1
|
Qiu J, Wang YH, Wang XM, Chen HS. PI3Kδ inhibition alleviates the brain injury during cerebral ischemia reperfusion via suppressing pericyte contraction in a TNF-α dependent manner. Exp Neurol 2024; 375:114728. [PMID: 38365134 DOI: 10.1016/j.expneurol.2024.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The pericytes (PCs) surrounding capillaries are vital regulators of capillary constriction. Persistent PC contraction results in the increased capillary constriction, therefore leading to the impaired cerebral blood flow (CBF) recovery after reperfusion and worsening the clinical outcomes in stroke patients. However, the potential determinants of PC functions during ischemia/reperfusion are poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit Delta (PIK3CD/PI3Kδ) is a crucial factor involved with neuronflammation during ischemic stroke. PI3Kδ has shown the expression in PCs, while its effect on PC functions has not been explored yet. In this study, a rodent ischemia/reperfusion model was established in C57BL/6 mice via transient middle cerebral artery occlusion and reperfusion (MCAO/R). The PI3Kδ expression in ischemic penumbra was remarkably upregulated following MCAO/R induction. PI3Kδ inhibitor CAL-101 improved the CBF recovery, ischemic brain injury, and suppressed capillary constriction in MCAO/R mice. Besides, the production of tumor necrosis factor alpha (TNF-α), an inducer for tissue injury, and the expression of transient receptor potential vanilloid type 2 (TRPV2), a channel protein permitting calcium (Ca2+) uptake, were significantly reduced in ischemic penumbra after CAL-101 treatment. In vitro, oxygen-glucose deprivation and reoxygenation (OGD/R) enhanced the expression of PI3Kδ and TRPV2 in primary mouse PCs. CAL-101 suppressed the TNF-α-induced TRPV2 expression in OGD/R-treated PCs, thus inhibiting the Ca2+ uptake and PC contraction. Collectively, this study suggests that PI3Kδ is a critical regulator of PC function during ischemic stroke.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yi-Han Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiu-Ming Wang
- Air Force Hospital from Northern Theater of Chinese People's Liberation Army, Shenyang, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
2
|
Peng X, Huang X, Lulu TB, Jia W, Zhang S, Cohen L, Huang S, Fan J, Chen X, Liu S, Wang Y, Wang K, Isoyama S, Dan S, Wang F, Zhang Z, Elkabets M, Kong D. A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation. Mol Cancer 2024; 23:54. [PMID: 38486218 PMCID: PMC10938783 DOI: 10.1186/s12943-024-01978-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Talal Ben Lulu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Wenqing Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Jindian Fan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shanshan Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yongzhe Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Kailin Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Peng S, Liang W, Liu Z, Ye S, Peng Z, Zhong Z, Ye Q. Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway. Hum Cell 2024; 37:420-434. [PMID: 38133876 DOI: 10.1007/s13577-023-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Hypothermic machine perfusion (HMP) has been demonstrated to be more effective in mitigating ischemia-reperfusion injury (IRI) of donation after circulatory death (DCD) organs than cold storage (CS), yet the underlying mechanism remains obscure. We aimed to propose a novel therapeutic approach to ameliorate IRI in DCD liver transplantation. Twelve clinical liver samples were randomly assigned to HMP or CS treatment and subsequent transcriptomics analysis was performed. By combining in vivo HMP models, we discovered that HMP attenuated inflammation, oxidative stress, and apoptosis in DCD liver through a SEPRINA3-mediated PI3Kδ/AKT signaling cascade. Moreover, in the hypoxia/reoxygenation (H/R) model of BRL-3A, overexpression of SERPINA3 mitigated H/R-induced apoptosis, while SERPINA3 knockdown exacerbated cell injury. Idelalisib (IDE) treatment also reversed the protective effect of SERPINA3 overexpression. Overall, our research provided new insights into therapeutic strategies and identified potential novel molecular targets for therapeutic intervention against DCD liver.
Collapse
Affiliation(s)
- Sheng Peng
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Zhang X, Dai Q, Shan J, Zhang S, Zhang B, Liu S, Zhang Y, Wang Y, Li X, Jin X, Liang D, Ding J, Wang Y, Wen Y. Inhibition of phosphoinositide‑3 kinases γ/δ ameliorates pulmonary granuloma by rescuing Treg function in a sarcoidosis model. Exp Ther Med 2023; 25:225. [PMID: 37123205 PMCID: PMC10133787 DOI: 10.3892/etm.2023.11923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/17/2023] [Indexed: 05/02/2023] Open
Abstract
Sarcoidosis is a multisystem inflammatory disease characterized by the development of Th1/Th17/regulatory T cells (Tregs)-related non-caseating granulomas. Phosphoinositide-3 kinases δ/γ (PI3Kδ/γ) play an important role in the maintenance of effective immunity, especially for Tregs homeostasis and stability. In the present study, superoxide dismutase A (SodA) stimulation was used to establish the sarcoidosis mouse model. The second immune stimulus was accompanied by CAL-101 (PI3Kδ inhibitor) or AS-605240 (PI3Kδ/γ inhibitor) treatment. To detect the effect of the PI3Kδ/γ inhibitor on the morphology of pulmonary granuloma and the activation of the PI3K signaling pathway, hematoxylin and eosin staining and immunofluorescence and western blotting was used, respectively. Fluorescence-activated cell sorting analysis and reverse transcription-quantitative PCR were adopted to detect the effect of the PI3Kδ/γ inhibitor on the SodA-induced sarcoidosis mouse model in respect to immune cell disorder and the function of Treg cells, with CD4+CD25- T cells and CD4+CD25+ T cells sorted by magnetic cell sorting. The results demonstrated that the inhibition of PI3Kδ/γ by transtracheal CAL-101/AS-605240 administration facilitated pulmonary granuloma formation. These therapeutic effects were associated with certain mechanisms, including suppressing the aberrantly activated PI3K/Akt signaling in both pulmonary granuloma and Tregs, particularly rescuing the suppressive function of Tregs. Notably, CAL-101 was more effective in immune modulation compared with AS-605240 and could overcome the aberrantly activated Akt in the lung and Tregs. These results suggest that PI3K/Akt signaling, especially the PI3Kδ subunit, can play a key role in optimal Tregs-mediated protection against pulmonary sarcoidosis. Therefore, transtracheal usage of PI3Kδ/γ inhibitors is an attractive therapy that may be developed into a new immune-therapeutic principle for sarcoidosis in the future.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Qianqian Dai
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jiajia Shan
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Shiyun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Bin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Siyang Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yixue Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiaojie Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xuguang Jin
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongmei Liang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jingjing Ding
- Department of Respiratory Medicine and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210003, P.R. China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
- Correspondence to: Dr Yanting Wen, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P.R. China.
| | - Yanting Wen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
- Correspondence to: Dr Yanting Wen, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P.R. China.
| |
Collapse
|
5
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
7
|
Reinfeld BI, Rathmell WK, Kim TK, Rathmell JC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 2022; 19:46-58. [PMID: 34239083 PMCID: PMC8752729 DOI: 10.1038/s41423-021-00727-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
In 2011, Hanahan and Weinberg added "Deregulating Cellular Energetics" and "Avoiding Immune Destruction" to the six previous hallmarks of cancer. Since this seminal paper, there has been a growing consensus that these new hallmarks are not mutually exclusive but rather interdependent. The following review summarizes how founding genetic events for tumorigenesis ultimately increase tumor cell glycolysis, which not only supports the metabolic demands of malignancy but also provides an immunoprotective niche, promoting malignant cell proliferation, maintenance and progression. The mechanisms by which altered metabolism contributes to immune impairment are multifactorial: (1) the metabolic demands of proliferating tumor cells and activated immune cells are similar, thus creating a situation where immune cells may be in competition for key nutrients; (2) the metabolic byproducts of aerobic glycolysis directly inhibit antitumor immunity while promoting a regulatory immune phenotype; and (3) the gene programs associated with the upregulation of glycolysis also result in the generation of immunosuppressive cytokines and metabolites. From this perspective, we shed light on important considerations for the development of new classes of agents targeting cancer metabolism. These types of therapies can impair tumor growth but also pose a significant risk of stifling antitumor immunity.
Collapse
Affiliation(s)
- Bradley I Reinfeld
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tae Kon Kim
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Mori M, Ruer-Laventie J, Duchemin W, Demougin P, Ndinyanka Fabrice T, Wymann MP, Pieters J. Suppression of caspase 8 activity by a coronin 1-PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling. Sci Signal 2021; 14:eabj0057. [PMID: 34932374 DOI: 10.1126/scisignal.abj0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat–containing protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8–mediated apoptosis. These results therefore reveal a coronin 1–dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Wandrille Duchemin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | - Philippe Demougin
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | | | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Hu XL, Shen W, Wang R, Long H, Wang Q, Feng JH, Pham TA, Xiong F, Ye WC, Wang H. Discovery of Eucalyptin C, derived from the fruits of Eucalyptus globulus Labill., as a novel selective PI3Kγ inhibitor for immunosuppressive treatment. Chin J Nat Med 2021; 19:844-855. [PMID: 34844723 DOI: 10.1016/s1875-5364(21)60111-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 11/25/2022]
Abstract
The fruits of Eucalyptus globulus Labill. are known to have a plenty of medicinal properties, such as anti-tumor, anti-inflammatory, and immunosuppressive activity. Our previous study found that the phloroglucinol-sesquiterpene adducts in the fruits of E. globulus were immunosuppressive active constituents, especially Eucalyptin C (EuC). Phosphoinositide 3-kinases-γ (PI3Kγ) plays a pivotal role in T cell mediated excessive immune responses. In this study, EuC was first discovered to be a novel selective PI3Kγ inhibitor with an IC50 value of 0.9 μmol·L-1 and selectivity over 40-fold towards the other PI3K isoforms. Molecular docking, molecular dynamics simulation, and cellular thermal shift assay showed that EuC bound to PI3Kγ. Furthermore, EuC suppressed the downstream of PI3Kγ to induce the apoptosis and inhibit the activation of primary spleen cells derived from allergic contact dermatitis mice. This work highlights the role of the fruits of E. globulus as a source of bioactive plant with immunosuppressive activity.
Collapse
Affiliation(s)
- Xiao-Long Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Shen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huan Long
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Quan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Hao Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Thi-Anh Pham
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Vlachostergios PJ. Integrin signaling gene alterations and outcomes of cancer patients receiving immune checkpoint inhibitors. Am J Transl Res 2021; 13:12386-12394. [PMID: 34956460 PMCID: PMC8661141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immune evasion is a hallmark of cancer and is associated with resistance to PD-1/PD-L1 and CTLA-4 inhibitors. Several interactions between tumor and immune cells within the tumor microenvironment are effected through integrin signaling; however the latter has been underrecognized as a pathway that could have an impact on oncological outcomes after treatment with immune checkpoint inhibitors (ICIs). This study aimed to assess the clinical relevance of genomic alterations in the integrin signaling pathway in ICI-treated patients with advanced cancers. METHODS Next generation sequencing (NGS) data from tumor samples of patients with advanced cancers treated with ICIs (anti-PD-1/PD-L1, anti-CTLA4 or both) were queried from four independent publicly available cohorts for mutations and structural variations in 72 integrin signaling pathway genes (Gene Set: GOBP_CELL_ADHESION_MEDIATED_BY_INTEGRIN). The Kaplan Meier method was used to assess the association between mutated and unmutated genes with overall (OS) and progression-free survival (PFS). All results were reported at the 0.05 significance level. RESULTS The largest cohort included 1662 patients (discovery set) and comprised 350 non-small cell lung cancer (NSCLC), 321 melanoma, 214 bladder, 151 renal cell carcinoma (RCC), 138 head neck (HN), 126 esophageal/gastric (EG), 117 glioma, 110 colorectal (CRC), 90 cancer of unknown primary (CUP), and 45 breast cancer patients. ICI treatments included PD-1 or PD-L1 inhibitors (n=1256), anti-CTLA4 inhibitors (n=146) or both (n=260). 170 patients (10% of the entire cohort) harbored mutations in PIK3CG (6%), RET (3%), SYK (1.4%), LYN (1.4%), PTPN11 (1.3%), and CRKL (0.1%) genes. Presence of these mutations was more frequent in melanoma (18%), followed by CRC (14.5%), CUP (11%), and NSCLC (11%). Patients with mutated tumors experienced a significantly longer median OS (41 months) compared to those without alterations (16 months, log-rank P<0.001). The favorable prognostic value of PIK3CG, RET, SYK, LYN, PTPN11, and CRKL alterations was confirmed in three melanoma cohorts (validation set, n=212, P=0.024). Assessment of mutation status of these genes in a fourth cohort of NSCLC patients (n=75) revealed a predictive significance as well, with regard to PFS after treatment with ipilimumab and nivolumab combination (P=0.048). CONCLUSION Mutations and/or structural variations in integrin signaling genes may have prognostic and predictive value in patients with metastatic malignancies who receive ICIs. Although confirmation in larger studies with concurrent investigation of underlying immunologic mechanisms is needed, these findings pose therapeutic implications for co-targeted approaches to overcome immune evasion and resistance.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine New York 10021, NY, USA
| |
Collapse
|
11
|
Xiang Q, Dong S, Li XH. A Review of Phosphocreatine 3 Kinase δ Subtype (PI3Kδ) and Its Inhibitors in Malignancy. Med Sci Monit 2021; 27:e932772. [PMID: 34625526 PMCID: PMC8513496 DOI: 10.12659/msm.932772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most cancer deaths are caused by metastasis. The phosphocreatine 3-kinase (PI3K) family includes the I–III classes, with class I divided into 4 subtypes (α, β, γ, δ); and PI3K signaling participates in the regulatory processes of cell proliferation, differentiation, apoptosis, and glucose transport. Moreover, PI3Ks are modulators of cellular membrane lipids involved in signaling and trafficking events. The PI3Kdelta isoform (PI3Kδ), which is not only specifically expressed in hematopoietic cells, but also in different tumor cell lines, is expressed extensively. The increase in PI3Kδ activity is often associated with a variety of cancers. Currently, the strategy of tumor therapy based on PI3Kδ and its related signaling pathway is developing. Besides its established role in controlling functions in autoimmunity and inflammation, the role of PI3Kδ in tumor and metastasis is not clearly elucidated, with the effects of inhibiting PI3Kδ in several types of tumors also remaining unexplored. In addition, the specific inhibitor of PI3Kδ in tumor progression and metastasis and its underlying mechanism need to be further studied. The purpose of this review is to rationalize the existing functions and mechanisms of PI3Kδ in tumor metastasis and the relationship with hematopoietic cells in cancers as well cross-talking with miRNA, which provides a new theoretical basis and potential therapeutic target for the drug therapy of tumor metastasis.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China (mainland)
| | - Shuai Dong
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China (mainland)
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China (mainland)
| |
Collapse
|
12
|
Chandrasekaran S, Funk CR, Kleber T, Paulos CM, Shanmugam M, Waller EK. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ. Front Immunol 2021; 12:718621. [PMID: 34512641 PMCID: PMC8427697 DOI: 10.3389/fimmu.2021.718621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
PI3K-δ and PI3K-γ are critical regulators of T-cell differentiation, senescence, and metabolism. PI3K-δ and PI3K-γ signaling can contribute to T-cell inhibition via intrinsic mechanisms and regulation of suppressor cell populations, including regulatory T-cells and myeloid derived suppressor cells in the tumor. We examine an exciting new role for using selective inhibitors of the PI3K δ- and γ-isoforms as modulators of T-cell phenotype and function in immunotherapy. Herein we review the current literature on the implications of PI3K-δ and -γ inhibition in T-cell biology, discuss existing challenges in adoptive T-cell therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future directions to incorporate PI3K-δ and PI3K-γ as synergistic T-cell modulators in immunotherapy.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Troy Kleber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Department of Surgery/Microbiology & Immunology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Johansen KH, Golec DP, Thomsen JH, Schwartzberg PL, Okkenhaug K. PI3K in T Cell Adhesion and Trafficking. Front Immunol 2021; 12:708908. [PMID: 34421914 PMCID: PMC8377255 DOI: 10.3389/fimmu.2021.708908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Zhao J, Jiang L, Uehara M, Banouni N, Al Dulaijan BS, Azzi J, Ichimura T, Li X, Jarolim P, Fiorina P, Tullius SG, Madsen JC, Kasinath V, Abdi R. ACTH treatment promotes murine cardiac allograft acceptance. JCI Insight 2021; 6:e143385. [PMID: 34236047 PMCID: PMC8410061 DOI: 10.1172/jci.insight.143385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4–Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Collapse
Affiliation(s)
- Jing Zhao
- Transplantation Research Center.,Renal Division, and
| | - Liwei Jiang
- Transplantation Research Center.,Renal Division, and
| | - Mayuko Uehara
- Transplantation Research Center.,Renal Division, and
| | - Naima Banouni
- Transplantation Research Center.,Renal Division, and
| | | | - Jamil Azzi
- Transplantation Research Center.,Renal Division, and
| | | | - Xiaofei Li
- Transplantation Research Center.,Renal Division, and
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fiorina
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,International Center for Type 1 Diabetes, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, and.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Reza Abdi
- Transplantation Research Center.,Renal Division, and
| |
Collapse
|
15
|
Bansal R, Reshef R. Revving the CAR - Combination strategies to enhance CAR T cell effectiveness. Blood Rev 2021; 45:100695. [PMID: 32402724 DOI: 10.1016/j.blre.2020.100695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is currently approved for treatment of refractory B-cell malignancies. Response rates in these diseases are impressive by historical standards, but most patients do not have a durable response and there remains room for improvement. To date, CAR T cell activity has been even more limited in solid malignancies. These limitations are thought to be due to several pathways of resistance to CAR T cells, including cell-intrinsic mechanisms and the immunosuppressive tumor microenvironment. In this review, we discuss current experimental strategies that combine small molecules and monoclonal antibodies with CAR T cells to overcome these resistance mechanisms. We describe the biological rationale, pre-clinical data and clinical trials in progress that test the efficacy and safety of these combinations.
Collapse
Affiliation(s)
- Rajat Bansal
- Division of Hematology/Oncology, Columbia University Irving Medical Center, 177 Ft. Washington Ave, Floor: 6GN-435, New York, NY 10032, USA.
| | - Ran Reshef
- Division of Hematology/Oncology, Columbia University Irving Medical Center, 630 W. 168(th) Street Mailbox 127, New York, NY 10032, USA.
| |
Collapse
|
16
|
Yi Z, Keung KL, Li L, Hu M, Lu B, Nicholson L, Jimenez-Vera E, Menon MC, Wei C, Alexander S, Murphy B, O’Connell PJ, Zhang W. Key driver genes as potential therapeutic targets in renal allograft rejection. JCI Insight 2020; 5:136220. [PMID: 32634125 PMCID: PMC7455082 DOI: 10.1172/jci.insight.136220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Acute rejection (AR) in renal transplantation is an established risk factor for reduced allograft survival. Molecules with regulatory control among immune pathways of AR that are inadequately suppressed, despite standard-of-care immunosuppression, could serve as important targets for therapeutic manipulation to prevent rejection. Here, an integrative, network-based computational strategy incorporating gene expression and genotype data of human renal allograft biopsy tissue was applied, to identify the master regulators - the key driver genes (KDGs) - within dysregulated AR pathways. A 982-meta-gene signature with differential expression in AR versus non-AR was identified from a meta-analysis of microarray data from 735 human kidney allograft biopsy samples across 7 data sets. Fourteen KDGs were derived from this signature. Interrogation of 2 publicly available databases identified compounds with predicted efficacy against individual KDGs or a key driver-based gene set, respectively, which could be repurposed for AR prevention. Minocycline, a tetracycline antibiotic, was chosen for experimental validation in a murine cardiac allograft model of AR. Minocycline attenuated the inflammatory profile of AR compared with controls and when coadministered with immunosuppression prolonged graft survival. This study demonstrates that a network-based strategy, using expression and genotype data to predict KDGs, assists target prioritization for therapeutics in renal allograft rejection.
Collapse
Affiliation(s)
- Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karen L. Keung
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Department of Nephrology, Prince of Wales Hospital, Sydney, Australia
| | - Li Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, Connecticut, USA
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bo Lu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Leigh Nicholson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Elvira Jimenez-Vera
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Madhav C. Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Alexander
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Nephrology Department, The Children’s Hospital at Westmead, Sydney, Australia
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Nephrology, Westmead Hospital, Sydney, Australia
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Research advances on selective phosphatidylinositol 3 kinase δ (PI3Kδ) inhibitors. Bioorg Med Chem Lett 2020; 30:127457. [PMID: 32755681 DOI: 10.1016/j.bmcl.2020.127457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
PI3Kδ in B cells mediates antigen receptor signaling and promote neutrophil chemotaxis. The activation of PI3Kδ can cause mast cell maturation and degranulation, myeloid cell dysfunction, and cytokine release. As a key signal molecule, PI3Kδ interacts with the lipid binding domain of a variety of cellular proteins as a secondary messenger, ultimately affecting a series of significant cellular pathways in disease pathology. Therefore, many research organizations and pharmaceutical companies have studied it to develop effectively selective PI3Kδ inhibitors as therapeutics. This review summarizes research advances in varying chemical classes of selective PI3Kδ inhibitors and the structure-activity relationship, and it mainly focuses on the propeller- versus flat-type class of inhibitors.
Collapse
|
18
|
Stark AK, Davenport ECM, Patton DT, Scudamore CL, Vanhaesebroeck B, Veldhoen M, Garden OA, Okkenhaug K. Loss of Phosphatidylinositol 3-Kinase Activity in Regulatory T Cells Leads to Neuronal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:78-89. [PMID: 32414808 PMCID: PMC7311201 DOI: 10.4049/jimmunol.2000043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022]
Abstract
Class I PI3K enzymes are critical for the maintenance of effective immunity. In T cells, PI3Kα and PI3Kδ are activated by the TCR and costimulatory receptors, whereas PI3Kγ is activated by G protein-coupled chemokine receptors. PI3Kδ is a key regulator of regulatory T (Treg) cell function. PI3K isoform-selective inhibitors are in development for the treatment of diseases associated with immune dysregulation, including chronic inflammatory conditions, cancer, and autoimmune diseases. Idelalisib (PI3Kδ), alpelisib (PI3Kα), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K) have recently been approved for use in cancer treatment. Although effective, these therapies often have severe side effects associated with immune dysregulation and, in particular, loss of Treg cells. Therefore, it is important to gain a better understanding of the relative contribution of different PI3K isoforms under homeostatic and inflammatory conditions. Experimental autoimmune encephalitis is a mouse model of T cell-driven CNS inflammation, in which Treg cells play a key protective role. In this study, we show that PI3Kδ is required to maintain normal Treg cell development and phenotype under homeostatic conditions but that loss of PI3Kδ alone in Treg cells does not lead to autoimmunity. However, combined loss of PI3Kα and PI3Kδ signaling resulted in increased experimental autoimmune encephalitis disease severity. Moreover, mice lacking PI3Kα and PI3Kδ in Treg cells developed spontaneous peripheral nerve inflammation. These results show a key role for PI3K signaling in Treg cell-mediated protection against CNS inflammation.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Class Ib Phosphatidylinositol 3-Kinase/genetics
- Class Ib Phosphatidylinositol 3-Kinase/metabolism
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peripheral Nerves/immunology
- Peripheral Nerves/pathology
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Anne-Katrien Stark
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Elizabeth C M Davenport
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Daniel T Patton
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Cheryl L Scudamore
- Royal Veterinary College, London NW1 0TU, United Kingdom
- Exepathology, Exmouth EX8 5LQ, United Kingdom
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, London WC1E 6AG, United Kingdom
| | - Marc Veldhoen
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Instituto de Medicina Molecular, Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; and
| | - Oliver A Garden
- Royal Veterinary College, London NW1 0TU, United Kingdom
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom;
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
19
|
Liu Y, Deng M, Wang Y, Wang H, Li C, Wu H. Identification of differentially expressed genes and biological pathways in para-carcinoma tissues of HCC with different metastatic potentials. Oncol Lett 2020; 19:3799-3814. [PMID: 32382332 PMCID: PMC7202278 DOI: 10.3892/ol.2020.11493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with extensive metastasis. Changes in the tumor microenvironment provide favorable conditions for tumor metastasis. However, the role of changes to the tumor microenvironment in HCC metastasis is yet to be elucidated. The Gene Expression Omnibus expression profile GSE5093 consists of 20 noncancerous tissues surrounding HCC tissues, including 9 metastasis-inclined microenvironment samples with detectable metastases and 11 metastasis-averse microenvironment samples without detectable metastases. The present study assessed 35 HCC samples to verify the results of chip analysis. In total, 712 upregulated and 459 downregulated genes were identified, with 1,033 nodes, 7,589 edges and 10 hub genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed genes were significantly enriched in ‘cell-cell adhesion’, ‘cell proliferation’ and ‘protein binding’. The top 10 hub genes were identified via a protein-protein interaction analysis. The 3 most significant modules were identified from the protein-protein network. Moreover, an association between hub genes and patient prognosis was identified. In conclusion, these candidate genes and pathways may help elucidate the mechanisms underlying HCC metastasis and identify more options for targeted therapy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yimeng Wang
- Department of Gastroenterology, The Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Huiqin Wang
- Department of Gastroenterology, The Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Changping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
El-Ayachi I, Washburn WK, Schenk AD. Recent Progress in Treg Biology and Transplant Therapeutics. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00278-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Purpose of Review
Regulatory T cell (Treg) biology continues to evolve at a rapid pace. The role of Tregs in solid organ transplantation offers a unique window into Treg ontogeny and function as well as limitless possibilities for clinical application. Here we review recent significant discoveries and key translational work.
Recent Findings
Advances in transplantation deepen understanding of Treg differentiation, expansion, transcription, co-stimulation, and signaling. T cell receptor (TCR) sequencing and single-cell analytics allow unprecedented insight into Treg repertoire diversity and phenotypic heterogeneity. Efforts to replace conventional immunosuppression with Treg adoptive immunotherapy are underway and coalescing around strategies to increase efficiency through development of donor-reactive Tregs.
Summary
Adoptive immunotherapy with Tregs is a leading tolerogenic strategy. Early clinical trials suggest that Treg infusion is safe and reports on efficacy will soon follow.
Collapse
|
21
|
Jia Y, Yang Q, Wang Y, Li W, Chen X, Xu T, Tian Z, Feng M, Zhang L, Tang W, Tian N, Zhou L, Song W, Zhao X. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell Mol Immunol 2020; 18:1783-1797. [PMID: 32099075 DOI: 10.1038/s41423-020-0379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal-dominant combined immunodeficiency disorder resulting from pathogenic gain-of-function (GOF) mutations in the PIK3CD gene. Patients with APDS display abnormal T cell homeostasis. However, the mechanisms by which PIK3CD GOF contributes to this feature remain unknown. Here, with a cohort of children with PIK3CD GOF mutations from multiple regions of China and a corresponding CRISPR/Cas9 gene-edited mouse model, we reported that hyperactive PI3Kδ disrupted TNaive cell homeostasis in the periphery by intrinsically promoting the growth, proliferation, and activation of TNaive cells. Our results showed that PIK3CD GOF resulted in loss of the quiescence-associated gene expression profile in naive T cells and promoted naive T cells to overgrow, hyperproliferate and acquire an activated functional status. Naive PIK3CD GOF T cells exhibited an enhanced glycolytic capacity and reduced mitochondrial respiration in the resting or activated state. Blocking glycolysis abrogated the abnormal splenic T cell pool and reversed the overactivated phenotype induced by PIK3CD GOF in vivo and in vitro. These results suggest that enhanced aerobic glycolysis is required for PIK3CD GOF-induced overactivation of naive T cells and provide a potential therapeutic approach for targeting glycolysis to treat patients with APDS as well as other immune disorders.
Collapse
Affiliation(s)
- Yanjun Jia
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Yang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Minxuan Feng
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaodong Zhao
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Human PI3Kγ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun 2019; 10:4364. [PMID: 31554793 PMCID: PMC6761123 DOI: 10.1038/s41467-019-12311-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinase-gamma (PI3Kγ) is highly expressed in leukocytes and is an attractive drug target for immune modulation. Different experimental systems have led to conflicting conclusions regarding inflammatory and anti-inflammatory functions of PI3Kγ. Here, we report a human patient with bi-allelic, loss-of-function mutations in PIK3CG resulting in absence of the p110γ catalytic subunit of PI3Kγ. She has a history of childhood-onset antibody defects, cytopenias, and T lymphocytic pneumonitis and colitis, with reduced peripheral blood memory B, memory CD8+ T, and regulatory T cells and increased CXCR3+ tissue-homing CD4 T cells. PI3Kγ-deficient macrophages and monocytes produce elevated inflammatory IL-12 and IL-23 in a GSK3α/β-dependent manner upon TLR stimulation. Pik3cg-deficient mice recapitulate major features of human disease after exposure to natural microbiota through co-housing with pet-store mice. Together, our results emphasize the physiological importance of PI3Kγ in restraining inflammation and promoting appropriate adaptive immune responses in both humans and mice.
Collapse
|
23
|
Paz K, Flynn R, Du J, Tannheimer S, Johnson AJ, Dong S, Stark AK, Okkenhaug K, Panoskaltsis-Mortari A, Sage PT, Sharpe AH, Luznik L, Ritz J, Soiffer RJ, Cutler CS, Koreth J, Antin JH, Miklos DB, MacDonald KP, Hill GR, Maillard I, Serody JS, Murphy WJ, Munn DH, Feser C, Zaiken M, Vanhaesebroeck B, Turka LA, Byrd JC, Blazar BR. Targeting PI3Kδ function for amelioration of murine chronic graft-versus-host disease. Am J Transplant 2019; 19:1820-1830. [PMID: 30748099 PMCID: PMC6538456 DOI: 10.1111/ajt.15305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality following allotransplant. Activated donor effector T cells can differentiate into pathogenic T helper (Th)-17 cells and germinal center (GC)-promoting T follicular helper (Tfh) cells, resulting in cGVHD. Phosphoinositide-3-kinase-δ (PI3Kδ), a lipid kinase, is critical for activated T cell survival, proliferation, differentiation, and metabolism. We demonstrate PI3Kδ activity in donor T cells that become Tfh cells is required for cGVHD in a nonsclerodermatous multiorgan system disease model that includes bronchiolitis obliterans (BO), dependent upon GC B cells, Tfhs, and counterbalanced by T follicular regulatory cells, each requiring PI3Kδ signaling for function and survival. Although B cells rely on PI3Kδ pathway signaling and GC formation is disrupted resulting in a substantial decrease in Ig production, PI3Kδ kinase-dead mutant donor bone marrow-derived GC B cells still supported BO cGVHD generation. A PI3Kδ-specific inhibitor, compound GS-649443, that has superior potency to idelalisib while maintaining selectivity, reduced cGVHD in mice with active disease. In a Th1-dependent and Th17-associated scleroderma model, GS-649443 effectively treated mice with active cGVHD. These data provide a foundation for clinical trials of US Food and Drug Administration (FDA)-approved PI3Kδ inhibitors for cGVHD therapy in patients.
Collapse
Affiliation(s)
- Katelyn Paz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Amy J. Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, and Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy. The Ohio State University, Columbus, Ohio, USA
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H. Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerome Ritz
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J. Soiffer
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S. Cutler
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John Koreth
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H. Antin
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David B. Miklos
- Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA
| | - Kelli P. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, Australia
| | - Geoffrey R. Hill
- Department of Immunology, QIMR Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, Australia
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - David H. Munn
- Georgia Cancer Center and Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Colby Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Zaiken
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John C. Byrd
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, and Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Sang AX, McPherson MC, Ivison GT, Qu X, Rigdon J, Esquivel CO, Krams SM, Martinez OM. Dual blockade of the PI3K/Akt/mTOR pathway inhibits posttransplant Epstein-Barr virus B cell lymphomas and promotes allograft survival. Am J Transplant 2019; 19:1305-1314. [PMID: 30549430 PMCID: PMC6482059 DOI: 10.1111/ajt.15216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/25/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is a serious complication of organ transplantation that often manifests as Epstein-Barr virus (EBV)-associated B cell lymphomas. Current treatments for PTLD have limited efficacy and can be associated with graft rejection or systemic toxicities. The mTOR inhibitor, rapamycin, suppresses tumor growth of EBV+ B cell lymphoma cells in vitro and in vivo; however, the efficacy is limited and clinical benefits of mTOR inhibitors for PTLD are variable. Here, we show constitutive activation of multiple nodes within the PI3K/Akt/mTOR pathway in EBV+ PTLD-derived cell lines. Inhibition of either PI3K or Akt, with specific inhibitors CAL-101 and MK-2206, respectively, diminished growth of EBV+ B cell lines from PTLD patients in a dose-dependent manner. Importantly, rapamycin combined with CAL-101 or MK-2206 had a synergistic effect in suppressing cell growth as determined by IC50 isobolographic analysis and Loewe indices. Moreover, these combinations were significantly more effective than rapamycin alone in inhibiting tumor xenograft growth in NOD-SCID mice. Finally, both CAL-101 and MK-2206 also prolonged survival of heterotopic cardiac allografts in C57BL/6 mice. Thus, combination therapy with rapamycin and a PI3K inhibitor, or an Akt inhibitor, can be an efficacious treatment for EBV-associated PTLD, while simultaneously promoting allograft survival.
Collapse
Affiliation(s)
- Adam X Sang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marla C McPherson
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey T Ivison
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Qu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Rigdon
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Zhang B, Dai Q, Jin X, Liang D, Li X, Lu H, Liu Y, Ding J, Gao Q, Wen Y. Phosphoinositide 3-kinase/protein kinase B inhibition restores regulatory T cell's function in pulmonary sarcoidosis. J Cell Physiol 2019; 234:19911-19920. [PMID: 30945303 DOI: 10.1002/jcp.28589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease associated with Th1/ regulatory T cells (Treg) paradigm. PI3K/Akt signaling, critical for maintaining Treg's homeostasis, is aberrantly activated in sarcoidosis patients. Here we tested the role of the PI3K inhibitors, LY294002 and BKM120, in immune modulation in experimental pulmonary sarcoidosis, concerning Th1/Th17/Treg immune profile detected by fluorescence-activated cell sorting analysis or quantitative polymerase chain reaction, as well as the effect on Treg's suppressive functions. Our investigation showed abnormal activation of PI3K/Akt signaling both in lung and Treg in pulmonary sarcoidosis, along with decreased frequency and damaged function of Treg. Blockage of PI3K suppressed this signaling in Treg, rebalanced Th1/Treg, inhibited the production of inflammatory cytokines, and enhanced Treg's function. These results demonstrate the key role of the PI3K/Akt signaling in regulating Th1/Th2 rebalances and indicates that PI3K/Akt signaling is critical for the optimal Treg responses in pulmonary sarcoidosis. Thus, PI3K inhibitors have potential for therapeutic translation, and can be candidate for add-on drugs to treat pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Qianqian Dai
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xuguang Jin
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Dongmei Liang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xiaojie Li
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Haiyan Lu
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Yu Liu
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingjing Ding
- Department of Respiratory Medicine, Jiangsu Key Laboratory of Molecular Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Gao
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Yanting Wen
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
26
|
Perry MWD, Abdulai R, Mogemark M, Petersen J, Thomas MJ, Valastro B, Westin Eriksson A. Evolution of PI3Kγ and δ Inhibitors for Inflammatory and Autoimmune Diseases. J Med Chem 2018; 62:4783-4814. [DOI: 10.1021/acs.jmedchem.8b01298] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Raolat Abdulai
- Respiratory, Inflammation & Autoimmunity Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
- Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
27
|
de Gooijer MC, Zhang P, Buil LCM, Çitirikkaya CH, Thota N, Beijnen JH, van Tellingen O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci Rep 2018; 8:10784. [PMID: 30018387 PMCID: PMC6050274 DOI: 10.1038/s41598-018-29062-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 01/16/2023] Open
Abstract
Characterization of the genomic landscapes of intracranial tumours has revealed a clear role for the PI3K-AKT-mTOR pathway in tumorigenesis and tumour maintenance of these malignancies, making phosphatidylinositol 3-kinase (PI3K) inhibition a promising therapeutic strategy for these tumours. Buparlisib is a novel pan-PI3K inhibitor that is currently in clinical development for various cancers, including primary and secondary brain tumours. Importantly however, earlier studies have revealed that sufficient brain penetration is a prerequisite for antitumor efficacy against intracranial tumours. We therefore investigated the brain penetration of buparlisib using a comprehensive set of in vitro and in vivo mouse models. We demonstrate that buparlisib has an excellent brain penetration that is unaffected by efflux transporters at the blood-brain barrier, complete oral bioavailability and efficient intracranial target inhibition at clinically achievable plasma concentrations. Together, these characteristics make buparlisib the ideal candidate for intracranially-targeted therapeutic strategies that involve PI3K inhibition.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ping Zhang
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Neurosurgery, Qilu Hospital, Shandong University, Wenhua Xi Road 107, 250012, Jinan, P.R. China
| | - Levi C M Buil
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Nishita Thota
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute / MC Slotervaart Hospital, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|