1
|
Caneve P, Schraps N, Möller K, Büyücek S, Lutz F, Chirico V, Viehweger F, Reiswich V, von Bargen C, Kind S, Menz A, Kluth M, Hube-Magg C, Bernreuther C, Sauter G, Marx AH, Simon R, Krech T, Steurer S, Fraune C, Minner S, Gorbokon N, Lennartz M, Burandt E, Rico SD, Freytag M, Luebke AM. Brachyury expression is highly specific for chordoma: A tissue microarray study involving 14,976 cancers from 135 different tumor types and subtypes. Ann Diagn Pathol 2025; 76:152448. [PMID: 39929118 DOI: 10.1016/j.anndiagpath.2025.152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Brachyury protein plays a role in defining the midline of bilaterian organisms. Commonly expressed in chordomas, brachyury immunohistochemistry is used to distinguish chordomas from their differential diagnoses. However, brachyury expression has also been described to frequently occur in other cancer entities. To better comprehend the role of brachyury expression in cancer, a tissue microarray containing 14,976 samples from 135 different tumor entities and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. Brachyury staining was found in 55 (0.44 %) of the 12,409 interpretable tumor samples, including 37 (0.3 %) with weak, 10 (0.08 %) with moderate, and 8 (0.06 %) with strong positivity. Brachyury staining strongly predominated in chordomas. Of ten chordomas, 7 were strongly and 3 moderately positive. Only 5 of the 134 analyzed further tumor categories showed brachyury staining, 4 of which originated from testicular germ cells. Brachyury positivity occurred in 21.4 % of 42 yolk sac tumors, 15.2 % of 46 embryonal carcinomas, 4.4 % of 562 seminomas, and 2.4 % of 41 teratomas of the testis. Our data support the previously suggested high specificity of brachyury for chordoma detection, and demonstrate that germ cell tumors represent the only additional group of unrelated cancer entities expressing brachyury at a significant level.
Collapse
Affiliation(s)
- Piero Caneve
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Schraps
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Petrykowski BL, Thompson C, Baker TG, Welsh CT. Clival Chordoma Metastatic to Lymph Node: Brachyury Staining Insights. Int J Surg Pathol 2025:10668969251334728. [PMID: 40313088 DOI: 10.1177/10668969251334728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Clival chordomas are rare bone tumors involving the primary intracranial central nervous system. These tumors reoccur and invade locally but metastasis is uncommon. We present a 54-year-old woman with a 10-year recurrence of a conventional chordoma originating from the clivus with lymph node metastasis that was confirmed with brachyury. Based on our review of the literature, there have been only 3 confirmed patients with clival chordoma metastasis to lymph nodes and this is the first account of a conventional chordoma lymph node metastasis being confirmed with brachyury immunohistochemistry.
Collapse
Affiliation(s)
- Benjamin L Petrykowski
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Conner Thompson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tiffany G Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Cynthia T Welsh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Gao J, Jin J, Huang R, Wang S, Song S, Zhang Y, Li Y, Lin J, Chang Z, Huang Z, Sun W, Yin H, Song D, Xiao J, Wang P, Meng T. RAB3B Dictates mTORC1/S6 Signaling in Chordoma and Predicts Response to mTORC1-Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415384. [PMID: 40135815 DOI: 10.1002/advs.202415384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Indexed: 03/27/2025]
Abstract
Chordoma, a rare mesenchymal malignancy, exhibits a high tendency to postoperative recurrence and poor prognosis. To date, its tumorigenic regulatory mechanisms remain elusive, leading to a lack of effective therapeutic targets and drug sensitivity indicators. Here, via transcriptome and proteome analyses, RAB3B is unveiled as a prominent oncogenic regulator in chordoma, with high expression and enhancer-associated transcriptional activity. Notably, RAB3B ablation attenuated the chordoma cell stemness and malignant biological properties in vivo and in vitro. Through determining the RAB3B-mediated program in chordoma, it is identified that it enhanced the phosphorylation of S6 specifically at S235/236 and directly bound to S6. Mechanistically, RAB3B physically interacted with phosphorylase DUSP12, and blocked the DUSP12-mediated dephosphorylation of p-S6 (S235/236). Pharmacological targeting mTORC1 pathway dramatically impeded the RAB3B-induced stemness regulation, protein translation, and chordoma tumorigenicity, while RAB3B knockdown desensitized mTORC1 inhibition. In clinic, the combination of RAB3B and p-S6 suggested a good prognostic value and predicted mTORC1 inhibitors response for chordoma patients. Altogether, this work uncovers RAB3B/DUSP12 as the novel regulators of S6 phosphorylation (S235/236), and suggests the oncogenic and predictive roles of RAB3B/p-S6 in chordoma, indicating therapeutic potentials of mTORC1-targeted therapy for advanced chordoma patients with aberrant RAB3B/p-S6 hyperactivation.
Collapse
Affiliation(s)
- Jianxuan Gao
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Runzhi Huang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Siqiao Wang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Sihui Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yongai Li
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Huabin Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Dianwen Song
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Jianru Xiao
- Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Tong Meng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
4
|
Elkhalil A, Whited A, Ghose P. SQST-1/p62-regulated SKN-1/Nrf mediates a phagocytic stress response via transcriptional activation of lyst-1/LYST. PLoS Genet 2025; 21:e1011696. [PMID: 40315422 PMCID: PMC12068719 DOI: 10.1371/journal.pgen.1011696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 05/12/2025] [Accepted: 04/19/2025] [Indexed: 05/04/2025] Open
Abstract
Cells may be intrinsically fated to die to sculpt tissues during development or to maintain homeostasis. Cells can also die in response to various stressors, injury or pathological conditions. Additionally, cells of the metazoan body are often highly specialized with distinct domains that differ both structurally and with respect to their neighbors. Specialized cells can also die, as in normal brain development or pathological states and their different regions may be eliminated via different programs. Clearance of different types of cell debris must be performed quickly and efficiently to prevent autoimmunity and secondary necrosis of neighboring cells. Moreover, all cells, including those programmed to die, may be subject to various stressors. Some largely unexplored questions include whether predestined cell elimination during development could be altered by stress, if adaptive stress responses exist and if polarized cells may need compartment-specific stress-adaptive programs. We leveraged Compartmentalized Cell Elimination (CCE) in the nematode C. elegans to explore these questions. CCE is a developmental cell death program whereby three segments of two embryonic polarized cell types are eliminated differently. We have previously employed this in vivo genetic system to uncover a cell compartment-specific, cell non-autonomous clearance function of the fusogen EFF-1 in phagosome closure during corpse internalization. Here, we introduce an adaptive response that serves to aid developmental phagocytosis as a part of CCE during stress. We employ a combination of forward and reverse genetics, CRISPR/Cas9 gene editing, stress response assays and advanced fluorescence microscopy. Specifically, we report that, under heat stress, the selective autophagy receptor SQST-1/p62 promotes the nuclear translocation of the oxidative stress-related transcription factor SKN-1/Nrf via negative regulation of WDR-23. This in turn allows SKN-1/Nrf to transcribe lyst-1/LYST (lysosomal trafficking associated gene) which subsequently promotes the phagocytic resolution of the developmentally-killed internalized cell even under stress conditions.
Collapse
Affiliation(s)
- Aladin Elkhalil
- The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Alec Whited
- The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Piya Ghose
- The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
5
|
Seeling C, Neumahr J, Häberle F, Lechel A, Möller P, Gaisa NT, Barth TFE, Mellert K. Cucurbitacin B Exhibits Antitumor Effects on Chordoma Cells via Disruption of Brachyury. Int J Mol Sci 2025; 26:3864. [PMID: 40332566 PMCID: PMC12028342 DOI: 10.3390/ijms26083864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Chordomas are rare malignant tumors of the bone, originating from remnants of notochordal cells. The transcription factor brachyury, encoded by TBXT, serves as a critical diagnostic marker and is essential for tumor growth. While brachyury's role in regulating the cytoskeleton during embryogenesis and tumorigenesis is well understood, the reverse-whether cytoskeletal alterations can influence brachyury levels-remains unclear. Despite advances in understanding chordoma biology, there are currently no approved targeted therapies, underscoring the need for novel therapeutic approaches. Three chordoma cell lines were treated with cytoskeletal inhibitors, including the actin-targeting compounds Cucurbitacin B (CuB) and Latrunculin B (LatB). Morphological changes, TBXT expression, and cell viability were analyzed. The effects of CuB were examined over time and across concentrations, with cell viability assessed via apoptosis and cytotoxicity assays. Microarray gene expression profiling of ten chordoma cell lines was performed to explore CuB-mediated transcriptional changes. Rescue experiments using a TBXT open reading frame vector and co-treatments with autophagy and proteasome inhibitors were conducted to elucidate the mechanisms of brachyury depletion. Both CuB and LatB induced significant morphological changes, but only CuB caused near-complete depletion of brachyury. This effect was time- and concentration-dependent, correlating with reduced cell viability driven primarily by apoptosis. Microarray analysis revealed that CuB treatment upregulated protein refolding pathways and downregulated protein glycosylation. Notably, TBXT transcription was only slightly suppressed, indicating that brachyury depletion was largely post-transcriptional. Rescue experiments and co-treatments implicated dysregulated protein refolding and endoplasmic reticulum (ER) stress as key mechanisms underlying CuB-mediated brachyury loss. This study demonstrates that actin cytoskeleton disruption by CuB depletes brachyury in chordoma cells, primarily through dysregulated protein refolding and ER stress rather than transcriptional repression. These findings suggest that targeting actin cytoskeleton dynamics or protein unfolding pathways may provide novel therapeutic approaches for chordoma treatment.
Collapse
Affiliation(s)
- Carolin Seeling
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Johannes Neumahr
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabian Häberle
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nadine T. Gaisa
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas F. E. Barth
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
6
|
Fürtös AM, Sandu AM, Ciubotaru VG, Gorgan RM, Tătăranu LG. Skull base chordomas - emphasis on surgical strategy and recurrence-free survival. Med Pharm Rep 2025; 98:210-216. [PMID: 40371409 PMCID: PMC12070904 DOI: 10.15386/mpr-2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Chordomas arise from remnants of the notochord. The aim of this study is to report a series of cases with operated skull base chordomas, with reviewing clinical data, assessing surgical strategy and outcome. Methods We performed a 13-year retrospective study, between 2009 and 2022, in which we included patients operated for skull base chordomas. Results There were 6 males and 9 women, mean age 52.8 ± 16.55 years. Tumor site was clivus (13 patients), left cavernous sinus (one case) and sphenoidal sinus (one case). We performed endoscopic endonasal approach (18 times), transcranial subtemporal approach and combined approach. We achieved GTR in 8 patients, NTR in 4 patients, STR in 7 patients and biopsy in 1 patient. Grade of resection was associated with recurrence incidence (p=0.002).Histological exam revealed conventional chordoma in 14 cases, chondroid chordoma in 5 cases and dedifferentiated (chondrosarcoma) in 1 case. Patients' neurological status improved following surgery (p=0.000). Five patients underwent adjuvant conventional radiotherapy.Five patients presented local recurrence. All recurrences were reoperated using endoscopic endonasal approach. Survival analysis identified grade of resection and adjuvant radiotherapy as predictive factors for recurrence-free survival. Conclusions Surgery is the treatment of choice in skull base chordomas. Surgical approach should be tailored according to tumor original site and extensions. Midline chordomas are proper candidates for endoscopic endonasal approach, while lateral lesions require transcranial surgery. Combined approaches should be used in extensive tumors. GTR and radiotherapy prolong recurrence-free survival. Further studies on larger samples of patients are needed.
Collapse
Affiliation(s)
- Adrian Mircea Fürtös
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Neurosurgery, Emergency Clinical Hospital Bagdasar-Arseni, Bucharest, Romania
- Clinic of Neurosurgery, University Emergency Hospital Bucharest, Romania
| | - Aurelia Mihaela Sandu
- Clinic of Neurosurgery, Emergency Clinical Hospital Bagdasar-Arseni, Bucharest, Romania
| | | | - Radu Mircea Gorgan
- Clinic of Neurosurgery, Emergency Clinical Hospital Bagdasar-Arseni, Bucharest, Romania
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ligia Gabriela Tătăranu
- Clinic of Neurosurgery, Emergency Clinical Hospital Bagdasar-Arseni, Bucharest, Romania
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
7
|
Newman JA, Gavard AE, Imprachim N, Aitkenhead H, Sheppard HE, Te Poele R, Clarke PA, Hossain MA, Temme L, Oh HJ, Wells CI, Davis-Gilbert ZW, Workman P, Gileadi O, Drewry DH. Structural insights into human brachyury DNA recognition and discovery of progressible binders for cancer therapy. Nat Commun 2025; 16:1596. [PMID: 39952925 PMCID: PMC11828899 DOI: 10.1038/s41467-025-56213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025] Open
Abstract
Brachyury is a transcription factor that plays an essential role in tumour growth of the rare bone cancer chordoma and is implicated in other solid tumours. Brachyury is minimally expressed in healthy tissues, making it a potential therapeutic target. Unfortunately, as a ligandless transcription factor, brachyury has historically been considered undruggable. To investigate direct targeting of brachyury by small molecules, we determine the structure of human brachyury both alone and in complex with DNA. The structures provide insights into DNA binding and the context of the chordoma associated G177D variant. We use crystallographic fragment screening to identify hotspots on numerous pockets on the brachyury surface. Finally, we perform follow-up chemistry on fragment hits and describe the progression of a thiazole chemical series into binders with low µM potency. Thus we show that brachyury is ligandable and provide an example of how crystallographic fragment screening may be used to target protein classes that are difficult to address using other approaches.
Collapse
Affiliation(s)
- Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Angeline E Gavard
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Exscientia, Oxford, UK
| | - Nergis Imprachim
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hazel Aitkenhead
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Didcot, UK
| | - Hadley E Sheppard
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, UK
- Sano Genetics Ltd, Cambridge, UK
| | - Robert Te Poele
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, UK
| | - Paul A Clarke
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, UK
| | - Mohammad Anwar Hossain
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Louisa Temme
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Hans J Oh
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrow I Wells
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- GlaxoSmithKline, Collegeville, PA, USA
| | - Zachary W Davis-Gilbert
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, UK.
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- SGC Karolinska, Centre for Molecular Medicine, Stockholm, Sweden
| | - David H Drewry
- SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Furlan KC, Wenig BM. Mesenchymal Tumors of the Head and Neck. Adv Anat Pathol 2024; 31:364-379. [PMID: 39262270 DOI: 10.1097/pap.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The majority of neoplasms of the head and neck are of epithelial origin primarily including mucosal squamous cell neoplasms (papillomas; squamous cell carcinoma) as well as salivary gland neoplasms. However, the full spectrum of mesenchymal neoplasms (benign and malignant) typically arising in soft tissue sites may also develop in superficial layers of the upper aerodigestive tract. The diversity of mesenchymal neoplasms arising in the head and neck is beyond the scope of this article, and our focus will be on some of the more common and/or diagnostic problematic mesenchymal tumors occurring in the sinonasal tract, oral cavity/odontogenic, pharynx, larynx, and neck.
Collapse
|
9
|
Yin H, Hu J, Gao J, Su T, Jin J, Jiang C, Yin W, Xu X, Chang Z, Sun W, Cai Z, Zhou W, Wang P, Lin J, Song D, Meng T. Clinical-proteomic classification and precision treatment strategy of chordoma. Cell Rep Med 2024; 5:101757. [PMID: 39368483 PMCID: PMC11513834 DOI: 10.1016/j.xcrm.2024.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Chordoma is a rare and heterogeneous mesenchymal malignancy, with distinct clinical and biological behaviors. Till now, its comprehensive clinical-molecular characteristics and accurate molecular classification remain obscure. In this research, we enroll 102 patients with chordoma and describe their clinical, imageological, and histopathological features. Through tandem mass tag-based proteomic analysis and nonnegative matrix factorization clustering, we classify chordoma into three molecular subtypes: bone microenvironment-dominant, mesenchymal-derived, and mesenchymal-to-epithelial transition-mediated pattern. The three subtypes exhibit discrete clinical prognosis and distinct biological attributes of osteoclastogenesis and immunogenicity, oxidative phosphorylation, and receptor tyrosine kinase activation, suggesting targeted therapeutic strategies of denosumab, S-Gboxin, and anlotinib, respectively. Notably, these approaches demonstrate positive treatment outcomes for each subtype in vitro and in vivo. Altogether, this work sheds light on the clinical-proteomic characteristics of chordoma and provides a candidate precision treatment strategy for chordoma according to molecular classification, underscoring their potential for clinical application.
Collapse
Affiliation(s)
- Huabin Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Su
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxuan Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Dianwen Song
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Tong Meng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
11
|
Golding R, Abuqubo R, Pansa CJ, Bhatta M, Shankar V, Mani K, Kleinbart E, Gelfand Y, Murthy S, De la Garza Ramos R, Krystal J, Eleswarapu A, Yassari R, Mostafa E, Fourman MS, Schlumprecht A. Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review. J Clin Med 2024; 13:5679. [PMID: 39407739 PMCID: PMC11476405 DOI: 10.3390/jcm13195679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Chordomas are rare sarcomas arising from notochordal tissue and occur most commonly in the spine. The standard of care for chordomas without evidence of metastatic disease generally consists of en bloc resection followed by adjuvant radiotherapy. However, long-term (20-year) survival rates are approximately 30%. Chordomas are generally considered as chemo resistant. Therefore, systemic therapies have rarely been employed. Novel immunotherapies, including antibody therapy and tumor vaccines, have shown promise in early trials, leading to extended progression-free survival and symptom relief. However, the outcomes of larger trials using these vectors are heterogeneous. The aim of this review is to summarize novel chordoma treatments in immune-targeted therapies. The current merits, trial outcomes, and toxicities of these novel immune and targeted therapies, including those targeting vascular endothelial growth factor receptor (VEGFR) targets and the epidermal growth factor receptor (EGFR), will be discussed.
Collapse
Affiliation(s)
- Regina Golding
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Rami Abuqubo
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Christopher J. Pansa
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Manish Bhatta
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Vishal Shankar
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Kyle Mani
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Emily Kleinbart
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Yaroslav Gelfand
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Saikiran Murthy
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Rafael De la Garza Ramos
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Jonathan Krystal
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Ananth Eleswarapu
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Reza Yassari
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Evan Mostafa
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Mitchell S. Fourman
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Anne Schlumprecht
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| |
Collapse
|
12
|
Koka H, Zhou W, McMaster ML, Bai J, Luo W, Klein A, Zhang T, Hua X, Li X, Wang D, Xiong Y, Jones K, Vogt A, Hicks B, Parry D, Goldstein AM, Yang XR. Genomic profiles and clinical presentation of chordoma. Acta Neuropathol Commun 2024; 12:129. [PMID: 39135136 PMCID: PMC11318126 DOI: 10.1186/s40478-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/30/2024] [Indexed: 08/15/2024] Open
Abstract
Chordoma is a rare bone cancer with variable clinical outcomes. Here, we recruited 184 sporadic chordoma patients from the US and Canada and collected their clinical and treatment data. The average age at diagnosis was 45.5 years (Range 5-78) and the chordoma site distribution was 49.2% clivus, 26.2% spinal, and 24.0% sacral. Most patients (97.5%) received surgery as the primary treatment, among whom 85.3% also received additional treatment. Except for the most prevalent cancers like prostate, lung, breast, and skin cancer, there was no discernible enrichment for any specific cancer type among patients or their family members. Among a subset of patients (N = 70) with tumor materials, we conducted omics analyses and obtained targeted panel sequencing and SNP array genotyping data for 51 and 49 patients, respectively. The most recurrent somatic driver mutations included PIK3CA (12%), followed by chromatin remodeling genes PBRM1 and SETD2. Amplification of the 6q27 region, containing the chordoma susceptibility gene TBXT, was detected in eight patients (16.3%). Clival patients appeared to be less likely to carry driver gene mutations, chromosome arm level deletion events (e.g., 5p, 5p, and 9p), or 6q27 amplification compared to sacral patients. After adjusting for age, sex, tumor site, and additional treatment, patients with somatic deletions of 14q (OR = 13.73, 95% CI 1.96-96.02, P = 0.008) and 18p (OR = 13.68, 95% CI 1.77-105.89, P = 0.012) were more likely to have persistent chordoma. The study highlights genomic heterogeneity in chordoma, potentially linked to location and clinical progression.
Collapse
Affiliation(s)
- Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiwei Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xin Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yujia Xiong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dilys Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
O’Halloran K, Hakimjavadi H, Bootwalla M, Ostrow D, Kerawala R, Cotter JA, Yellapantula V, Kaneva K, Wadhwani NR, Treece A, Foreman NK, Alexandrescu S, Vega JV, Biegel JA, Gai X. Pediatric Chordoma: A Tale of Two Genomes. Mol Cancer Res 2024; 22:721-729. [PMID: 38691518 PMCID: PMC11296893 DOI: 10.1158/1541-7786.mcr-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Department of Hematology, Oncology and Blood & Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Moiz Bootwalla
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Rhea Kerawala
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A. Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Amy Treece
- Division of Pathology, Children’s Hospital Colorado, Denver, CO, USA
| | - Nicholas K. Foreman
- Division of Hematology, Oncology, Children’s Hospital Colorado, Denver, CO, USA
| | | | | | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
15
|
Chen Y, Zhang H. Immune microenvironment and immunotherapy for chordoma. Front Oncol 2024; 14:1374249. [PMID: 38983929 PMCID: PMC11232415 DOI: 10.3389/fonc.2024.1374249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Chordoma, as a rare, low-grade malignant tumor that tends to occur in the midline of the body, grows slowly but often severely invades surrounding tissues and bones. Due to the severe invasion and damage to the surrounding tissues, chordoma is difficult to be gross totally resected in surgery, and the progression of the residual tumor is often unavoidable. Besides, the tumor is insensitive to conventional radiotherapy and chemotherapy, thus finding effective treatment methods for chordoma is urgent. Nowadays, immunotherapy has made a series of breakthroughs and shown good therapeutic effects in kinds of tumors, which brings new insights into tumors without effective treatment strategies. With the deepening of research on immunotherapy, some studies focused on the immune microenvironment of chordoma have been published, most of them concentrated on the infiltration of immune cells, the expression of tumor-specific antigen or the immune checkpoint expression. On this basis, a series of immunotherapy studies of chordoma are under way, some of which have shown encouraging results. In this review, we reviewed the research about immune microenvironment and immunotherapy for chordoma, combined with the existing clinical trials data, hoping to clarify the frontiers and limitations of chordoma immune research, and provide reference for follow-up immunotherapy research on chordoma.
Collapse
Affiliation(s)
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Alexander AY, Dhawan S, Venteicher AS. Role of immunotherapy in treatment refractory chordomas: review of current evidence. Front Surg 2024; 11:1375567. [PMID: 38881706 PMCID: PMC11177759 DOI: 10.3389/fsurg.2024.1375567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Chordomas are aggressive tumors that are thought to arise from remnants of the embryological notochord. They can arise along the ventromedial aspect of the sacrum, mobile spine, and clivus-with most cases occurring in the sacrum or skull base. Despite surgery and radiation, chordomas often progress and become refractory to further treatment. The high recurrence rate of chordomas has created an urgent need to develop new systemic treatment options. Recent case reports and clinical trials have highlighted the use of immunotherapy for refractory chordomas. In this review, we summarize the results of these studies and discuss the potential role of immunotherapy for chordomas. Methods The PUBMED database was queried for studies mentioning both "Chordoma" and "Immunotherapy." All case series and case reports that involved administration of an immunotherapy for chordoma were included. Additional studies that were found during literature review were added. ClinicalTrials.Gov was queried for studies mentioning both "Chordoma" and "Immunotherapy." The final cohort consisted of all clinical trials that utilized immunotherapy for chordomas of any location. Results Eight case reports and series detailing the use of immunotherapy for treatment refractory chordoma were identified. Most patients received immunotherapy targeting the PD-1/PD-L1 interaction, and two patients received therapy targeting this interaction along with the tyrosine kinase inhibitor pazopanib. One patient received a vaccine derived from autologous tumor cells, and one patient received a viral vector that downregulated the effect of TGF-beta. One clinical trial utilized a brachyury vaccine in conjunction with standard of care radiotherapy. Conclusions Immunotherapy for chordoma is a promising area of investigation with increasing, but small, numbers of case series and clinical trials. Despite challenges in patient accrual, future directions in chordoma immunotherapy may lie in vaccine-based therapies and immune checkpoint inhibitors. Understanding chordoma heterogeneity and microenvironment will likely elucidate important chordoma features that will inform future clinical trial design.
Collapse
Affiliation(s)
- A Yohan Alexander
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sanjay Dhawan
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Andrew S Venteicher
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Desai R, Pelargos PE, Dunn IF. Chordoma: Genetics and Contemporary Management. Int J Mol Sci 2024; 25:5877. [PMID: 38892063 PMCID: PMC11172617 DOI: 10.3390/ijms25115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Chordomas, arising from notochord remnants, are rare neoplasms with aggressive growth patterns despite their histologically low-grade nature. This review explores their embryological origins, molecular markers like brachyury, and genetic alterations driving pathogenesis. Diagnosis relies on advanced imaging and biopsy confirmation due to overlapping features with chondrosarcoma. The WHO classification distinguishes conventional, dedifferentiated, and poorly differentiated chordomas, each with distinct prognostic implications. Recent genomic analyses uncovered recurrent mutations in PI3K signaling pathways and chromatin remodeling genes, informing prognostic models. Surgery remains the cornerstone of treatment, though adjuvant radiation complements surgical resection. Although chordomas are generally considered refractory to medical therapy, emerging targeted molecular strategies show potential promise in ongoing trials. This review aims to provide a concise yet comprehensive overview of chordomas, guiding clinicians in diagnosis, treatment, and prognostication for improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ian F. Dunn
- Department of Neurological Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA; (R.D.); (P.E.P.)
| |
Collapse
|
18
|
Turner ME, Che J, Mirhaidari GJM, Kennedy CC, Blum KM, Rajesh S, Zbinden JC, Breuer CK, Best CA, Barker JC. The lysosomal trafficking regulator "LYST": an 80-year traffic jam. Front Immunol 2024; 15:1404846. [PMID: 38774881 PMCID: PMC11106369 DOI: 10.3389/fimmu.2024.1404846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.
Collapse
Affiliation(s)
- Mackenzie E. Turner
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jingru Che
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine C. Kennedy
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sahana Rajesh
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Raygada M, John L, Liu A, Schultz J, Thomas BJ, Bernstein D, Miettinen M, Raffeld M, Xi L, Tyagi M, Aldape K, Glod J, Reilly KM, Widemann BC, Wedekind MF. Germline findings in cancer predisposing genes from a small cohort of chordoma patients. J Cancer Res Clin Oncol 2024; 150:227. [PMID: 38700789 PMCID: PMC11068663 DOI: 10.1007/s00432-024-05706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Chordoma is a rare slow-growing tumor that occurs along the length of the spinal axis and arises from primitive notochordal remnants (Stepanek et al., Am J Med Genet 75:335-336, 1998). Most chordomas are sporadic, but a small percentage of cases are due to hereditary cancer syndromes (HCS) such as tuberous sclerosis 1 and 2 (TSC1/2), or constitutional variants in the gene encoding brachyury T (TBXT) (Pillay et al., Nat Genet 44:1185-1187, 2012; Yang et al., Nat Genet 41:1176-1178, 2009). PURPOSE The genetic susceptibility of these tumors is not well understood; there are only a small number of studies that have performed germline genetic testing in this population. METHODS We performed germline genetic in chordoma patients using genomic DNA extracted by blood or saliva. CONCLUSION We report here a chordoma cohort of 24 families with newly found germline genetic mutations in cancer predisposing genes. We discuss implications for genetic counseling, clinical management, and universal germline genetic testing for cancer patients with solid tumors.
Collapse
Affiliation(s)
- Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- NIH Clinical Center (Building 10), 10 Center Drive, Room 1-3750, Bethesda, MD, 20892, USA.
| | - Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anne Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julianne Schultz
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - B J Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karlyne M Reilly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Frances Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
20
|
Khan S, Zuccato JA, Ignatchenko V, Singh O, Govindarajan M, Waas M, Mejia-Guerrero S, Gao A, Zadeh G, Kislinger T. Organelle resolved proteomics uncovers PLA2R1 as a novel cell surface marker required for chordoma growth. Acta Neuropathol Commun 2024; 12:39. [PMID: 38454495 PMCID: PMC10921702 DOI: 10.1186/s40478-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.
Collapse
Affiliation(s)
- Shahbaz Khan
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Jeffrey A Zuccato
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Olivia Singh
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matthew Waas
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Salvador Mejia-Guerrero
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Andrew Gao
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Zhong N, Yu D, Yang M, Lu X, Zhang Q, Wei W, Jiao J, Yang X, Zhu Z, Chen S, Xiao J. A retrospective study on the mechanism underlying quick transfer from response to resistance in a repeated recurrent chordoma patient with molecular alterations treated with Palbociclib. J Cancer Res Clin Oncol 2024; 150:95. [PMID: 38369555 PMCID: PMC10874909 DOI: 10.1007/s00432-023-05560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE There is no approved targeted therapy for chordoma at present. Although several preclinical studies have implied the potential applicability of CDK4/6 inhibitor for this rare tumor, no clinical evidence has been documented so far. The purpose of this study was to elucidate the therapeutic efficacy of CDK4/6 inhibitor for chordoma. METHODS The next generation sequencing (as for whole-exome sequencing, WES assay) and immunohistochemical (IHC) staining of the chordoma tissue from a patient with an advanced lesion were performed before treatment. Then, the patient was treated with Palbociclib for 4 months until progression occurred in the 5th month. Surgical resection was implemented and the tumor tissue was obtained postoperatively for assessment of molecular alterations. RESULTS Molecular features of the tumor before medical treatment suggested applicability of CDK4/6 inhibitor and the patient showed partial response (PR) according to Choi Criteria after 4 months treating with Palbociclib until progression occurred. Then, a drastic molecular alteration of the tumor as represented by emergence of dramatic E2F amplification, which is known to induce CDK4/6 independent cell-cycle entry and progression after treatment, was detected. The findings in this patient demonstrated tumor evolution under drug pressure. CONCLUSION The findings of the present study suggest the feasibility of Palbociclib for the clinical treatment of chordoma, and imply the necessity of combination therapies rather single drug administration due to the quick resistance of the tumor to Palbociclib treatment.
Collapse
Affiliation(s)
- Nanzhe Zhong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dong Yu
- Center of Translational Medicine, Naval Medical University, Shanghai, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xingyi Lu
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Qiangzu Zhang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhi Zhu
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Su Chen
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
22
|
van Oost S, Meijer DM, Ijsselsteijn ME, Roelands JP, van den Akker BEMW, van der Breggen R, Briaire-de Bruijn IH, van der Ploeg M, Wijers-Koster PM, Polak SB, Peul WC, van der Wal RJP, de Miranda NFCC, Bovee JVMG. Multimodal profiling of chordoma immunity reveals distinct immune contextures. J Immunother Cancer 2024; 12:e008138. [PMID: 38272563 PMCID: PMC10824073 DOI: 10.1136/jitc-2023-008138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Chordomas are rare cancers from the axial skeleton which present a challenging clinical management with limited treatment options due to their anatomical location. In recent years, a few clinical trials demonstrated that chordomas can respond to immunotherapy. However, an in-depth portrayal of chordoma immunity and its association with clinical parameters is still lacking. METHODS We present a comprehensive characterization of immunological features of 76 chordomas through application of a multimodal approach. Transcriptomic profiling of 20 chordomas was performed to inform on the activity of immune-related genes through the immunologic constant of rejection (ICR) signature. Multidimensional immunophenotyping through imaging mass cytometry was applied to provide insights in the different immune contextures of 32 chordomas. T cell infiltration was further evaluated in all 76 patients by means of multispectral immunofluorescence and then associated with clinical parameters through univariate and multivariate Cox proportional hazard models as well as Kaplan-Meier estimates. Moreover, distinct expression patterns of human leukocyte antigen (HLA) class I were assessed by immunohistochemical staining in all 76 patients. Finally, clonal enrichment of the T cell receptor (TCR) was sought through profiling of the variable region of TCRB locus of 24 patients. RESULTS Chordomas generally presented an immune "hot" microenvironment in comparison to other sarcomas, as indicated by the ICR transcriptional signature. We identified two distinct groups of chordomas based on T cell infiltration which were independent from clinical parameters. The highly infiltrated group was further characterized by high dendritic cell infiltration and the presence of multicellular immune aggregates in tumors, whereas low T cell infiltration was associated with lower overall cell densities of immune and stromal cells. Interestingly, patients with higher T cell infiltration displayed a more pronounced clonal enrichment of the TCR repertoire compared with those with low T cell counts. Furthermore, we observed that the majority of chordomas maintained HLA class I expression. CONCLUSION Our findings shed light on the natural immunity against chordomas through the identification of distinct immune contextures. Understanding their immune landscape could guide the development and application of immunotherapies in a tailored manner, ultimately leading to an improved clinical outcome for patients with chordoma.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Debora M Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jessica P Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Samuel B Polak
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Robert J P van der Wal
- Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Kesari S, Wagle N, Carrillo JA, Sharma A, Nguyen M, Truong J, Gill JM, Nersesian R, Nomura N, Rahbarlayegh E, Barkhoudarian G, Sivakumar W, Kelly DF, Krauss H, Bustos MA, Hoon DSB, Anker L, Singh AS, Sankhala KK, Juarez TM. Pilot Study of High-Dose Pemetrexed in Patients with Progressive Chordoma. Clin Cancer Res 2024; 30:323-333. [PMID: 38047868 DOI: 10.1158/1078-0432.ccr-23-2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Chordomas are ultrarare tumors of the axial spine and skull-base without approved systemic therapy. Most chordomas have negative expression of thymidylate synthase (TS), suggesting a potential for responding to the antifolate agent pemetrexed, which inhibits TS and other enzymes involved in nucleotide biosynthesis. We evaluated the therapeutic activity and safety of high-dose pemetrexed in progressive chordoma. PATIENTS AND METHODS Adult patients with previously treated, progressive chordoma participated in an open-label, single-institution, single-arm, pilot clinical trial of intravenous pemetrexed 900 mg/m2 every 3 weeks and supportive medications of folic acid, vitamin B12, and dexamethasone. The primary endpoint was objective response rate according to RECIST v1.1. Secondary endpoints included adverse events, progression-free survival (PFS), tumor molecular profiles, and alterations in tissue and blood-based biomarkers. RESULTS Fifteen patients were enrolled and the median number of doses administered was 15 (range, 4-31). One patient discontinued treatment due to psychosocial issues after four cycles and one contracted COVID-19 after 13 cycles. Of the 14 response-evaluable patients, 2 (14%) achieved a partial response and 10 (71%) demonstrated stable disease. Median PFS was 10.5 months (95% confidence interval: 9 months-undetermined) and 6-month PFS was 67%. Adverse events were expected and relatively mild, with one grade 3 creatinine increased, and one each of grade 3 and 4 lymphopenia. No grade 5 adverse events, unexpected toxicities, or dose-limiting toxicities were observed. Several patients reported clinical improvement in disease-related symptoms. CONCLUSIONS High-dose pemetrexed appears tolerable and shows objective antitumor activity in patients with chordoma. Phase II studies of high-dose pemetrexed are warranted.
Collapse
Affiliation(s)
- Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Naveed Wagle
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Jose A Carrillo
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Akanksha Sharma
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Minhdan Nguyen
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Judy Truong
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Jaya M Gill
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Raffi Nersesian
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Natsuko Nomura
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Elnaz Rahbarlayegh
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | | | - Daniel F Kelly
- Pacific Neuroscience Institute, Santa Monica, California
| | - Howard Krauss
- Pacific Neuroscience Institute, Santa Monica, California
| | - Matias A Bustos
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Dave S B Hoon
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Lars Anker
- Providence St. Joseph Hospital Orange, Orange, California
| | - Arun S Singh
- UCLA Health, Santa Monica Cancer Care, Santa Monica, California
| | - Kamalesh K Sankhala
- Cedars-Sinai Medical Center, Samuel Oschin Cancer Center, Los Angeles, California
| | - Tiffany M Juarez
- Pacific Neuroscience Institute, Santa Monica, California
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| |
Collapse
|
24
|
Ma T, Bai J, Zhang Y. Current understanding of brachyury in chordoma. Biochim Biophys Acta Rev Cancer 2023; 1878:189010. [PMID: 39492486 DOI: 10.1016/j.bbcan.2023.189010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Chordomas are rare malignant tumors that pose significant challenges in terms of effective treatment options. Surgical resection remains the only established approach that has proven useful in the treatment of chordoma. However, recent evidence has shed light on the role of brachyury, also known as the T-gene and TBXT, as both a diagnostic marker and a potential therapeutic target in chordoma. Considering these developments, this review aims to provide a comprehensive summary of the current knowledge and understanding of brachyury in chordomas.
Collapse
Affiliation(s)
- Tianshun Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiwei Bai
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancers control notochord expression of vertebrate Brachyury. Nat Commun 2023; 14:6594. [PMID: 37852970 PMCID: PMC10584899 DOI: 10.1038/s41467-023-42151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.
Collapse
Affiliation(s)
- Cassie L Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
26
|
Locquet MA, Brahmi M, Blay JY, Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer 2023; 23:742. [PMID: 37563551 PMCID: PMC10416357 DOI: 10.1186/s12885-023-11232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
Collapse
Affiliation(s)
- Marie-Anaïs Locquet
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France
- Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.
| |
Collapse
|
27
|
Baluszek S, Kober P, Rusetska N, Wągrodzki M, Mandat T, Kunicki J, Bujko M. DNA methylation, combined with RNA sequencing, provide novel insight into molecular classification of chordomas and their microenvironment. Acta Neuropathol Commun 2023; 11:113. [PMID: 37434245 DOI: 10.1186/s40478-023-01610-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Chordomas are rare tumors of notochord remnants, occurring mainly in the sacrum and skull base. Despite of their unusually slow growth, chordomas are highly invasive and the involvement of adjacent critical structures causes treatment challenges. Due to the low incidence, the molecular pathogenesis of this entity remains largely unknown. This study aimed to investigate DNA methylation abnormalities and their impact on gene expression profiles in skull base chordomas. 32 tumor and 4 normal nucleus pulposus samples were subjected to DNA methylation and gene expression profiling with methylation microarrays and RNA sequencing. Genome-wide DNA methylation analysis revealed two distinct clusters for chordoma (termed subtypes C and I) with different patterns of aberrant DNA methylation. C Chordomas were characterized by general hypomethylation with hypermethylation of CpG islands, while I chordomas were generally hypermethylated. These differences were reflected by distinct distribution of differentially methylated probes (DMPs). Differentially methylated regions (DMRs) were identified, indicating aberrant methylation in known tumor-related genes in booth chordoma subtypes and regions encoding small RNAs in subtype C chordomas. Correlation between methylation and expression was observed in a minority of genes. Upregulation of TBXT in chordomas appeared to be related to lower methylation of tumor-specific DMR in gene promoter. Gene expression-based clusters of tumor samples did not overlap with DNA methylation-based subtypes. Nevertheless, they differ in transcriptomic profile that shows immune infiltration in I chordomas and up-regulation of cell cycle in C chordomas. Immune enrichment in chordomas I was confirmed with 3 independent deconvolution methods and immunohistochemistry. Copy number analysis showed higher chromosomal instability in C chordomas. Nine out of eight had deletion of CDKN2A/B loci and downregulation of genes encoded in related chromosomal band. No significant difference in patients' survival was observed between tumor subtypes, however, shorter survival was observed in patients with higher number of copy number alterations.
Collapse
Affiliation(s)
- Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Wągrodzki
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
28
|
Martinez Moreno M, Wang E, Schroeder C, Sullivan P, Gokaslan Z. Shedding light on emerging therapeutic targets for chordoma. Expert Opin Ther Targets 2023; 27:705-713. [PMID: 37647357 DOI: 10.1080/14728222.2023.2248382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Despite encouraging advances in radiation and surgical treatment, chordomas remain resistant to chemotherapy and local recurrence is common. Although the primary mechanism of recurrence is local, metastatic disease occurs in a small subset of patients. Recurrence may also occur along the surgical trajectory if care is not taken to fully excise the open biopsy pathway. There is increasing morbidity with reoperation upon disease recurrence, and radiation is an option for cytoreduction in primary disease or for recurrent disease, although toxicity may be observed with high-dose therapies. Given these challenges, targeted chemotherapeutic agents for postoperative adjuvant treatment are needed. AREAS COVERED In this review, we summarize the genetic drivers of chordoma and the state of the current research in chordoma immunotherapy and epigenetics. EXPERT OPINION Chordoma is a heterogenous tumor that should be targeted from different angles and the study of its characteristics, from molecular to immunological to epigenetic, is necessary. Combining different approaches, such as studying noninvasive patient methylation patterns with tissue-based molecular and drug screening, can transform patient care by guiding treatment decisions based on prognostic mechanisms from different sources, while helping individualize surgical planning and treatment.
Collapse
Affiliation(s)
| | - Elaina Wang
- Rhode Island Hospital, Brown University, Providence, USA
| | | | - Patricia Sullivan
- Rhode Island Hospital, Brown University, Providence, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ziya Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
29
|
Righi A, Cocchi S, Maioli M, Zoli M, Guaraldi F, Carretta E, Magagnoli G, Pasquini E, Melotti S, Vornetti G, Tonon C, Mazzatenta D, Asioli S. SMARCB1/INI1 loss in skull base conventional chordomas: a clinicopathological and molecular analysis. Front Oncol 2023; 13:1160764. [PMID: 37456229 PMCID: PMC10348873 DOI: 10.3389/fonc.2023.1160764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The loss of SMARCB1/INI1 protein has been recently described in poorly differentiated chordoma, an aggressive and rare disease variant typically arising from the skull base. Methods Retrospective study aimed at 1) examining the differential immunohistochemical expression of SMARCB1/INI1 in conventional skull base chordomas, including the chondroid subtype; 2) evaluating SMARCB1 gene deletions/copy number gain; and 3) analyzing the association of SMARCB1/INI1 expression with clinicopathological parameters and patient survival. Results 65 patients (35 men and 30 women) affected by conventional skull base chordoma, 15 with chondroid subtype, followed for >48 months after surgery were collected. Median age at surgery was 50 years old (range 9-79). Mean tumor size was 3.6 cm (range 2-9.5). At immunohistochemical evaluation, a partial loss of SMARCB1/INI1 (>10% of neoplastic examined cells) was observed in 21 (32.3%) cases; the remaining 43 showed a strong nuclear expression. Fluorescence in situ hybridization (FISH) analysis was performed in 15/21 (71.4%) cases of the chordomas with partial SMARCB1/INI1 loss of expression. Heterozygous deletion of SMARCB1 was identified in 9/15 (60%) cases and was associated to copy number gain in one case; no deletion was found in the other 6 (40%) cases, 3 of which presenting with a copy number gain. No correlations were found between partial loss of SMARCB1/INI1 and the clinicopathological parameters evaluated (i.e., age, tumor size, gender, tumor size and histotype). Overall 5-year survival and 5-year disease-free rates were 82% and 59%, respectively. According to log-rank test analysis the various clinico-pathological parameters and SMARCB1/INI1 expression did not impact on overall and disease free-survival. Discussion Partial loss of SMARCB1/INI1, secondary to heterozygous deletion and/or copy number gain of SMARCB1, is not peculiar of aggressive forms, but can be identified by immunohistochemistry in a significant portion of conventional skull base chordomas, including the chondroid subtype. The variable protein expression does not appear to correlate with clinicopathological parameters, nor survival outcomes, but still, it could have therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Matteo Zoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Federica Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | | | - Ernesto Pasquini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Melotti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sofia Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
John L, Smith H, Ilanchezhian M, Lockridge R, Reilly KM, Raygada M, Dombi E, Sandler A, Thomas BJ, Glod J, Miettinen M, Allen T, Sommer J, Levy J, Lozinsky S, Dix D, Bouffet E, MacDonald S, Mukherjee D, Snyderman CH, Rowan NR, Malyapa R, Park DM, Heery C, Gardner PA, Cote GM, Fuller S, Butman JA, Jackson S, Gulley JL, Widemann BC, Wedekind MF. The NIH pediatric/young adult chordoma clinic and natural history study: Making advances in a very rare tumor. Pediatr Blood Cancer 2023; 70:e30358. [PMID: 37347686 PMCID: PMC10739575 DOI: 10.1002/pbc.30358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Chordomas are rare tumors arising from the skull base and spine, with approximately 20 pediatric chordoma cases in the Unitedn States per year. The natural history and optimal treatment of pediatric chordomas, especially poorly differentiated and dedifferentiated subtypes, is incompletely understood. Herein, we present findings from our first National Cancer Institute (NCI) chordoma clinic and a retrospective analysis of published cases of pediatric poorly differentiated chordomas (PDC) and dedifferentiated chordomas (DC). METHODS Patients less than 40 years old with chordoma were enrolled on the NCI Natural History and Biospecimens Acquisitions Study for Children and Adults with Rare Solid Tumors protocol (NCT03739827). Chordoma experts reviewed patient records, evaluated patients, and provided treatment recommendations. Patient-reported outcomes, biospecimens, and volumetric tumor analyses were collected. A literature review for pediatric PDC and DC was conducted. RESULTS Twelve patients (median age: 14 years) attended the clinic, including four patients with active disease and three patients with PDC responsive to systemic therapy. Consensus treatment, management, and recommendations were provided to patients. Literature review returned 45 pediatric cases of PDC or DC with variable treatments and outcomes. CONCLUSIONS A multidisciplinary expert clinic was feasible and successful in improving understanding of pediatric chordoma. While multimodal approaches have all been employed, treatment for PDC has been inconsistent and a recommended standardized treatment approach has not been defined. Centralized efforts, inclusive of specialized chordoma-focused clinics, natural history studies, and prospective analyses will help in the standardization of care for this challenging disease.
Collapse
Affiliation(s)
- Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maran Ilanchezhian
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robin Lockridge
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Karlyne M Reilly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Abby Sandler
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara J Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Taryn Allen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Joan Levy
- Chordoma Foundation, Durham, NC, USA
| | | | - David Dix
- BC Children’s Hospital, Vancouver, Canada
| | | | | | | | | | | | - Robert Malyapa
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Christopher Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Paul A. Gardner
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Sarah Fuller
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John A. Butman
- Radiology and Imaging Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Sadhana Jackson
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Frances Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
31
|
Sharifnia T, Wawer MJ, Goodale A, Lee Y, Kazachkova M, Dempster JM, Muller S, Levy J, Freed DM, Sommer J, Kalfon J, Vazquez F, Hahn WC, Root DE, Clemons PA, Schreiber SL. Mapping the landscape of genetic dependencies in chordoma. Nat Commun 2023; 14:1933. [PMID: 37024492 PMCID: PMC10079670 DOI: 10.1038/s41467-023-37593-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.
Collapse
Affiliation(s)
- Tanaz Sharifnia
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Mathias J Wawer
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Kojin Therapeutics, Boston, MA, 02210, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Yenarae Lee
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Mariya Kazachkova
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Sandrine Muller
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Joan Levy
- Chordoma Foundation, Durham, NC, 27702, USA
- Melanoma Research Alliance, Washington, D.C., 20005, USA
| | | | | | - Jérémie Kalfon
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Paul A Clemons
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
33
|
Seeling C, Mosca E, Mantel E, Möller P, Barth TFE, Mellert K. Prognostic Relevance and In Vitro Targeting of Concomitant PTEN and p16 Deficiency in Chordomas. Cancers (Basel) 2023; 15:cancers15071977. [PMID: 37046638 PMCID: PMC10093147 DOI: 10.3390/cancers15071977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Chordomas are rare bone tumors arising along the spine. Due to high resistance towards chemotherapy, surgical resection—often followed by radiation therapy—is currently the gold standard of treatment. So far, targeted systemic therapies have not been approved. The most frequent molecular alterations include the loss of PTEN and CDKN2A (encoding p16), being associated with poor prognoses in chordoma patients. Specific inhibitors of the PI3K/AKT/mTOR pathway as well as CDK4/6 have shown antitumor activity in preclinical studies and have recently been under investigation in phase II clinical trials; however, the clinical impacts and therapeutic consequences of concomitant PTEN and p16 deficiency have not yet been investigated in chordomas. In a cohort of 43 chordoma patients, 16% of the cases were immunohistochemically negative for both markers. The simultaneous loss of PTEN and p16 was associated with a higher KI-67 index, a tendency to metastasize, and significantly shorter overall survival. Additionally, 30% of chordoma cell lines (n = 19) were PTEN-/p16-negative. Treating these chordoma cells with palbociclib (CDK4/6 inhibitor), rapamycin (mTOR inhibitor) or the pan-PI3K inhibitor buparlisib significantly reduced cell viability. Synergistic effects were observed when combining palbociclib with rapamycin. In conclusion, we show that patients with PTEN-/p16-negative chordomas have poor prognoses and provide strong preclinical evidence that these patients might benefit from a Palbociclib/rapamycin combination treatment.
Collapse
Affiliation(s)
- Carolin Seeling
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Elena Mosca
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
| | - Eva Mantel
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
| | - Peter Möller
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
- Correspondence:
| | - Thomas F. E. Barth
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
| | - Kevin Mellert
- Institute of Pathology, University Hospital of Ulm, 89081 Ulm, Germany (K.M.)
| |
Collapse
|
34
|
Salle H, Durand S, Durand K, Bourthoumieu S, Lemnos L, Robert S, Pollet J, Passeri T, Khalil W, Froelich S, Adle-Biassette H, Labrousse F. Comparative analysis of histopathological parameters, genome-wide copy number alterations, and variants in genes involved in cell cycle regulation in chordomas of the skull base and sacrum. J Neuropathol Exp Neurol 2023; 82:312-323. [PMID: 36779322 DOI: 10.1093/jnen/nlad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Chordomas are rare tumors of the axial skeleton that are refractory to conventional therapy. Few studies have compared the morphological and molecular characteristics of chordomas according to the skull base and sacral locations. Histopathological data and changes revealed by array comparative genomic hybridization (CGH) and next-generation sequencing (NGS) of cell cycle regulation genes were analyzed for 28 skull base (SBCs) and 15 sacral (SC) chordomas. All cases were conventional chordomas. SBCs were significantly more frequent in patients aged <40 years and SCs predominated in patients aged >60 years. Mitotic indices ≥2 mitoses/10 high-power fields were correlated with high degrees of nuclear atypia and Ki67 labeling indices ≥6%. We identified 321 genomic positions, and copy number variation losses were more frequent than gain. Moreover, we report a panel of 85 genetic variants of cell cycle genes and the presence of molecular clusters for chordoma as well in CGH as in NGS. These new data strengthen the view that the chordoma should not be considered as a single molecular entity.
Collapse
Affiliation(s)
- Henri Salle
- Department of Neurosurgery, CHU Limoges, Limoges, France
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | - Stéphanie Durand
- Inserm, CAPTuR, GEIST Institute, University of Limoges, Limoges, France
| | - Karine Durand
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | | | - Leslie Lemnos
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Sandrine Robert
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
| | - Justine Pollet
- Plateforme Technique BISCEm US 42 INSERM/UMS 2015 CNRS, Limoges, France
| | - Thibault Passeri
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - Wassim Khalil
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - François Labrousse
- Inserm, CAPTuR (Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance; Thérapeutique), Faculty of Medicine, Limoges University, Limoges, France
- Department of Pathology, Limoges University Hospital, Limoges, France
| |
Collapse
|
35
|
Pagani F, Gryzik M, Somenza E, Cominelli M, Balzarini P, Schreiber A, Mattavelli D, Nicolai P, Doglietto F, Poliani PL. Targeting mTOR Pathway in PTEN Deleted Newly Isolated Chordoma Cell Line. J Pers Med 2023; 13:jpm13030425. [PMID: 36983607 PMCID: PMC10056194 DOI: 10.3390/jpm13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Chordomas are rare primary malignant tumours of notochordal origin usually arising along the axial skeleton with particular predilection of the skull base and sacrococcygeal region. Albeit usually slow-growing, chordomas can be aggressive mostly depending on their invasive behaviour and according to different histotypes and molecular alterations, including TBXT duplication and SMARCB1 homozygous deletion. Partial or complete PTEN deficiency has also been observed. PTEN is a negative regulator of the Akt/mTOR pathway and hyperactivation of Akt/mTOR in cells lacking PTEN expression contributes to cell proliferation and invasiveness. This pathway is targeted by mTOR inhibitors and the availability of in vitro models of chordoma cells will aid in further investigating this issue. However, isolation and maintenance of chordoma cell lines are challenging and PTEN-deleted chordoma cell lines are exceedingly rare. Hereby, we established and characterized a novel human PTEN-deleted chordoma cell line (CH3) from a primary skull base chordoma. Cells exhibited morphological and molecular features of the parent tumour, including PTEN loss and expression of Brachyury and EMA. Moreover, we investigated the activation of the mTOR pathway and cell response to mTOR inhibitors. CH3 cells were sensitive to Rapamycin treatment suggesting that mTOR inhibitors may represent a valuable option for patients suffering from PTEN-deleted chordomas.
Collapse
Affiliation(s)
- Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elena Somenza
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Piera Balzarini
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Schreiber
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padova—Azienda Ospedale-Università di Padova, 35128 Padova, Italy
| | - Francesco Doglietto
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, 00168 Rome, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3998-(407); Fax: +39-030-3995-377
| |
Collapse
|
36
|
Makise N, Shimoi T, Sunami K, Aoyagi Y, Kobayashi H, Tanaka S, Kawai A, Yonemori K, Ushiku T, Yoshida A. Loss of H3K27 trimethylation in a distinct group of de-differentiated chordoma of the skull base. Histopathology 2023; 82:420-430. [PMID: 36217885 DOI: 10.1111/his.14823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/20/2023]
Abstract
De-differentiated chordoma is defined as a high-grade sarcoma lacking notochordal differentiation, which arises in association with conventional chordoma. The mechanism underlying de-differentiation remains unclear. We immunohistochemically investigated trimethylation at lysine 27 of histone 3 (H3K27me3) in nine de-differentiated chordomas. The tumours occurred at the skull base (n = 5) or the sacrum (n = 4) in four men and five women with a median age of 50 years. De-differentiation occurred de novo in four cases and at recurrence/metastasis in five cases. Five tumours retained H3K27me3, whereas four showed complete loss of H3K27me3 only in the de-differentiated component, while the conventional chordoma component retained H3K27me3. All the H3K27me3-negative tumours showed co-loss of dimethylation at H3K27 (H3K27me2), consistent with inactivation of polycomb repressive complex 2. Two genetically analysed H3K27me3-negative tumours harboured EED homozygous deletions. All four H3K27me3-negative de-differentiated chordomas affected the skull base of young or middle-aged women. Unlike dense proliferation of highly pleomorphic spindle or epithelioid cells in the H3K27me3-positive de-differentiated chordomas, all H3K27me3-negative tumours displayed swirling fascicles of relatively uniform spindle cells with alternating cellularity and perivascular accentuation, resembling malignant peripheral nerve sheath tumour (MPNST). Rhabdomyoblastic differentiation was present in one H3K27me3-negative tumour. We identified a novel group of de-differentiated chordomas in the skull base that lost H3K27me3/me2 only in the de-differentiated component, which was associated with EED homozygous deletion and MPNST-like histology. Our data suggest a distinct 'polycomb-type' de-differentiation pathway in chordoma, similar to a recently described de-differentiated chondrosarcoma with H3K27me3 loss.
Collapse
Affiliation(s)
- Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo.,Rare Cancer Center, National Cancer Center Hospital, Tokyo
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo
| | - Yasuko Aoyagi
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo
| | - Akira Kawai
- Rare Cancer Center, National Cancer Center Hospital, Tokyo.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo.,Rare Cancer Center, National Cancer Center Hospital, Tokyo
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Akihiko Yoshida
- Rare Cancer Center, National Cancer Center Hospital, Tokyo.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
37
|
Bai J, Shi J, Zhang Y, Li C, Xiong Y, Koka H, Wang D, Zhang T, Song L, Luo W, Zhu B, Hicks B, Hutchinson A, Kirk E, Troester MA, Li M, Shen Y, Ma T, Wang J, Liu X, Wang S, Gui S, McMaster ML, Chanock SJ, Parry DM, Goldstein AM, Yang XR. Gene Expression Profiling Identifies Two Chordoma Subtypes Associated with Distinct Molecular Mechanisms and Clinical Outcomes. Clin Cancer Res 2023; 29:261-270. [PMID: 36260525 PMCID: PMC11293090 DOI: 10.1158/1078-0432.ccr-22-1865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Yujia Xiong
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Erin Kirk
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Melissa A. Troester
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Mingxuan Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Yutao Shen
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Tianshun Ma
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Junmei Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Xing Liu
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
38
|
Kesari S, Williams J, Burbano E, Stirn M, Caroen S, Oronsky B, Reid T, Larson C. Case Report of AdAPT-001-Mediated Sensitization to a Previously Failed Checkpoint Inhibitor in a Metastatic Chordoma Patient. Case Rep Oncol 2023; 16:172-176. [PMID: 37008834 PMCID: PMC10051040 DOI: 10.1159/000529503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 03/30/2023] Open
Abstract
Chordoma is a rare, but aggressive bone tumor with a high recurrence rate that primarily arises at the cranial and caudal ends of the axial skeleton. Systemic chemotherapies are not effective against the tumor, and outside of surgical resection and radiation, no approved options are available. Prognosis depends on the extent of surgical resection, with the more the better, and adjuvant radiotherapy. Herein is presented the first-ever case of a recurrent chordoma patient that responded to the combination of one dose of an experimental TGF-beta trap carrying oncolytic adenovirus, known as AdAPT-001, followed by immune checkpoint inhibitor therapy, despite prior progression on an anti-PD-1. This case report highlights the potential of AdAPT-001 as a treatment modality in combination with checkpoint inhibition for recurrent chordoma.
Collapse
Affiliation(s)
- Santosh Kesari
- Pacific Neuroscience Institute and Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Passeri T, Dahmani A, Masliah-Planchon J, El Botty R, Courtois L, Vacher S, Marangoni E, Nemati F, Roman-Roman S, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. In vivo efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts. Front Oncol 2022; 12:960720. [PMID: 36505864 PMCID: PMC9732546 DOI: 10.3389/fonc.2022.960720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | | | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Hamid Mammar
- Department of Radiotherapy - Proton Therapy Center, Institut Curie, Paris-Saclay University, Orsay, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
40
|
Zhao C, Tan T, Zhang E, Wang T, Gong H, Jia Q, Liu T, Yang X, Zhao J, Wu Z, Wei H, Xiao J, Yang C. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol 2022; 12:1029670. [PMID: 36465398 PMCID: PMC9708744 DOI: 10.3389/fonc.2022.1029670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 09/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and the clivus/skull base. Surgical resection is the treatment of choice for chordoma, but the local recurrence rate is high with unsatisfactory prognosis. Compared with other common tumors, there is not much research and individualized treatment for chordoma, partly due to the rarity of the disease and the lack of appropriate disease models, which delay the discovery of therapeutic strategies. Recent advances in modern techniques have enabled gaining a better understanding of a number of rare diseases, including chordoma. Since the beginning of the 21st century, various chordoma cell lines and animal models have been reported, which have partially revealed the intrinsic mechanisms of tumor initiation and progression with the use of next-generation sequencing (NGS) techniques. In this study, we performed a systematic overview of the chordoma models and related sequencing studies in a chronological manner, from the first patient-derived chordoma cell line (U-CH1) to diverse preclinical models such as the patient-derived organoid-based xenograft (PDX) and patient-derived organoid (PDO) models. The use of modern sequencing techniques has discovered mutations and expression signatures that are considered potential treatment targets, such as the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs). Moreover, computational and bioinformatics techniques have made drug repositioning/repurposing and individualized high-throughput drug screening available. These advantages facilitate the research and development of comprehensive and personalized treatment strategies for indicated patients and will dramatically improve their prognoses in the near feature.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tao Tan
- Department of Orthopedics, 905 Hospital of People’s Liberation Army Navy, Shanghai, China
| | - E. Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haiyi Gong
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Qi Jia
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tielong Liu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Zhipeng Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Cheng Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
41
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
42
|
Park M, Park I, Hong CK, Kim SH, Cha YJ. Differences in stromal component of chordoma are associated with contrast enhancement in MRI and differential gene expression in RNA sequencing. Sci Rep 2022; 12:16504. [PMID: 36192442 PMCID: PMC9529962 DOI: 10.1038/s41598-022-20787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Chordoma is a malignant bone neoplasm demonstrating notochordal differentiation and it frequently involves axial skeleton. Most of chordomas are conventional type with varying amount of myxoid stroma. Previously known prognostic factors for conventional chordoma are not specific for chordoma: old age, metastasis, tumor extent, and respectability. Here, we aimed to investigate the histologic, radiologic, and transcriptomic differences in conventional chordoma based on the stromal component. A total of 45 patients diagnosed with conventional chordoma were selected between May 2011 and March 2020 from a single institution. Electronic medical records, pathology slides, and pretreatment magnetic resonance imaging (MRI) scans were reviewed. Of the 45 patients, ten cases (4 stroma-rich and 6 stroma-poor tumor) were selected for RNA sequencing, and available cases in the remainder were used for measuring target gene mRNA expression with qPCR for validation. Differential gene expression and gene set analysis were performed. Based on histologic evaluation, there were 25 (55.6%) stroma-rich and 20 (44.4%) stroma-poor cases. No clinical differences were found between the two groups. Radiologically, stroma-rich chordomas showed significant signal enhancement on MRI (72.4% vs 27.6%, p = 0.002). Upregulated genes in stroma-rich chordomas were cartilage-, collagen/extracellular matrix-, and tumor metastasis/progression-associated genes. Contrarily, tumor suppressor genes were downregulated in stroma-rich chordomas. On survival analysis, Kaplan–Meier plot was separated that showed inferior outcome of stroma-rich group, although statistically insignificant. In conclusion, the abundant stromal component of conventional chordoma enhanced well on MRI and possibly contributed to the biological aggressiveness that supported by transcriptomic characteristics. Further extensive investigation regarding radiologic-pathologic-transcriptomic correlation in conventional chordoma in a larger cohort could verify additional clinical significance.
Collapse
Affiliation(s)
- Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inho Park
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
43
|
Xia B, Biswas K, Foo TK, Torres T, Riedel-Topper M, Southon E, Kang Z, Huo Y, Reid S, Stauffer S, Zhou W, Zhu B, Koka H, Yepes S, Brodie SA, Jones K, Vogt A, Zhu B, Cater B, Freedman ND, Hicks B, Yeager M, Chanock SJ, Couch F, Parry DM, Monteiro AN, Goldstein AM, Carvalho MA, Sharan SK, Yang XR. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat 2022; 43:1396-1407. [PMID: 35762214 PMCID: PMC9444938 DOI: 10.1002/humu.24427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.
Collapse
Affiliation(s)
- Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Thiago Torres
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Seth A. Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Brian Cater
- American Cancer Society, Inc, Atlanta, GA 30303, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Fergus Couch
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alvaro N. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Marcelo A. Carvalho
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
44
|
Hang J, Ouyang H, Wei F, Zhong Q, Yuan W, Jiang L, Liu Z. Proteomics and phosphoproteomics of chordoma biopsies reveal alterations in multiple pathways and aberrant kinases activities. Front Oncol 2022; 12:941046. [PMID: 36248973 PMCID: PMC9563620 DOI: 10.3389/fonc.2022.941046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Chordoma is a slow-growing but malignant subtype of bone sarcoma with relatively high recurrence rates and high resistance to chemotherapy. It is urgent to understand the underlying regulatory networks to determine more effective potential targets. Phosphorylative regulation is currently regarded as playing a significant role in tumorigenesis, and the use of tyrosine kinase inhibitors in clinical practice has yielded new promise for the treatment of a variety of sarcoma types. Materials and methods We performed comprehensive proteomic and phosphoproteomic analyses of chordoma using four-dimensional label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis. The potential aberrantly expressed kinases and their functions were validated using western blotting and CCK-8 assays. Results Compared with paired normal muscle tissues, 1,139 differentially expressed proteins (DEPs) and 776 differentially phosphorylated proteins (DPPs) were identified in chordoma tumor tissues. The developmentally significant Wnt-signaling pathway and oxidative phosphorylation were aberrant in chordoma. Moreover, we predicted three kinases (AURA, CDK9, and MOK) with elevated activity by kinase-pathway network analysis (KiPNA) and verified their increased expression levels. The knockdown of these kinases markedly suppressed chordoma cell growth, and this was also the case for cells treated with the CDK9 inhibitor AZD4573. We additionally examined 208 proteins whose expression and phosphorylation levels were synergetically altered. Conclusions We herein depicted the collective protein profiles of chordomas, providing insight into chordomagenesis and the potential development of new therapeutic targets.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Qihang Zhong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| |
Collapse
|
45
|
Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8:94. [PMID: 36127333 PMCID: PMC9489773 DOI: 10.1038/s41421-022-00459-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Skull base chordoma (SBC) is a bone cancer with a high recurrence rate, high radioresistance rate, and poorly understood mechanism. Here, we profiled the transcriptomes of 90,691 single cells, revealed the SBC cellular hierarchies, and explored novel treatment targets. We identified a cluster of stem-like SBC cells that tended to be distributed in the inferior part of the tumor. Combining radiated UM-Chor1 RNA-seq data and in vitro validation, we further found that this stem-like cell cluster is marked by cathepsin L (CTSL), a gene involved in the packaging of telomere ends, and may be responsible for radioresistance. Moreover, signatures related to partial epithelial-mesenchymal transition (p-EMT) were found to be significant in malignant cells and were related to the invasion and poor prognosis of SBC. Furthermore, YL-13027, a p-EMT inhibitor that acts through the TGF-β signaling pathway, demonstrated remarkable potency in inhibiting the invasiveness of SBC in preclinical models and was subsequently applied in a phase I clinical trial that enrolled three SBC patients. Encouragingly, YL-13027 attenuated the growth of SBC and achieved stable disease with no serious adverse events, underscoring the clinical potential for the precision treatment of SBC with this therapy. In summary, we conducted the first single-cell RNA sequencing of SBC and identified several targets that could be translated to the treatment of SBC.
Collapse
|
46
|
Gao J, Huang R, Yin H, Song D, Meng T. Research hotspots and trends of chordoma: A bibliometric analysis. Front Oncol 2022; 12:946597. [PMID: 36185236 PMCID: PMC9523362 DOI: 10.3389/fonc.2022.946597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chordoma is a type of mesenchymal malignancy with a high recurrence rate and poor prognosis. Due to its rarity, the tumorigenic mechanism and optimal therapeutic strategy are not well known. Methods All relevant articles of chordoma research from 1 January 2000 to 26 April 2022 were obtained from Web of Science Core Collection database. Blibliometrix was used to acquire basic publication data. Visualization and data table of collaboration network, dynamic analysis, trend topics, thematic map, and factorial analysis were acquired using Blibliometrix package. VOSviewer was used to generate a visualization map of co-citation analysis and co-occurrence. Results A total of 2,285 articles related to chordoma were identified. The most influential and productive country/region was the United States, and Capital Medical University has published the most articles. Among all high-impact authors, Adrienne M. Flanagan had the highest average citation rate. Neurosurgery was the important periodical for chordoma research with the highest total/average citation rate. We focused on four hotspots in recent chordoma research. The research on surgical treatment and radiotherapy was relatively mature. The molecular signaling pathway, targeted therapy and immunotherapy for chordoma are not yet mature, which will be the future trends of chordoma research. Conclusion This study indicates that chordoma studies are increasing. Surgery and radiotherapy are well reported and always play fundamental roles in chordoma treatment. The molecular signaling pathway, targeted therapy, and immunotherapy of chordoma are the latest research hotspots.
Collapse
Affiliation(s)
- Jianxuan Gao
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Huabin Yin
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dianwen Song
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| | - Tong Meng
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| |
Collapse
|
47
|
Updates in Pathology for Retroperitoneal Soft Tissue Sarcoma. Curr Oncol 2022; 29:6400-6418. [PMID: 36135073 PMCID: PMC9497884 DOI: 10.3390/curroncol29090504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Retroperitoneal tumors are extremely rare. More than 70% of primary retroperitoneal soft tissue tumors are malignant. The most common sarcomas in the retroperitoneum include liposarcomas and leiomyosarcoma, however other sarcomas, along with benign mesenchymal tumors, can occur. Sarcomas are a heterogenous group of tumors with overlapping microscopic features, posing a diagnostic challenge for the pathologist. Correct tumor classification has become important for prognostication and the evolving targeted therapies for sarcoma subtypes. In this review, the pathology of retroperitoneal soft tissue sarcomas is discussed, which is important to the surgical oncologist. In addition, less common sarcomas and benign mesenchymal tumors of the retroperitoneum, which may mimic sarcoma clinically and pathologically, are also discussed.
Collapse
|
48
|
Duan W, Zhang B, Li X, Chen W, Jia S, Xin Z, Jian Q, Jian F, Chou D, Chen Z. Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas. Cancer Immunol Immunother 2022; 71:2185-2195. [DOI: 10.1007/s00262-022-03152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
49
|
Cross W, Lyskjær I, Lesluyes T, Hargreaves S, Strobl AC, Davies C, Waise S, Hames-Fathi S, Oukrif D, Ye H, Amary F, Tirabosco R, Gerrand C, Baker T, Barnes D, Steele C, Alexandrov L, Bond G, Cool P, Pillay N, Van Loo P, Flanagan AM. A genetic model for central chondrosarcoma evolution correlates with patient outcome. Genome Med 2022; 14:99. [PMID: 36042521 PMCID: PMC9426036 DOI: 10.1186/s13073-022-01084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.
Collapse
Affiliation(s)
- William Cross
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Iben Lyskjær
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Medical Genomics Research Group, University College London, UCL Cancer Institute, London, UK
| | | | - Steven Hargreaves
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Christopher Davies
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Shadi Hames-Fathi
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Dahmane Oukrif
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Craig Gerrand
- Bone Tumour Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - David Barnes
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Christopher Steele
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Gareth Bond
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Paul Cool
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Keele University, Keele, UK
| | - Nischalan Pillay
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
50
|
Anoshkin K, Zosen D, Karandasheva K, Untesco M, Volodin I, Alekseeva E, Parfenenkova A, Snegova E, Kim A, Dorofeeva M, Kutsev S, Strelnikov V. Pediatric chordoma associated with tuberous sclerosis complex: A rare case report with a thorough analysis of potential therapeutic molecular targets. Heliyon 2022; 8:e10291. [PMID: 36051260 PMCID: PMC9424951 DOI: 10.1016/j.heliyon.2022.e10291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Chordoma associated with tuberous sclerosis complex (TSC) is an extremely rare tumor that was described only in 13 cases since 1975. Сhordoma itself is a malignant slow-growing bone tumor thought to arise from vestigial or ectopic notochordal tissue. Chordoma associated with TSC differs from chordoma in the general pediatric population in the median age, where the diagnosis of TSC-associated chordoma is 6.2 months, whereas for chordoma in the general pediatric population it is set to 12 years. The majority of TSC-associated chordomas are localized in skull-based and sacrum regions, and rare in the spine. Chordomas are genetically heterogeneous tumors characterized by chromosomal instability (CIN), and alterations involving PI3K-AKT signaling pathway genes and chromatin remodeling genes. Here we present the 14th case of chordoma associated with TSC in a 1-year-old pediatric patient. Alongside biallelic inactivation of the TSC1 gene, molecular genetic analysis revealed CIN and involvement of epigenetic regulation genes. In addition, we found the engagement of CBX7 and apolipoprotein B editing complex (APOBEC3) genes that were not yet seen in chordomas before. Amplification of CBX7 may epigenetically silence the CDKN2A gene, whereas amplification of APOBEC3 genes can explain the frequent occurrence of CIN in chordomas. We also found that KRAS gene is located in the region with gain status, which may suggest the ineffectiveness of potential EGFR monotherapy. Thus, molecular genetic analysis carried out in this study broadens the horizons of possible approaches for targeted therapies with potential applications for personalized medicine.
Collapse
Affiliation(s)
- Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Str. 1, 115522 Moscow, Russia
| | - Denis Zosen
- Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1068, Blindern, 0316 Oslo, Norway
| | | | - Maxim Untesco
- UNIM LLC, Podsosensky Lane 23, 105062 Moscow, Russia.,Pathology Department, Telemark HF Hospital, Ulefossveien 55, PO Box 2900 Kjørbekk, 3710 Skien, Norway
| | - Ilya Volodin
- Research Centre for Medical Genetics, Moskvorechye Str. 1, 115522 Moscow, Russia
| | - Ekaterina Alekseeva
- Research Centre for Medical Genetics, Moskvorechye Str. 1, 115522 Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Anna Parfenenkova
- Saint Petersburg State University, University emb. 7-9, 199034 Saint Petersburg, Russia
| | - Eugenia Snegova
- Saint Petersburg State Budget Healthcare Facility "Advisory and Diagnostic Center for Children", Oleko Dundicha Str. 36/2, 192289 Saint Petersburg, Russia
| | - Aleksandr Kim
- Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Taldomskaya Str. 2, 125412 Moscow, Russia
| | - Sergei Kutsev
- Research Centre for Medical Genetics, Moskvorechye Str. 1, 115522 Moscow, Russia
| | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Str. 1, 115522 Moscow, Russia
| |
Collapse
|