887 PMCID: PMC10257715 DOI: 10.1038/s41467-023-39037-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear. Here we use single-molecule FRET and cryo-EM to show that an essential PG synthase (RodA-PBP2) responsible for bacterial elongation undergoes dynamic exchange between closed and open states. Structural opening couples the activation of polymerization and crosslinking and is essential in vivo. Given the high conservation of this family of synthases, the opening motion that we uncovered likely represents a conserved regulatory mechanism that controls the activation of PG synthesis during other cellular processes, including cell division.
Collapse
Affiliation(s)
- Irina Shlosman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Elayne M Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tyler A Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
11
|
Shirakawa KT, Sala FA, Miyachiro MM, Job V, Trindade DM, Dessen A. Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A 2023; 120:e2219540120. [PMID: 37186837 PMCID: PMC10214165 DOI: 10.1073/pnas.2219540120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.
Collapse
Affiliation(s)
- Karina T. Shirakawa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo13083-862, Brazil
| | - Fernanda Angélica Sala
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Mayara M. Miyachiro
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| |
Collapse
|
12
|
Alhamwi AB, Atilgan C, Sensoy O. Nonlocal Effects of Antibiotic-Resistance-Causing Mutations Reveal an Alternative Region for Targeting on FtsW-Penicillin-Binding Protein 3 Complex of Haemophilus influenzae. J Chem Inf Model 2023; 63:3094-3104. [PMID: 37141552 DOI: 10.1021/acs.jcim.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Currently prescribed antibiotics target the catalytic sites of wild-type bacterial proteins; however, bacteria adopt mutations at this site, eventually leading to the emergence of resistance. Therefore, the identification of alternative drug binding sites is crucial, which requires knowledge of the dynamics of the mutant protein. Here, we set out to investigate the impact of a high-resistance-causing triple mutation (S385T + L389F + N526K) on the dynamics of a prioritized resistant pathogen, Haemophilus influenzae, using computational techniques. We studied penicillin-binding protein 3 (PBP3) and its complex with FtsW, which display resistance toward β-lactam antibiotics. We showed that mutations displayed local and nonlocal effects. In terms of the former, the orientation of the β-sheet, which surrounds the active site of PBP3, was impacted and the catalytic site was exposed to the periplasmic region. In addition, the flexibility of the β3-β4 loop, which modulates the catalysis of the enzyme, increased in the mutant FtsW-PBP3 complex. As for nonlocal effects, the dynamics of the pedestal domain (N-terminal periplasmic modulus (N-t)), i.e., the opening of the fork, was different between the wild-type and mutant enzymes. We showed the closed fork caused a greater number of residues to participate in the hypothesized allosteric communication network connecting N-t to the transpeptidase domain in the mutant enzyme. Finally, we demonstrated that the closed fork results in more favorable binding with β-lactam antibiotics, particularly cefixime, suggesting that small therapeutics that can stabilize the closed fork of mutant PBP3 may lead to the development of more effective molecules to combat resistant bacteria.
Collapse
Affiliation(s)
- Almotasem Belah Alhamwi
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ozge Sensoy
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
13
|
Micelli C, Dai Y, Raustad N, Isberg RR, Dowson CG, Lloyd AJ, Geisinger E, Crow A, Roper DI. A conserved zinc-binding site in Acinetobacter baumannii PBP2 required for elongasome-directed bacterial cell shape. Proc Natl Acad Sci U S A 2023; 120:e2215237120. [PMID: 36787358 PMCID: PMC9974482 DOI: 10.1073/pnas.2215237120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterial pathogen that causes challenging nosocomial infections. β-lactam targeting of penicillin-binding protein (PBP)-mediated cell wall peptidoglycan (PG) formation is a well-established antimicrobial strategy. Exposure to carbapenems or zinc (Zn)-deprived growth conditions leads to a rod-to-sphere morphological transition in A. baumannii, an effect resembling that caused by deficiency in the RodA-PBP2 PG synthesis complex required for cell wall elongation. While it is recognized that carbapenems preferentially acylate PBP2 in A. baumannii and therefore block the transpeptidase function of the RodA-PBP2 system, the molecular details underpinning cell wall elongation inhibition upon Zn starvation remain undefined. Here, we report the X-ray crystal structure of A. baumannii PBP2, revealing an unexpected Zn coordination site in the transpeptidase domain required for protein stability. Mutations in the Zn-binding site of PBP2 cause a loss of bacterial rod shape and increase susceptibility to β-lactams, therefore providing a direct rationale for cell wall shape maintenance and Zn homeostasis in A. baumannii. Furthermore, the Zn-coordinating residues are conserved in various β- and γ-proteobacterial PBP2 orthologs, consistent with a widespread Zn-binding requirement for function that has been previously unknown. Due to the emergence of resistance to virtually all marketed antibiotic classes, alternative or complementary antimicrobial strategies need to be explored. These findings offer a perspective for dual inhibition of Zn-dependent PG synthases and metallo-β-lactamases by metal chelating agents, considered the most sought-after adjuvants to restore β-lactam potency against gram-negative bacteria.
Collapse
Affiliation(s)
- Carmina Micelli
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Yunfei Dai
- Department of Biology, Northeastern University, Boston, MA02115
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, MA02115
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| | | | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Allister Crow
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
14
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
15
|
Flanders PL, Contreras-Martel C, Brown NW, Shirley JD, Martins A, Nauta KN, Dessen A, Carlson EE, Ambrose EA. Combined Structural Analysis and Molecular Dynamics Reveal Penicillin-Binding Protein Inhibition Mode with β-Lactones. ACS Chem Biol 2022; 17:3110-3120. [PMID: 36173746 PMCID: PMC10057605 DOI: 10.1021/acschembio.2c00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Lactam antibiotics comprise one of the most widely used therapeutic classes to combat bacterial infections. This general scaffold has long been known to inhibit bacterial cell wall biosynthesis by inactivating penicillin-binding proteins (PBPs); however, bacterial resistance to β-lactams is now widespread, and new strategies are urgently needed to target PBPs and other proteins involved in bacterial cell wall formation. A key requirement in the identification of strategies to overcome resistance is a deeper understanding of the roles of the PBPs and their associated proteins during cell growth and division, such as can be obtained with the use of selective chemical probes. Probe development has typically depended upon known PBP inhibitors, which have historically been thought to require a negatively charged moiety that mimics the C-terminus of the PBP natural peptidoglycan substrate, d-Ala-d-Ala. However, we have identified a new class of β-lactone-containing molecules that interact with PBPs, often in an isoform-specific manner, and do not incorporate this C-terminal mimetic. Here, we report a series of structural biology experiments and molecular dynamics simulations that we utilized to evaluate specific binding modes of this novel PBP inhibitor class. In this work, we obtained <2 Å resolution X-ray structures of four β-lactone probes bound to PBP1b from Streptococcus pneumoniae. Despite their diverging recognition modes beyond the site of covalent modification, these four probes all efficiently labeled PBP1b, as well as other PBPs from S. pneumoniae. From these structures, we analyzed protein-ligand interactions and characterized the β-lactone-bound active sites using in silico mutagenesis and molecular dynamics. Our approach has clarified the dynamic interaction profile in this series of ligands, expanding the understanding of PBP inhibitor binding.
Collapse
Affiliation(s)
- Parker L Flanders
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| | - Nathaniel W Brown
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Alexandre Martins
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| | - Kelsie N Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Andréa Dessen
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States.,Department of Pharmacology, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States
| | - Elizabeth A Ambrose
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Minnesota Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Timmler SB, Kellogg SL, Atkinson SN, Little JL, Djorić D, Kristich CJ. CroR Regulates Expression of pbp4(5) to Promote Cephalosporin Resistance in Enterococcus faecalis. mBio 2022; 13:e0111922. [PMID: 35913163 PMCID: PMC9426447 DOI: 10.1128/mbio.01119-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen and a major cause of severe nosocomial infections. Treatment options against enterococcal infections are declining due to the resistance of enterococci to numerous antibiotics. A key risk factor for developing enterococcal infections is treatment with cephalosporin antibiotics, to which enterococci are intrinsically resistant. For susceptible organisms, cephalosporins inhibit bacterial growth by acylating the active site of penicillin-binding proteins (PBPs), key enzymes that catalyze peptidoglycan cross-linking. Two specific PBPs of enterococci, Pbp4(5) and PbpA(2b), exhibit low reactivity toward cephalosporins, allowing these PBPs to cross-link peptidoglycan in the presence of cephalosporins to drive resistance in enterococci, but the mechanisms by which these PBPs are regulated are poorly understood. The CroS/R two-component signal transduction system (TCS) is also required for cephalosporin resistance. Activation of CroS/R by cephalosporins leads to CroR-dependent changes in gene expression. However, the specific genes regulated by CroS/R that are responsible for cephalosporin resistance remain largely unknown. In this study, we characterized CroR-dependent transcriptome remodeling by RNA-seq, identifying pbp4(5) as a CroR regulon member in multiple, diverse lineages of E. faecalis. Through genetic analysis of the pbp4(5) and croR promoters, we uncovered a CroR-dependent regulatory motif. Mutations in this motif to disrupt CroR-dependent upregulation of pbp4(5) in the presence of cell wall stress resulted in a reduction of resistance to cephalosporins in E. faecalis, demonstrating that enhanced production of Pbp4(5) and likely other proteins involved in peptidoglycan biogenesis by the CroS/R system drives enterococcal cephalosporin resistance. IMPORTANCE Investigation into molecular mechanisms used by enterococci to subvert cephalosporin antibiotics is imperative for preventing and treating life-threatening infections. In this study, we used genetic means to investigate the functional output of the CroS/R TCS required for enterococcal resistance to cephalosporins. We found that enhanced production of the penicillin-binding protein Pbp4(5) upon exposure to cell wall stress was mediated by CroS/R and was critical for intrinsic cephalosporin resistance of E. faecalis.
Collapse
Affiliation(s)
- Sarah B. Timmler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephanie L. Kellogg
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime L. Little
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Sacco MD, Wang S, Adapa SR, Zhang X, Lewandowski EM, Gongora MV, Keramisanou D, Atlas ZD, Townsend JA, Gatdula JR, Morgan RT, Hammond LR, Marty MT, Wang J, Eswara PJ, Gelis I, Jiang RHY, Sun X, Chen Y. A unique class of Zn 2+-binding serine-based PBPs underlies cephalosporin resistance and sporogenesis in Clostridioides difficile. Nat Commun 2022; 13:4370. [PMID: 35902581 PMCID: PMC9334274 DOI: 10.1038/s41467-022-32086-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment with β-lactam antibiotics, particularly cephalosporins, is a major risk factor for Clostridioides difficile infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), which are serine-based enzymes that assemble the bacterial cell wall. However, C. difficile has four different PBPs (PBP1-3 and SpoVD) with various roles in growth and spore formation, and their specific links to β-lactam resistance in this pathogen are underexplored. Here, we show that PBP2 (known to be essential for vegetative growth) is the primary bactericidal target for β-lactams in C. difficile. PBP2 is insensitive to cephalosporin inhibition, and this appears to be the main basis for cephalosporin resistance in this organism. We determine crystal structures of C. difficile PBP2, alone and in complex with β-lactams, revealing unique features including ligand-induced conformational changes and an active site Zn2+-binding motif that influences β-lactam binding and protein stability. The Zn2+-binding motif is also present in C. difficile PBP3 and SpoVD (which are known to be essential for sporulation), as well as in other bacterial taxa including species living in extreme environments and the human gut. We speculate that this thiol-containing motif and its cognate Zn2+ might function as a redox sensor to regulate cell wall synthesis for survival in adverse or anaerobic environments.
Collapse
Affiliation(s)
- Michael D Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Swamy R Adapa
- Department of Global and Planetary Health, USF Genomics Program, Global Health and Infectious Disease Center, College of Public Health, University of South Florida, Tampa, FL, 33620, USA
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Eric M Lewandowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Maura V Gongora
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | | | - Zachary D Atlas
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
| | - Julia A Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jean R Gatdula
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Ryan T Morgan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Lauren R Hammond
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Rays H Y Jiang
- Department of Global and Planetary Health, USF Genomics Program, Global Health and Infectious Disease Center, College of Public Health, University of South Florida, Tampa, FL, 33620, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Identification of the potential active site of the septal peptidoglycan polymerase FtsW. PLoS Genet 2022; 18:e1009993. [PMID: 34986161 PMCID: PMC8765783 DOI: 10.1371/journal.pgen.1009993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/18/2022] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors. SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan polymerases that play critical roles in cell elongation and cell division in rod-shaped bacteria. However, how they catalyze PG polymerization remains poorly understood. In this study, we isolated and characterized a set of dominant-negative mutations in the SEDS protein FtsW, which synthesizes septal peptidoglycan during cell division in most bacteria. Our results revealed that the dominant-negative mutations disrupt FtsW’s ability to synthesize peptidoglycan, but do not affect its other activities, suggesting that the corresponding amino acids may constitute the active site of FtsW.
Collapse
|
19
|
Garratt RC. Protein structure, dynamics, and function-a 20th IUPAB Congress symposium. Biophys Rev 2021; 13:867-869. [PMID: 35059010 PMCID: PMC8724499 DOI: 10.1007/s12551-021-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022] Open
Abstract
A wide range of topics was raised by the four invited speakers who took part in the session on protein structure, dynamics, and function during the 20th IUPAB Congress. Most of the emphasis was placed on understanding the underlying biological phenomena of interest although applications in drug development were also mentioned. For both these purposes, it was clear that a complete description of the dynamics of the system was as important as the structures themselves. The subjects covered included antibiotic peptides, sodium channels, the synthesis of the bacterial cell wall, and protein dynamics using X-FELs.
Collapse
Affiliation(s)
- Richard C. Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
20
|
Graham CLB, Newman H, Gillett FN, Smart K, Briggs N, Banzhaf M, Roper DI. A Dynamic Network of Proteins Facilitate Cell Envelope Biogenesis in Gram-Negative Bacteria. Int J Mol Sci 2021; 22:12831. [PMID: 34884635 PMCID: PMC8657477 DOI: 10.3390/ijms222312831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteria must maintain the ability to modify and repair the peptidoglycan layer without jeopardising its essential functions in cell shape, cellular integrity and intermolecular interactions. A range of new experimental techniques is bringing an advanced understanding of how bacteria regulate and achieve peptidoglycan synthesis, particularly in respect of the central role played by complexes of Sporulation, Elongation or Division (SEDs) and class B penicillin-binding proteins required for cell division, growth and shape. In this review we highlight relationships implicated by a bioinformatic approach between the outer membrane, cytoskeletal components, periplasmic control proteins, and cell elongation/division proteins to provide further perspective on the interactions of these cell division, growth and shape complexes. We detail the network of protein interactions that assist in the formation of peptidoglycan and highlight the increasingly dynamic and connected set of protein machinery and macrostructures that assist in creating the cell envelope layers in Gram-negative bacteria.
Collapse
Affiliation(s)
- Chris L. B. Graham
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Hector Newman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Francesca N. Gillett
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Katie Smart
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Nicholas Briggs
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| |
Collapse
|
21
|
Xu Q, Sun N, Xiao Q, Huang CY, Xu M, Zhang W, Li L, Wang Q, Olieric V, Wang W, He J, Sun B. The crystal structure of MreC provides insights into polymer formation. FEBS Open Bio 2021; 12:340-348. [PMID: 34510818 PMCID: PMC8804602 DOI: 10.1002/2211-5463.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
MreC is a scaffold protein required for cell shape determination through interactions with proteins related to cell wall synthesis. Here, we determined the crystal structure of the major periplasmic part of MreC from Escherichia coli at 2.1 Å resolution. The periplasmic part of MreC contains a coiled coil domain and two six-stranded barrel domains. The coiled coil domain is essential for dimer formation, and the two monomers are prone to relative motion that is related to the small interface of β-barrel domains. In addition, MreC forms an antiparallel filament-like structure along the coiled coil direction, which is different to the helical array structure in Pseudomonas aeruginosa. Our structure deepens our understanding of polymer formation of MreC.
Collapse
Affiliation(s)
- Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ning Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Mengxue Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weizhe Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
22
|
Abstract
Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Garner EC. Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation. Annu Rev Cell Dev Biol 2021; 37:1-21. [PMID: 34186006 DOI: 10.1146/annurev-cellbio-010521-010834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
24
|
Imbalance between peptidoglycan synthases and hydrolases regulated lysis of Lactobacillus bulgaricus in batch culture. Arch Microbiol 2021; 203:4571-4578. [PMID: 34156502 DOI: 10.1007/s00203-021-02433-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Lactobacillus bulgaricus is an important starter culture in the dairy industry, cell lysis is negative to the high density of this strain. This work describes the response of peptidoglycan synthases and hydrolases in Lactobacillus bulgaricus sp1.1 when pH decreasing in batch culture. First, the cell lysis was investigated by measuring the cytosolic lactate dehydrogenase released to the fermentation broth, a continuous increase in extracellular lactate dehydrogenase was observed after the lag phase in batch culture. Then, the peptidoglycan hydrolases profile analyzed using the zymogram method showed that eight proteins have the ability of peptidoglycan hydrolysis, three of the eight proteins were considered to contribute lysis of L. bulgaricus sp1.1 according to the changes and extents of peptidoglycan hydrolysis. In silico analysis showed that three putative peptidoglycan hydrolases, including N-acetylmuramyl-L-Ala amidase (protein ID: ALT46642.1), amidase (protein ID: ALT46641.1), and N-acetylmuramidase (protein ID: WP_013439201.1) were compatible with these proteins. Finally, the transcription of the three putative peptidoglycan hydrolases was upregulated in batch culture, in contrast, the expression of four peptidoglycan synthases was downregulated. These observations suggested the imbalance between peptidoglycan synthases and hydrolases involved in the lysis of Lactobacillus bulgaricus sp1.1.
Collapse
|
25
|
Self-association of MreC as a regulatory signal in bacterial cell wall elongation. Nat Commun 2021; 12:2987. [PMID: 34016967 PMCID: PMC8137920 DOI: 10.1038/s41467-021-22957-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
The elongasome, or Rod system, is a protein complex that controls cell wall formation in rod-shaped bacteria. MreC is a membrane-associated elongasome component that co-localizes with the cytoskeletal element MreB and regulates the activity of cell wall biosynthesis enzymes, in a process that may be dependent on MreC self-association. Here, we use electron cryo-microscopy and X-ray crystallography to determine the structure of a self-associated form of MreC from Pseudomonas aeruginosa in atomic detail. MreC monomers interact in head-to-tail fashion. Longitudinal and lateral interfaces are essential for oligomerization in vitro, and a phylogenetic analysis of proteobacterial MreC sequences indicates the prevalence of the identified interfaces. Our results are consistent with a model where MreC's ability to alternate between self-association and interaction with the cell wall biosynthesis machinery plays a key role in the regulation of elongasome activity.
Collapse
|
26
|
Li Y, Gong H, Zhan R, Ouyang S, Park KT, Lutkenhaus J, Du S. Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes. PLoS Genet 2021; 17:e1009366. [PMID: 33857142 PMCID: PMC8078798 DOI: 10.1371/journal.pgen.1009366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/27/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism. Bacterial cell division requires the synthesis of septal peptidoglycan by the widely conserved SEDS-bPBP protein complex FtsWI, but how the complex is activated during cell division is still poorly understood. Previous studies suggested that FtsN initiates a signaling cascade in the periplasm to activate FtsWI. Here we isolated and characterized activated FtsW and FtsI mutants and confirmed that the signaling cascade for FtsW activation goes from FtsN to FtsQLB to FtsI and then to FtsW. The residues corresponding to mutations affecting FtsWI activation are clustered to a small region of the interaction interface between the pedestal domain of FtsI and the extracellular loop 4 of FtsW, suggesting that this interaction mediates activation of FtsW. This is strikingly similar to the proposed activation mechanism for the RodA-PBP2 complex, another SEDS-bPBP complex required for cell elongation. Thus, the two homologous SEDS-bPBP complexes are activated similarly by completely unrelated activators that modulate the interaction interface between the SEDS proteins and the bPBPs.
Collapse
Affiliation(s)
- Ying Li
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Rui Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Shushan Ouyang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail: (JL); (SD)
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
- * E-mail: (JL); (SD)
| |
Collapse
|
27
|
Identification of potential regulatory domains within the MreC and MreD components of the cell elongation machinery. J Bacteriol 2021; 203:JB.00493-20. [PMID: 33558391 PMCID: PMC8092158 DOI: 10.1128/jb.00493-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial peptidoglycan (PG) cell wall maintains cell shape and prevents osmotic lysis. During growth of rod-shaped cells, PG is incorporated along the cell cylinder by the RodA-PBP2 synthase of the multi-protein Rod system (elongasome). Filaments of the actin-like MreB protein orient synthesis of the new PG material. They are connected to the RodA-PBP2 synthase in part through the RodZ component. MreC and MreD are other conserved components of the system, but their function is not well understood. Amino acid changes in RodA-PBP2 were recently identified that bypass a requirement for MreC and MreD function, suggesting the Mre proteins act as activators of the synthase. To further investigate their function, we developed a genetic strategy to identify dominant-negative alleles of mreC and mreD in Escherichia coli Residues essential for Rod system function were identified at the junction of two subdomains within MreC and in a predicted ligand-binding pocket of MreD. Additionally, we found that although the proline-rich C-terminal domain of MreC is non-essential, substitutions within this region disrupt its function. Based on these results, we propose that the C-terminus of MreC and the putative ligand-binding domain of MreD play regulatory roles in controlling Rod system activity.IMPORTANCE: Cell shape in bacteria is largely determined by the cell wall structure that surrounds them. The multi-protein machine called the Rod system (elongasome) has long been implicated in rod-shape determination in bacilli. However, the functions of many of its conserved components remain unclear. Here, we describe a new genetic system to dissect the function of these proteins and how we used it to identify potential regulatory domains within them that may modulate the function of the shape-determining machinery.
Collapse
|
28
|
Structural Characterization of Diazabicyclooctane β-Lactam "Enhancers" in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio 2021; 12:mBio.03058-20. [PMID: 33593978 PMCID: PMC8545096 DOI: 10.1128/mbio.03058-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is β-lactamase-mediated degradation of β-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as β-lactam “enhancers” due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C β-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by β-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 β-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent β-lactamase-resistant, non-β-lactam PBP inhibitors.
Collapse
|
29
|
Liston SD, Willis LM. Racing to build a wall: glycoconjugate assembly in Gram-positive and Gram-negative bacteria. Curr Opin Struct Biol 2021; 68:55-65. [PMID: 33429200 DOI: 10.1016/j.sbi.2020.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
The last two years have seen major advances in understanding the structural basis of bacterial cell envelope glycoconjugate biosynthesis, including capsules, lipopolysaccharide, teichoic acid, cellulose, and peptidoglycan. The recent crystal and cryo-electron microscopy structures of proteins involved in the initial glycosyltransferase steps in the cytoplasm, the transport of large and small lipid-linked glycoconjugates across the inner membrane, the polymerization of glycans in the periplasm, and the export of molecules from the cell have shed light on the mechanisms by which cell envelope glycoconjugates are made. We discuss these recent advances and highlight remaining unanswered questions.
Collapse
Affiliation(s)
- Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G1M1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2T2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G2T2, Canada; Women and Children's Health Research Institute, Edmonton, AB, T6G2T2, Canada.
| |
Collapse
|
30
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
31
|
Abstract
A critical step in bacterial cytokinesis is the activation of septal peptidoglycan synthesis at the Z ring. Although FtsN is the trigger and acts through FtsQLB and FtsA to activate FtsWI the mechanism is unclear. Spatiotemporal regulation of septal peptidoglycan (PG) synthesis is achieved by coupling assembly and activation of the synthetic enzymes (FtsWI) to the Z ring, a cytoskeletal element that is required for division in most bacteria. In Escherichia coli, the recruitment of the FtsWI complex is dependent upon the cytoplasmic domain of FtsL, a component of the conserved FtsQLB complex. Once assembled, FtsWI is activated by the arrival of FtsN, which acts through FtsQLB and FtsA, which are also essential for their recruitment. However, the mechanism of activation of FtsWI by FtsN is not clear. Here, we identify a region of FtsL that plays a key role in the activation of FtsWI which we designate AWI (activation of FtsWI) and present evidence that FtsL acts through FtsI. Our results suggest that FtsN switches FtsQLB from a recruitment complex to an activator with FtsL interacting with FtsI to activate FtsW. Since FtsQLB and FtsWI are widely conserved in bacteria, this mechanism is likely to be also widely conserved.
Collapse
|
32
|
Liu X, Biboy J, Consoli E, Vollmer W, den Blaauwen T. MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. PLoS Genet 2020; 16:e1009276. [PMID: 33370261 PMCID: PMC7793260 DOI: 10.1371/journal.pgen.1009276] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Rod-shape of most bacteria is maintained by the elongasome, which mediates the synthesis and insertion of peptidoglycan into the cylindrical part of the cell wall. The elongasome contains several essential proteins, such as RodA, PBP2, and the MreBCD proteins, but how its activities are regulated remains poorly understood. Using E. coli as a model system, we investigated the interactions between core elongasome proteins in vivo. Our results show that PBP2 and RodA form a complex mediated by their transmembrane and periplasmic parts and independent of their catalytic activity. MreC and MreD also interact directly with PBP2. MreC elicits a change in the interaction between PBP2 and RodA, which is suppressed by MreD. The cytoplasmic domain of PBP2 is required for this suppression. We hypothesize that the in vivo measured PBP2-RodA interaction change induced by MreC corresponds to the conformational change in PBP2 as observed in the MreC-PBP2 crystal structure, which was suggested to be the "on state" of PBP2. Our results indicate that the balance between MreC and MreD determines the activity of PBP2, which could open new strategies for antibiotic drug development.
Collapse
Affiliation(s)
- Xiaolong Liu
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elisa Consoli
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Daitch AK, Goley ED. Uncovering Unappreciated Activities and Niche Functions of Bacterial Cell Wall Enzymes. Curr Biol 2020; 30:R1170-R1175. [PMID: 33022262 PMCID: PMC7930900 DOI: 10.1016/j.cub.2020.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A peptidoglycan (PG) cell wall is an essential component of nearly all bacteria, providing protection against turgor pressure. Metabolism of this PG meshwork must be spatially and temporally regulated in order to support cell growth and division. Despite being an active area of research for decades, we have only recently identified the primary PG synthesis complexes that function during cell elongation (RodA-PBP2) and cell division (FtsW-FtsI), and we are still uncovering the importance of the other seemingly redundant cell wall enzymes. In this minireview, we highlight the discovery of the monofunctional glycosyltransferases RodA and FtsW and describe how these findings have prompted a re-evaluation of the auxiliary role of the bifunctional class A penicillin-binding proteins (aPBPs) as well as the L,D-transpeptidases (LDTs). Specifically, recent work indicates that the aPBPs and LDTs function independently of the primary morphogenetic complexes to support growth, provide protection from stresses, mediate morphogenesis, and/or allow adaptation to different growth conditions. These paradigm-shifting studies have reframed our understanding of bacterial cell wall metabolism, which will only become more refined as emerging technology allows us to tackle the remaining questions surrounding PG biosynthesis.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA.
| |
Collapse
|
34
|
Abstract
Bacteria surround their cell membrane with a net-like peptidoglycan layer, called sacculus, to protect the cell from bursting and maintain its cell shape. Sacculus growth during elongation and cell division is mediated by dynamic and transient multiprotein complexes, the elongasome and divisome, respectively. In this Review we present our current understanding of how peptidoglycan synthases are regulated by multiple and specific interactions with cell morphogenesis proteins that are linked to a dynamic cytoskeletal protein, either the actin-like MreB or the tubulin-like FtsZ. Several peptidoglycan synthases and hydrolases require activation by outer-membrane-anchored lipoproteins. We also discuss how bacteria achieve robust cell wall growth under different conditions and stresses by maintaining multiple peptidoglycan enzymes and regulators as well as different peptidoglycan growth mechanisms, and we present the emerging role of LD-transpeptidases in peptidoglycan remodelling.
Collapse
|
35
|
Shaku M, Ealand C, Matlhabe O, Lala R, Kana BD. Peptidoglycan biosynthesis and remodeling revisited. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:67-103. [PMID: 32762868 DOI: 10.1016/bs.aambs.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bacterial peptidoglycan layer forms a complex mesh-like structure that surrounds the cell, imparting rigidity to withstand cytoplasmic turgor and the ability to tolerate stress. As peptidoglycan has been the target of numerous clinically successful antimicrobials such as penicillin, the biosynthesis, remodeling and recycling of this polymer has been the subject of much interest. Herein, we review recent advances in the understanding of peptidoglycan biosynthesis and remodeling in a variety of different organisms. In order for bacterial cells to grow and divide, remodeling of cross-linked peptidoglycan is essential hence, we also summarize the activity of important peptidoglycan hydrolases and how their functions differ in various species. There is a growing body of evidence highlighting complex regulatory mechanisms for peptidoglycan metabolism including protein interactions, phosphorylation and protein degradation and we summarize key recent findings in this regard. Finally, we provide an overview of peptidoglycan recycling and how components of this pathway mediate resistance to drugs. In the face of growing antimicrobial resistance, these recent advances are expected to uncover new drug targets in peptidoglycan metabolism, which can be used to develop novel therapies.
Collapse
Affiliation(s)
- Moagi Shaku
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Ofentse Matlhabe
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Rushil Lala
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
36
|
Salama NR. Cell morphology as a virulence determinant: lessons from Helicobacter pylori. Curr Opin Microbiol 2020; 54:11-17. [PMID: 32014717 PMCID: PMC7247928 DOI: 10.1016/j.mib.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
A genetic screen for colonization factors of the human stomach pathogen Helicobacter pylori took a surprising turn with the discovery that some colonization mutants had lost helical cell morphology. Further pursuit of direct morphology screens revealed a large H. pylori 'shapesome' complex consisting of peptidoglycan modification and precursor synthesis enzymes, a cytoskeletal element and putative scaffold or regulatory proteins that promote enhanced asymmetric cell wall growth. Functional characterization of H. pylori shape mutants indicates multiple roles for cell shape during colonization of mucosal surfaces. Conservation of both the molecular constituents of the H. pylori cell shape program and a newly appreciated enrichment of this morphotype at mucosal surface suggests that helical organisms may be particularly well poised to exploit host perturbations to become pathogens.
Collapse
Affiliation(s)
- Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, United States.
| |
Collapse
|
37
|
Sjodt M, Rohs PDA, Gilman MSA, Erlandson SC, Zheng S, Green AG, Brock KP, Taguchi A, Kahne D, Walker S, Marks DS, Rudner DZ, Bernhardt TG, Kruse AC. Structural coordination of polymerization and crosslinking by a SEDS-bPBP peptidoglycan synthase complex. Nat Microbiol 2020; 5:813-820. [PMID: 32152588 PMCID: PMC7540724 DOI: 10.1038/s41564-020-0687-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022]
Abstract
The Shape, Elongation, Division, and Sporulation (“SEDS”) proteins are a highly conserved family of transmembrane glycosyltransferases that work in concert with class B penicillin binding proteins (bPBPs) to build the bacterial peptidoglycan cell wall1–6. How these proteins coordinate polymerization of new glycan strands with their crosslinking to the existing peptidoglycan meshwork remains unclear. Here, we report the crystal structure of the prototypical SEDS protein RodA from Thermus thermophilus in complex with its cognate bPBP at 3.3 Å resolution. The structure reveals a 1:1 stoichiometric complex with two extensive interaction interfaces between the proteins: one in the membrane plane and the other at the extracytoplasmic surface. When in complex with a bPBP, RodA shows a ~10 Å shift of transmembrane helix 7 that exposes a large membrane-accessible cavity. Negative-stain electron microscopy reveals that the complex can adopt a variety of different conformations. These data define the bPBP pedestal domain as the key allosteric activator of RodA both in vitro and in vivo, explaining how a SEDS:bPBP complex can coordinate its dual enzymatic activities of peptidoglycan polymerization and crosslinking to build the cell wall.
Collapse
Affiliation(s)
- Megan Sjodt
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sanduo Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anna G Green
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kelly P Brock
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Taguchi
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David Z Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Özbaykal G, Wollrab E, Simon F, Vigouroux A, Cordier B, Aristov A, Chaze T, Matondo M, van Teeffelen S. The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. eLife 2020; 9:50629. [PMID: 32077853 PMCID: PMC7089770 DOI: 10.7554/elife.50629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial shape is physically determined by the peptidoglycan cell wall. The cell-wall-synthesis machinery responsible for rod shape in Escherichia coli is the processive 'Rod complex'. Previously, cytoplasmic MreB filaments were thought to govern formation and localization of Rod complexes based on local cell-envelope curvature. Using single-particle tracking of the transpeptidase and Rod-complex component PBP2, we found that PBP2 binds to a substrate different from MreB. Depletion and localization experiments of other putative Rod-complex components provide evidence that none of those provide the sole rate-limiting substrate for PBP2 binding. Consistently, we found only weak correlations between MreB and envelope curvature in the cylindrical part of cells. Residual correlations do not require curvature-based Rod-complex initiation but can be attributed to persistent rotational motion. We therefore speculate that the local cell-wall architecture provides the cue for Rod-complex initiation, either through direct binding by PBP2 or through an unknown intermediate.
Collapse
Affiliation(s)
- Gizem Özbaykal
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Eva Wollrab
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Francois Simon
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Antoine Vigouroux
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France.,Synthetic Biology Lab, Institut Pasteur, Paris, France.,Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Baptiste Cordier
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Andrey Aristov
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
39
|
Chen X, Wong CH, Ma C. Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. ACS Infect Dis 2019; 5:1493-1504. [PMID: 31283163 DOI: 10.1021/acsinfecdis.9b00118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the major threats to human life nowadays is widespread antibiotic resistance. Antibiotics are used to treat bacterial infections by targeting their essential pathways, such as the biosynthesis of bacterial cell walls. Bacterial transglycosylase, particularly glycosyltransferase family 51 (GT51), is one critical player in the cell wall biosynthesis and has long been known as a promising yet challenging target for antibiotic development. Here, we review the structural studies of this protein and summarize recent progress in developing its specific inhibitors, including synthetic substrate analogs and novel compounds identified from high-throughput screens. A detailed analysis of the protein-ligand interface has also provided us with valuable insights into the future antibiotic development against the bacterial transglycosylase.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| |
Collapse
|
40
|
Levy N, Bruneau JM, Le Rouzic E, Bonnard D, Le Strat F, Caravano A, Chevreuil F, Barbion J, Chasset S, Ledoussal B, Moreau F, Ruff M. Structural Basis for E. coli Penicillin Binding Protein (PBP) 2 Inhibition, a Platform for Drug Design. J Med Chem 2019; 62:4742-4754. [PMID: 30995398 DOI: 10.1021/acs.jmedchem.9b00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Penicillin-binding proteins (PBPs) are the targets of the β-lactams, the most successful class of antibiotics ever developed against bacterial infections. Unfortunately, the worldwide and rapid spread of large spectrum β-lactam resistance genes such as carbapenemases is detrimental to the use of antibiotics in this class. New potent PBP inhibitors are needed, especially compounds that resist β-lactamase hydrolysis. Here we describe the structure of the E. coli PBP2 in its Apo form and upon its reaction with 2 diazabicyclo derivatives, avibactam and CPD4, a new potent PBP2 inhibitor. Examination of these structures shows that unlike avibactam, CPD4 can perform a hydrophobic stacking on Trp370 in the active site of E. coli PBP2. This result, together with sequence analysis, homology modeling, and SAR, allows us to propose CPD4 as potential starting scaffold to develop molecules active against a broad range of bacterial species at the top of the WHO priority list.
Collapse
Affiliation(s)
- Nicolas Levy
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France.,IGBMC , 1 Rue Laurent Fries , 67404 Illkirch , France
| | | | - Erwann Le Rouzic
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | - Damien Bonnard
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | | | - Audrey Caravano
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | | | - Julien Barbion
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | - Sophie Chasset
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | - Benoît Ledoussal
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | - François Moreau
- Mutabilis , 102 Avenue Gaston Roussel , 93230 Romainville , France
| | - Marc Ruff
- IGBMC , 1 Rue Laurent Fries , 67404 Illkirch , France
| |
Collapse
|
41
|
A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet 2019; 15:e1007897. [PMID: 30707707 PMCID: PMC6373972 DOI: 10.1371/journal.pgen.1007897] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Many bacteria have complex cell shapes, but the mechanisms producing their distinctive morphologies are still poorly understood. Caulobacter crescentus, for instance, exhibits a stalk-like extension that carries an adhesive holdfast mediating surface attachment. This structure forms through zonal peptidoglycan biosynthesis at the old cell pole and elongates extensively under phosphate-limiting conditions. We analyzed the composition of cell body and stalk peptidoglycan and identified significant differences in the nature and proportion of peptide crosslinks, indicating that the stalk represents a distinct subcellular domain with specific mechanical properties. To identify factors that participate in stalk formation, we systematically inactivated and localized predicted components of the cell wall biosynthetic machinery of C. crescentus. Our results show that the biosynthesis of stalk peptidoglycan involves a dedicated peptidoglycan biosynthetic complex that combines specific components of the divisome and elongasome, suggesting that the repurposing of preexisting machinery provides a straightforward means to evolve new morphological traits.
Collapse
|
42
|
Zanotti G, Cendron L. Structural Aspects of Helicobacter pylori Antibiotic Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:227-241. [PMID: 31016632 DOI: 10.1007/5584_2019_368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance to antibiotics of Helicobacter pylori infections is growing rapidly together with the need for more potent antimicrobials or novel strategies to recover the efficacy of the existing ones. Despite the main mechanisms according to which H. pylori acquires resistance are common to other microbial infections affecting humans, H. pylori has its own peculiarities, mostly due to the unique conditions experienced by the bacterium in the gastric niche. Possibly the most used of the antibiotics for H. pylori are those molecules that bind to the ribosome or to the DNA and RNA machinery, and in doing so they interfere with protein synthesis. Another important class is represented by molecules that binds to some enzyme essential for the bacterium survival, as in the case of enzymes involved in the bacterial wall biosynthesis. The mechanism used by the bacterium to fight antibiotics can be grouped in three classes: (i) mutations of some key residues in the protein that binds the inhibitor, (ii) regulation of the efflux systems or of the membrane permeability in order to reduce the uptake of the antibiotic, and (iii) other more complex indirect effects. Interestingly, the production of enzymes that degrade the antibiotics (as in the case of β-lactamases in many other bacteria) has not been clearly detected in H. pylori. The structural aspects of resistance players have not been object of extensive studies yet and the structure of very few H. pylori proteins involved in the resistance mechanisms are determined till now. Models of the proteins that play key roles in reducing antimicrobials susceptibility and their implications will be discussed in this chapter.
Collapse
Affiliation(s)
- Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Laura Cendron
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
43
|
Miyachiro MM, Contreras-Martel C, Dessen A. Penicillin-Binding Proteins (PBPs) and Bacterial Cell Wall Elongation Complexes. Subcell Biochem 2019; 93:273-289. [PMID: 31939154 DOI: 10.1007/978-3-030-28151-9_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other β-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.
Collapse
Affiliation(s)
- Mayara M Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil
| | - Carlos Contreras-Martel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil. .,Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France.
| |
Collapse
|
44
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
45
|
Rohs PDA, Buss J, Sim SI, Squyres GR, Srisuknimit V, Smith M, Cho H, Sjodt M, Kruse AC, Garner EC, Walker S, Kahne DE, Bernhardt TG. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet 2018; 14:e1007726. [PMID: 30335755 PMCID: PMC6207328 DOI: 10.1371/journal.pgen.1007726] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Cell elongation in rod-shaped bacteria is mediated by the Rod system, a conserved morphogenic complex that spatially controls cell wall assembly by the glycan polymerase RodA and crosslinking enzyme PBP2. Using Escherichia coli as a model system, we identified a PBP2 variant that promotes Rod system function when essential accessory components of the machinery are inactivated. This PBP2 variant hyperactivates cell wall synthesis in vivo and stimulates the activity of RodA-PBP2 complexes in vitro. Cells with the activated synthase also exhibited enhanced polymerization of the actin-like MreB component of the Rod system. Our results define an activation pathway governing Rod system function in which PBP2 conformation plays a central role in stimulating both glycan polymerization by its partner RodA and the formation of cytoskeletal filaments of MreB to orient cell wall assembly. In light of these results, previously isolated mutations that activate cytokinesis suggest that an analogous pathway may also control cell wall synthesis by the division machinery.
Collapse
Affiliation(s)
- Patricia D. A. Rohs
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jackson Buss
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sue I. Sim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georgia R. Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mandy Smith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi, Korea
| | - Megan Sjodt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel E. Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
46
|
Liu X, Meiresonne NY, Bouhss A, den Blaauwen T. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol Microbiol 2018; 109:855-884. [PMID: 30112777 DOI: 10.1111/mmi.14104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
Peptidoglycan (PG) is the unique cell shape-determining component of the bacterial envelope, and is a key target for antibiotics. PG synthesis requires the transmembrane movement of the precursor lipid II, and MurJ has been shown to provide this activity in Escherichia coli. However, how MurJ functions in vivo has not been reported. Here we show that MurJ localizes both in the lateral membrane and at midcell, and is recruited to midcell simultaneously with late-localizing divisome proteins and proteins MraY and MurG. MurJ septal localization is dependent on the presence of a complete and active divisome, lipid II synthesis and PBP3/FtsW activities. Inactivation of MurJ, either directly by mutation or through binding with MTSES, did not affect the midcell localization of MurJ. Our study visualizes MurJ localization in vivo and reveals a possible mechanism of MurJ recruitment during cell division.
Collapse
Affiliation(s)
- Xiaolong Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Nils Y Meiresonne
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmed Bouhss
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.,Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Sidarta M, Li D, Hederstedt L, Bukowska-Faniband E. Forespore Targeting of SpoVD in Bacillus subtilis Is Mediated by the N-Terminal Part of the Protein. J Bacteriol 2018; 200:e00163-18. [PMID: 29661861 PMCID: PMC5996694 DOI: 10.1128/jb.00163-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
SpoVD and PBP4b are structurally very similar high-molecular-weight, class B penicillin-binding proteins produced early during sporulation in Bacillus subtilis SpoVD is known to be essential for endospore cortex synthesis and thereby the production of heat-resistant spores. The role of PBP4b is still enigmatic. Both proteins are synthesized in the cytoplasm of the mother cell. PBP4b remains in the cytoplasmic membrane of the mother cell, whereas SpoVD accumulates in the forespore outer membrane. By the use of SpoVD/PBP4b chimeras with swapped protein domains, we show that the N-terminal part of SpoVD, containing the single transmembrane region, determines the forespore targeting of the protein.IMPORTANCE Beta-lactam-type antibiotics target penicillin-binding proteins (PBPs), which function in cell wall peptidoglycan synthesis. Bacteria of a subset of genera, including Bacillus and Clostridium species, can form endospores. The extreme resistance of endospores against harsh physicochemical conditions is of concern in clinical microbiology and the food industry. Endospore cortex layer biogenesis constitutes an experimental model system for research on peptidoglycan synthesis. The differentiation of a vegetative bacterial cell into an endospore involves the formation of a forespore within the cytoplasm of the sporulating cell. A number of proteins, including some PBPs, accumulate in the forespore. An understanding of the molecular mechanisms behind such subcellular targeting of proteins in bacterial cells can, for example, lead to a means of blocking the process of sporulation.
Collapse
Affiliation(s)
- Margareth Sidarta
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Dongdong Li
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
48
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|