1
|
Smith AB, Ejindu RC, Chekan JR. Engineering RiPP pathways: strategies for generating complex bioactive peptides. Trends Biochem Sci 2025:S0968-0004(25)00080-5. [PMID: 40335383 DOI: 10.1016/j.tibs.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Historically, natural products have been essential sources of therapeutic agents, many of which are currently used to manage various diseases. In recent years, ribosomally synthesized and post-translationally modified peptides (RiPPs) have garnered considerable interest in drug discovery and development due to their biosynthetic plasticity and their ability to generate diverse bioactive structural scaffolds. Unfortunately, many RiPPs have suboptimal bioavailability and proteolytic stability, significantly limiting their clinical potential. Moreover, the complexity of RiPP structures makes total synthesis extremely difficult. These drawbacks necessitate pathway engineering to create derivatives with potentially optimized physicochemical properties. Herein, we review recent efforts to surmount pathway engineering challenges and to rationally modify components of RiPP pathways for new functions to derive new bioactive analogs.
Collapse
Affiliation(s)
- Ayoola B Smith
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Renee C Ejindu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
2
|
Desormeaux E, Barksdale GJ, van der Donk WA. Kinetic Analysis of Cyclization by the Substrate-Tolerant Lanthipeptide Synthetase ProcM. ACS Catal 2024; 14:18310-18321. [PMID: 39722886 PMCID: PMC11667668 DOI: 10.1021/acscatal.4c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of thioether cross-links called lanthionine and methyllanthionine, formed by dehydration of Ser/Thr residues and Michael-type addition of Cys side chains onto the resulting dehydroamino acids. Class II lanthipeptide synthetases are bifunctional enzymes responsible for both steps, thus generating macrocyclic natural products. ProcM is part of a group of class II lanthipeptide synthetases that are known for their remarkable substrate tolerance, having large numbers of natural substrates with highly diverse peptide sequences. They install multiple (methyl)lanthionine rings with high accuracy, attributes that have been used to make large libraries of polycyclic peptides. Previous studies suggested that the final ring pattern of the lanthipeptide product may be determined by the substrate sequence rather than by ProcM. The current investigation on the ProcM-catalyzed modification of one of its 30 natural substrates (ProcA3.3) and its sequence variants utilizes kinetic assays to understand the factors that determine the ring pattern. The data show that changes in the substrate sequence result in changes to the reaction rates of ring formation that in some cases lead to a change in the order of the modifications and thereby bring about different ring patterns. These observations provide further support that the substrate sequence determines to a large degree the final ring pattern. The data also show that similar to a previous study on another substrate (ProcA2.8), the reaction rates of successive reactions slow down as the peptide is matured; rate constants observed for the reactions of these two substrates are similar, suggesting that they reflect the intrinsic activity of the enzyme with its 30 natural substrates. We also investigated whether rates of formation of single isolated rings can predict the final ring pattern of polycyclic products, an important question for the products of genome mining exercises, as well as library generation. Collectively, the findings in this study indicate that the rates of isolated modifications can be used for predicting the final ProcM-produced ring pattern, but they also revealed limitations. One unexpected observation was that even changing Ser to Thr and vice versa, a common means to convert lanthionine to methyllanthionine and vice versa, can result in a change in the ring pattern.
Collapse
Affiliation(s)
- Emily
K. Desormeaux
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Garrett J. Barksdale
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Stafford JL, Montoya VK, Bierman JJ, Walker MC. Assessing the Impact of the Leader Peptide in Protease Inhibition by the Microviridin Family of RiPPs. Biomedicines 2024; 12:2873. [PMID: 39767778 PMCID: PMC11672978 DOI: 10.3390/biomedicines12122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. RiPPs have attracted attention for the ability to generate and screen libraries of these compounds for useful biological activities. To facilitate this screening, it is useful to be able to do so with the leader peptide still present. We assessed the suitability of the microviridin family for these screening experiments by determining their activity with the leader peptide still present. Methods: Modified precursor peptides with the leader present were heterologously expressed in Escherichia coli. Their ability to inhibit elastase was tested with a fluorogenic substrate. HPLC was used to monitor degradation of the modified precursor peptides by elastase. SDS-PAGE was used to determine the ability of immobilized modified precursor peptide to pull down elastase. Results: We found that the fully modified precursor peptide of microviridin B can inhibit the serine protease elastase with a low nanomolar IC50, and that the fully modified precursor with an N-terminal His-tag can mediate interactions between elastase and Ni-NTA resin, all indicating leader peptide removal is not necessary for microviridins to bind their target proteases. Additionally, we found that a bicyclic variant was able to inhibit elastase with the leader peptide still present, although with a roughly 100-fold higher IC50 and being subject to hydrolysis by elastase. Conclusions: These results open a pathway to screening libraries of microviridin variants for improved protease inhibition or other characteristics that can serve as, or as inspirations for, new pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM 87131, USA; (J.L.S.); (V.K.M.); (J.J.B.)
| |
Collapse
|
4
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Darling WTP, Wieske LHE, Cook DT, Aliev AE, Caron L, Humphrys EJ, Figueiredo AM, Hansen DF, Erdélyi M, Tabor AB. The Influence of Disulfide, Thioacetal and Lanthionine-Bridges on the Conformation of a Macrocyclic Peptide. Chemistry 2024; 30:e202401654. [PMID: 38953277 DOI: 10.1002/chem.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cyclisation of peptides by forming thioether (lanthionine), disulfide (cystine) or methylene thioacetal bridges between side chains is established as an important tool to stabilise a given structure, enhance metabolic stability and optimise both potency and selectivity. However, a systematic comparative study of the effects of differing bridging modalities on peptide conformation has not previously been carried out. In this paper, we have used the NMR deconvolution algorithm, NAMFIS, to determine the conformational ensembles, in aqueous solution, of three cyclic analogues of angiotensin(1-7), incorporating either disulfide, or non-reducible thioether or methylene thioacetal bridges. We demonstrate that the major solution conformations are conserved between the different bridged peptides, but the distribution of conformations differs appreciably. This suggests that subtle differences in ring size and bridging structure can be exploited to fine-tune the conformational properties of cyclic peptides, which may modulate their bioactivities.
Collapse
Affiliation(s)
- William T P Darling
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Lianne H E Wieske
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Laurent Caron
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Emily J Humphrys
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Angelo Miguel Figueiredo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
7
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Zhang YN, Wan XC, Tang Y, Chen Y, Zheng FH, Cui ZH, Zhang H, Zhou Z, Fang GM. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery. Chem Sci 2024; 15:9649-9656. [PMID: 38939140 PMCID: PMC11206207 DOI: 10.1039/d4sc01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Xiao-Cui Wan
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Ying Chen
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Feng-Hao Zheng
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhi-Hui Cui
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Hua Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai 200438 P. R. China
| | - Ge-Min Fang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
9
|
Le T, Zhang D, Martini RM, Biswas S, van der Donk WA. Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs. Chem Commun (Camb) 2024; 60:6508-6511. [PMID: 38833296 PMCID: PMC11189026 DOI: 10.1039/d3cc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Cyclotides and lanthipeptides are cyclic peptide natural products with promising bioengineering potential. No peptides have been isolated that contain both structural motifs defining these two families, an N-to-C cyclised backbone and lanthionine linkages. We combined their biosynthetic machineries to produce hybrid structures that possess improved activity or stability, demonstrate how the AEP-1 plant cyclase can be utilised to complete the maturation of the sactipeptide subtilosin A, and present head-to-tail cyclisation of the glycocin sublancin. These studies show the plasticity of AEP-1 and its utilisation alongside other post-translational modifications.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dongtianyu Zhang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rachel M Martini
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of Macrocyclic Peptides with C-Terminal β-Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS CENTRAL SCIENCE 2024; 10:1022-1032. [PMID: 38799663 PMCID: PMC11117315 DOI: 10.1021/acscentsci.4c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the β-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristen M. Flatt
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Desormeaux EK, van der Donk WA. Kinetic Analysis of Lanthipeptide Cyclization by Substrate-Tolerant ProcM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594612. [PMID: 38798579 PMCID: PMC11118578 DOI: 10.1101/2024.05.16.594612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides characterized by the presence of thioether crosslinks. Class II lanthipeptide synthetases are bifunctional enzymes responsible for the multistep chemical modification of these natural products. ProcM is a class II lanthipeptide synthetase known for its remarkable substrate tolerance and ability to install diverse (methyl)lanthionine rings with high accuracy. Previous studies suggested that the final ring pattern of the lanthipeptide product may be determined by the substrate sequence rather than by ProcM, and that ProcM operates by a kinetically controlled mechanism, wherein the ring pattern is dictated by the relative rates of the individual cyclization reactions. This study utilizes kinetic assays to determine if rates of isolated modifications can predict the final ring pattern present in prochlorosins. Changes in the core substrate sequence resulted in changes to the reaction rates of ring formation as well as a change in the order of modifications. Additionally, individual chemical reaction rates were significantly impacted by the presence of other modifications on the peptide. These findings indicate that the rates of isolated modifications are capable of predicting the final ring pattern but are not necessarily a good predictor of the order of modification in WT ProcA3.3 and its variants.
Collapse
Affiliation(s)
- Emily K Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Chen FJ, Pinnette N, Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. Chembiochem 2024; 25:e202400072. [PMID: 38466139 PMCID: PMC11437370 DOI: 10.1002/cbic.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| |
Collapse
|
14
|
Han SW, Won HS. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024; 14:479. [PMID: 38672495 PMCID: PMC11048544 DOI: 10.3390/biom14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Wan XC, Zhang YN, Zhang H, Chen Y, Cui ZH, Zhu WJ, Fang GM. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display. Org Lett 2024; 26:2601-2605. [PMID: 38529932 DOI: 10.1021/acs.orglett.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report here an enzymatic strategy for asparaginyl endopeptidase-mediated peptide cyclization. Incorporation of chloroacetyl groups into the recognition sequence of OaAEP1 enabled intramolecular cyclization with Cys residues. Combining this strategy and phage display, we identified nanomolar macrocyclic peptide ligands targeting TEAD4. One of the bicyclic peptides binds to TEAD4 with a KD value of 139 nM, 16 times lower than its linear analogue, demonstrating the utility of this platform in discovering high-affinity macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
16
|
Nguyen DT, Mitchell DA, van der Donk WA. Genome Mining for New Enzyme Chemistry. ACS Catal 2024; 14:4536-4553. [PMID: 38601780 PMCID: PMC11002830 DOI: 10.1021/acscatal.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
A revolution in the field of biocatalysis has enabled scalable access to compounds of high societal values using enzymes. The construction of biocatalytic routes relies on the reservoir of available enzymatic transformations. A review of uncharacterized proteins predicted from genomic sequencing projects shows that a treasure trove of enzyme chemistry awaits to be uncovered. This Review highlights enzymatic transformations discovered through various genome mining methods and showcases their potential future applications in biocatalysis.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
19
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564719. [PMID: 37965205 PMCID: PMC10635010 DOI: 10.1101/2023.10.30.564719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the β-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danielle L. Gray
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Toby J. Woods
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chandrashekhar Padhi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
20
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Chang JS, Vinogradov AA, Zhang Y, Goto Y, Suga H. Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides. ACS CENTRAL SCIENCE 2023; 9:2150-2160. [PMID: 38033794 PMCID: PMC10683472 DOI: 10.1021/acscentsci.3c00957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (KD up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit μM concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
Collapse
Affiliation(s)
- Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Gordon CH, Hendrix E, He Y, Walker MC. AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes. Biomolecules 2023; 13:1243. [PMID: 37627309 PMCID: PMC10452190 DOI: 10.3390/biom13081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like compounds and can install non-proteogenic amino acids in peptides and proteins. However, engineering these enzymes has been somewhat limited, due in part to limited structural information on enzymes in the same families that nonetheless exhibit different substrate selectivities. Despite AlphaFold2's superior performance in single-chain protein structure prediction, its multimer version lacks accuracy and requires high-end GPUs, which are not typically available to most research groups. Additionally, the default parameters of AlphaFold2 may not be optimal for predicting complex structures like RiPP biosynthetic enzymes, due to their dynamic binding and substrate-modifying mechanisms. This study assessed the efficacy of the structure prediction program ColabFold (a variant of AlphaFold2) in modeling RiPP biosynthetic enzymes in both monomeric and dimeric forms. After extensive benchmarking, it was found that there were no statistically significant differences in the accuracy of the predicted structures, regardless of the various possible prediction parameters that were examined, and that with the default parameters, ColabFold was able to produce accurate models. We then generated additional structural predictions for select RiPP biosynthetic enzymes from multiple protein families and biosynthetic pathways. Our findings can serve as a reference for future enzyme engineering complemented by AlphaFold-related tools.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Vagstad AL. Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Curr Opin Biotechnol 2023; 80:102891. [PMID: 36702077 DOI: 10.1016/j.copbio.2023.102891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
The rise of antimicrobial resistance is an urgent public health threat demanding the invention of new drugs to combat infections. Naturally sourced nonribosomal peptides (NRPs) have a long history as antimicrobial drugs. Through recent advances in genome mining and engineering technologies, their ribosomally synthesized and posttranslationally modified peptide (RiPP) counterparts are poised to further contribute to the arsenal of anti-infectives. As natural products from diverse organisms involved in interspecies competition, many RiPPs already possess antimicrobial activities that can be further optimized as drug candidates. Owing to the mutability of precursor protein genes that encode their core structures and the availability of diverse posttranslational modification (PTM) enzymes with broad substrate tolerances, RiPP systems are well suited to engineer complex peptides with desired functions.
Collapse
Affiliation(s)
- Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.
| |
Collapse
|
25
|
Thokkadam A, Do T, Ran X, Brynildsen MP, Yang ZJ, Link AJ. High-Throughput Screen Reveals the Structure-Activity Relationship of the Antimicrobial Lasso Peptide Ubonodin. ACS CENTRAL SCIENCE 2023; 9:540-550. [PMID: 36968541 PMCID: PMC10037499 DOI: 10.1021/acscentsci.2c01487] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 06/16/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of bacteria including opportunistic human pathogens. Immunocompromised individuals and cystic fibrosis patients are especially vulnerable to serious infections by these bacteria, motivating the search for compounds with antimicrobial activity against the Bcc. Ubonodin is a lasso peptide with promising activity against Bcc species, working by inhibiting RNA polymerase in susceptible bacteria. We constructed a library of over 90 000 ubonodin variants with 2 amino acid substitutions and used a high-throughput screen and next-generation sequencing to examine the fitness of the entire library, generating the most comprehensive data set on lasso peptide activity so far. This screen revealed information regarding the structure-activity relationship of ubonodin over a large sequence space. Remarkably, the screen identified one variant with not only improved activity compared to wild-type ubonodin but also a submicromolar minimum inhibitory concentration (MIC) against a clinical isolate of the Bcc member Burkholderia cenocepacia. Ubonodin and several of the variants identified in this study had lower MICs against certain Bcc strains than those of many clinically approved antibiotics. Finally, the large library size enabled us to develop DeepLasso, a deep learning model that can predict the RNAP inhibitory activity of an ubonodin variant.
Collapse
Affiliation(s)
- Alina Thokkadam
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Truc Do
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mark P. Brynildsen
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - A. James Link
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
Bowler MM, Glavatskikh M, Pecot CV, Kireev D, Bower s AA. Enzymatic Macrolactamization of mRNA Display Libraries for Inhibitor Selection. ACS Chem Biol 2023; 18:166-175. [PMID: 36490372 PMCID: PMC9868075 DOI: 10.1021/acschembio.2c00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
mRNA display is a powerful, high-throughput technology for discovering novel, peptide ligands for protein targets. A number of methods have been used to expand the chemical diversity of mRNA display libraries beyond the 20 canonical amino acids, including genetic code reprogramming and biorthogonal chemistries. To date, however, there have been few reports using enzymes as biocompatible reagents for diversifying mRNA display libraries. Here, we report the evaluation and implementation of the common industrial enzyme, microbial transglutaminase (mTG), as a versatile biocatalyst for cyclization of mRNA display peptide libraries via lysine-to-glutamine isopeptide bonds. We establish two separate display-based assays to validate the compatibility of mTG with mRNA-linked peptide substrates. These assays indicate that mTG has a high degree of substrate tolerance and low single round bias. To demonstrate the potential benefits of mTG-mediated cyclization in ligand discovery, high diversity mTG-modified libraries were employed in two separate affinity selections: (1) one against the calcium and integrin binding protein, CIB1, and (2) the second against the immune checkpoint protein and emerging therapeutic target, B7-H3. Both selections resulted in the identification of potent, cyclic, low nanomolar binders, and subsequent structure-activity studies demonstrate the importance of the cyclization to the observed activity. Notably, cyclization in the CIB1 binder stabilizes an α-helical conformation, while the B7-H3 inhibitor employs two bridges, one mTG-derived lactam and a second disulfide to achieve its potency. Together, these results demonstrate potential benefits of enzyme-based biocatalysts in mRNA display ligand selections and establish a framework for employing mTG in mRNA display.
Collapse
Affiliation(s)
- Matthew M. Bowler
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Albert A. Bower s
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
27
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
28
|
Abstract
Identified from the pathogen Bacillus cereus SJ1, the two-component lantibiotic bicereucin is featured by the presence of a series of nonproteogenic amino acids and exhibits potent synergistic activity against a broad spectrum of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, as well as hemolytic activity against mammalian cells. In this study, we performed site-directed mutagenesis on the nonproteogenic amino acids as well as truncation of dehydrobutyrine-rich N-terminal residues and evaluated the effects on both biological activities. We identified that D-Ala21 and D-Ala26 of Bsjα and D-Ala23 and D-Ala28 of Bsjβ play an essential role in the antimicrobial activity, while the N-termini of both peptides are important for both activities. We also determined that the integrity of both subunits is essential for hemolytic activity. Finally, we obtained two variants BsjαtS17A+Bsjβ and BsjαS30A+BsjβT19A, which retained the antimicrobial activity and exhibited greatly decreased hemolytic toxicity. Overall, our results provide a comprehensive understanding of the structure-activity relationships of bicereucin and insights into the mechanism of action thereof, facilitating the further exploration of the molecular basis of the binding receptor of bicereucin and genome mining of potential novel two-component lantibiotics.
Collapse
|
29
|
Ali A, Happel D, Habermann J, Schoenfeld K, Macarrón Palacios A, Bitsch S, Englert S, Schneider H, Avrutina O, Fabritz S, Kolmar H. Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase. Angew Chem Int Ed Engl 2022; 61:e202210883. [PMID: 36049110 PMCID: PMC9828075 DOI: 10.1002/anie.202210883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 01/12/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides containing a unique sulfur to α-carbon crosslink. Catalyzed by sactisynthases, this thioether pattern endows sactipeptides with enhanced structural, thermal, and proteolytic stability, which makes them attractive scaffolds for the development of novel biotherapeutics. Herein, we report the in-depth study on the substrate tolerance of the sactisynthase AlbA to catalyze the formation of thioether bridges in sactipeptides. We identified a possible modification site within the sactipeptide subtilosin A allowing for peptide engineering without compromising formation of thioether bridges. A panel of natural and hybrid sactipeptides was produced to study the AlbA-mediated formation of thioether bridges, which were identified mass-spectrometrically. In a proof-of-principle study, we re-engineered subtilosin A to a thioether-bridged, specific streptavidin targeting peptide, opening the door for the functional engineering of sactipeptides.
Collapse
Affiliation(s)
- Ataurehman Ali
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Dominic Happel
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Jan Habermann
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Katrin Schoenfeld
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Arturo Macarrón Palacios
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Sebastian Bitsch
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Simon Englert
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Hendrik Schneider
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Olga Avrutina
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Sebastian Fabritz
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Harald Kolmar
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64283DamstadtGermany
| |
Collapse
|
30
|
Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, Terasaka N, Goto Y, Ogata K, Sengoku T, Onaka H, Suga H. De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors. J Am Chem Soc 2022; 144:20332-20341. [DOI: 10.1021/jacs.2c07937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alexander A. Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Jun Shi Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hirotaka Nishimura
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in Escherichia coli. Biochem Soc Trans 2022; 50:1315-1328. [PMID: 36196987 DOI: 10.1042/bst20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
New antimicrobials need to be discovered to fight the advance of multidrug-resistant pathogens. A promising approach is the screening for antimicrobial agents naturally produced by living organisms. As an alternative to studying the native producer, it is possible to use genetically tractable microbes as heterologous hosts to aid the discovery process, facilitate product diversification through genetic engineering, and ultimately enable environmentally friendly production. In this mini-review, we summarize the literature from 2017 to 2022 on the application of Escherichia coli and E. coli-based platforms as versatile and powerful systems for the discovery, characterization, and sustainable production of antimicrobials. We highlight recent developments in high-throughput screening methods and genetic engineering approaches that build on the strengths of E. coli as an expression host and that led to the production of antimicrobial compounds. In the last section, we briefly discuss new techniques that have not been applied to discover or engineer antimicrobials yet, but that may be useful for this application in the future.
Collapse
|
32
|
Uggowitzer KA, Shao ARQ, Habibi Y, Zhang QE, Thibodeaux CJ. Exploring the Heterogeneous Structural Dynamics of Class II Lanthipeptide Synthetases with Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Biochemistry 2022; 61:2118-2130. [PMID: 36094889 DOI: 10.1021/acs.biochem.2c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the installation of multiple thioether bridges into genetically encoded peptides to produce macrocyclic lanthipeptides, a class of biologically active natural products. Collectively, LanM enzymes install thioether rings of different sizes, topologies, and stereochemistry into a vast array of different LanA precursor peptide sequences. The factors that govern the outcome of the LanM-catalyzed reaction cascade are not fully characterized but are thought to involve both intermolecular interactions and intramolecular conformational changes in the [LanM:LanA] Michaelis complex. To test this hypothesis, we have combined AlphaFold modeling with hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of a small collection of divergent LanM/LanA systems to investigate the similarities and differences in their conformational dynamic properties. Our data indicate that LanA precursor peptide binding triggers relatively conserved changes in the structural dynamics of the LanM dehydratase domain, supporting the existence of a similar leader peptide binding mode across the LanM family. In contrast, changes induced in the dynamics of the LanM cyclase domain were more highly variable between enzymes, perhaps reflecting different peptide-cyclase interactions and/or different modes of allosteric activation in class II lanthipeptide biosynthesis. Our analysis highlights the ability of the emerging AlphaFold platform to predict protein-peptide interactions that are supported by other lines of experimental evidence. The combination of AlphaFold modeling with HDX-MS analysis should emerge as a useful approach for investigating other conformationally dynamic enzymes involved in peptide natural product biosynthesis.
Collapse
Affiliation(s)
- Kevin A Uggowitzer
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Qianyi E Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | | |
Collapse
|
33
|
Nguyen DT, Le TT, Rice AJ, Hudson GA, van der Donk WA, Mitchell DA. Accessing Diverse Pyridine-Based Macrocyclic Peptides by a Two-Site Recognition Pathway. J Am Chem Soc 2022; 144:11263-11269. [PMID: 35713415 PMCID: PMC9247985 DOI: 10.1021/jacs.2c02824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Macrocyclic peptides are sought-after molecular scaffolds for drug discovery, and new methods to access diverse libraries are of increasing interest. Here, we report the enzymatic synthesis of pyridine-based macrocyclic peptides (pyritides) from linear precursor peptides. Pyritides are a recently described class of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are related to the long-known thiopeptide natural products. RiPP precursors typically contain an N-terminal leader region that is physically engaged by the biosynthetic proteins that catalyze modification of the C-terminal core region of the precursor peptide. We demonstrate that pyritide-forming enzymes recognize both the leader region and a C-terminal tripeptide motif, with each contributing to site-selective substrate modification. Substitutions in the core region were well-tolerated and facilitated the generation of a wide range of pyritide analogues, with variations in macrocycle sequence and size. A combination of the pyritide biosynthetic pathway with azole-forming enzymes was utilized to generate a thiazole-containing pyritide (historically known as a thiopeptide) with no similarity in sequence and macrocycle size to the naturally encoded pyritides. The broad substrate scope of the pyritide biosynthetic enzymes serves as a future platform for macrocyclic peptide lead discovery and optimization.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tung T. Le
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew J. Rice
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Graham A. Hudson
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Vinogradov AA, Chang JS, Onaka H, Goto Y, Suga H. Accurate Models of Substrate Preferences of Post-Translational Modification Enzymes from a Combination of mRNA Display and Deep Learning. ACS CENTRAL SCIENCE 2022; 8:814-824. [PMID: 35756369 PMCID: PMC9228559 DOI: 10.1021/acscentsci.2c00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 05/15/2023]
Abstract
Promiscuous post-translational modification (PTM) enzymes often display nonobvious substrate preferences by acting on diverse yet well-defined sets of peptides and/or proteins. Understanding of substrate fitness landscapes for PTM enzymes is important in many areas of contemporary science, including natural product biosynthesis, molecular biology, and biotechnology. Here, we report an integrated platform for accurate profiling of substrate preferences for PTM enzymes. The platform features (i) a combination of mRNA display with next-generation sequencing as an ultrahigh throughput technique for data acquisition and (ii) deep learning for data analysis. The high accuracy (>0.99 in each of two studies) of the resulting deep learning models enables comprehensive analysis of enzymatic substrate preferences. The models can quantify fitness across sequence space, map modification sites, and identify important amino acids in the substrate. To benchmark the platform, we performed profiling of a Ser dehydratase (LazBF) and a Cys/Ser cyclodehydratase (LazDEF), two enzymes from the lactazole biosynthesis pathway. In both studies, our results point to complex enzymatic preferences, which, particularly for LazBF, cannot be reduced to a set of simple rules. The ability of the constructed models to dissect such complexity suggests that the developed platform can facilitate a wider study of PTM enzymes.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyasu Onaka
- Department
of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative
Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Habibi Y, Weerasinghe NW, Uggowitzer KA, Thibodeaux CJ. Partially Modified Peptide Intermediates in Lanthipeptide Biosynthesis Alter the Structure and Dynamics of a Lanthipeptide Synthetase. J Am Chem Soc 2022; 144:10230-10240. [PMID: 35647706 DOI: 10.1021/jacs.2c00727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lanthipeptide synthetases construct macrocyclic peptide natural products by catalyzing an iterative cascade of post-translational modifications. Class II lanthipeptide synthetases (LanM enzymes) catalyze multiple rounds of peptide dehydration and thioether macrocycle formation in a manner that guides precursor peptide maturation to the biologically active final product with high fidelity. The mechanistic details underlying the contradictory phenomena of substrate flexibility coupled with high biosynthetic fidelity have proven challenging to illuminate. In this work, we employ mass spectrometry to investigate how the structure of a maturing precursor lanthipeptide (HalA2) influences the local and global structure of its cognate lanthipeptide synthetase (HalM2). Using enzymatically synthesized HalA2 peptides that contain sets of native thioether macrocycles, we employ ion mobility mass spectrometry (IM-MS) to show that HalA2 macrocyclization alters the conformational landscape of the HalM2 enzyme in a systematic manner. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies show that local HalM2 structural dynamics also change in response to HalA2 post-translational modification. Notably, deuterium uptake in a critical HalM2 α-helical region depends on the number of thioether macrocycles present in the HalA2 core peptide. Binding of the isolated leader and core peptide portions of the modular HalA2 precursor led to a synergistic structuring of this α-helical region, providing evidence for distinct leader and core peptide binding sites that independently alter the dynamics of this functionally critical α-helix. The data support a mechanistic model where the sequential post-translational modification of HalA2 alters the conformational dynamics of HalM2 in regions of the enzyme that are known to be functionally critical.
Collapse
Affiliation(s)
- Yeganeh Habibi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Nuwani W Weerasinghe
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
36
|
Hills E, Woodward TJ, Fields S, Brandsen BM. Comprehensive Mutational Analysis of the Lasso Peptide Klebsidin. ACS Chem Biol 2022; 17:998-1010. [PMID: 35315272 PMCID: PMC9976627 DOI: 10.1021/acschembio.2c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a growing threat to public health, making the development of antibiotics of critical importance. One promising class of potential new antibiotics are ribosomally synthesized and post-translationally modified peptides (RiPPs), which include klebsidin, a lasso peptide from Klebsiella pneumoniae that inhibits certain bacterial RNA polymerases. We develop a high-throughput assay based on growth inhibition of Escherichia coli to analyze the mutational tolerance of klebsidin. We transform a library of klebsidin variants into E. coli and use next-generation DNA sequencing to count the frequency of each variant before and after its expression, thereby generating functional scores for 320 of 361 single amino acid changes. We identify multiple positions in the macrocyclic ring and the C-terminal tail region of klebsidin that are intolerant to mutation, as well as positions in the loop region that are highly tolerant to mutation. Characterization of selected peptide variants scored as active reveals that each adopts a threaded lasso conformation; active loop variants applied extracellularly as peptides slow the growth of E. coli and K. pneumoniae. We generate an E. coli strain with a mutation in RNA polymerase that confers resistance to klebsidin and similarly carry out a selection with the klebsidin library. We identify a single variant, klebsidin F9Y, that maintains activity against the resistant E. coli when expressed intracellularly. This finding supports the utility of this method and suggests that comprehensive mutational analysis of lasso peptides can identify unique and potentially improved variants.
Collapse
Affiliation(s)
- Ethan Hills
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Tyler J. Woodward
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States,Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin M. Brandsen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States,Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, United States,Correspondence: Benjamin M. Brandsen, , ph. 402 280-2153
| |
Collapse
|
37
|
Hamry SR, Thibodeaux CJ. Biochemical and biophysical investigation of the HalM2 lanthipeptide synthetase using mass spectrometry. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid emergence of antimicrobial resistance in clinical settings has called for renewed efforts to discover and develop new antimicrobial compounds. Lanthipeptides present a promising, genetically encoded molecular scaffold for the engineering of structurally complex, biologically active peptides. These peptide natural products are constructed by enzymes (lanthipeptide synthetases) with relaxed substrate specificity that iteratively modify the precursor lanthipeptide to generate structures with defined sets of thioether macrocycles. The mechanistic features that guide the maturation of lanthipeptides into their proper, fully modified forms are obscured by the complexity of the multistep maturation and the large size and dynamic structures of the synthetases and precursor peptides. Over the past several years, our lab has been developing a suite of mass spectrometry-based techniques that are ideally suited to untangling the complex reaction sequences and molecular interactions that define lanthipeptide biosynthesis. This review focuses on our development and application of these mass spectrometry-based techniques to investigate the biochemical, kinetic, and biophysical properties of the haloduracin β class II lanthipeptide synthetase, HalM2.
Collapse
Affiliation(s)
- Sally R. Hamry
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
38
|
Bacon K, Menegatti S, Rao BM. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries. Methods Mol Biol 2022; 2491:387-415. [PMID: 35482201 DOI: 10.1007/978-1-0716-2285-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
39
|
Generation of Lasso Peptide-Based ClpP Binders. Int J Mol Sci 2021; 23:ijms23010465. [PMID: 35008890 PMCID: PMC8745299 DOI: 10.3390/ijms23010465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed.
Collapse
|
40
|
Le T, Jeanne Dit Fouque K, Santos-Fernandez M, Navo CD, Jiménez-Osés G, Sarksian R, Fernandez-Lima FA, van der Donk WA. Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. J Am Chem Soc 2021; 143:18733-18743. [PMID: 34724611 DOI: 10.1021/jacs.1c09370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters. However, cyanobacteria engage in combinatorial biosynthesis and encode as many as 80 substrate peptides with highly diverse sequences that are modified by a single lanthionine synthetase into lanthipeptides of different lengths and ring patterns. It is puzzling how a single enzyme could exert control over the cyclization processes of such a wide range of substrates. Here, we used a library of ProcA3.3 precursor peptide variants and show that it is not the enzyme ProcM but rather its substrate sequences that determine the regioselectivity of lanthionine formation. We also demonstrate the utility of trapped ion mobility spectrometry-tandem mass spectrometry (TIMS-MS/MS) as a fast and convenient method to efficiently separate lanthipeptide constitutional isomers, particularly in cases where the isomers cannot be resolved by conventional liquid chromatography. Our data allowed identification of factors that are important for the cyclization outcome, but also showed that there are no easily identifiable predictive rules for all sequences. Our findings provide a platform for future deep learning approaches to allow such prediction of ring patterns of products of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Francisco Alberto Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
King AM, Anderson DA, Glassey E, Segall-Shapiro TH, Zhang Z, Niquille DL, Embree AC, Pratt K, Williams TL, Gordon DB, Voigt CA. Selection for constrained peptides that bind to a single target protein. Nat Commun 2021; 12:6343. [PMID: 34732700 PMCID: PMC8566587 DOI: 10.1038/s41467-021-26350-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards "molecular glues" for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel A Anderson
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas H Segall-Shapiro
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Niquille
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katelin Pratt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Wang M, Fage CD, He Y, Mi J, Yang Y, Li F, An X, Fan H, Song L, Zhu S, Tong Y. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides. Front Bioeng Biotechnol 2021; 9:741364. [PMID: 34631682 PMCID: PMC8498205 DOI: 10.3389/fbioe.2021.741364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.
Collapse
Affiliation(s)
- Mengjiao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Christopher D Fage
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
43
|
Vinogradov AA, Nagano M, Goto Y, Suga H. Site-Specific Nonenzymatic Peptide S/O-Glutamylation Reveals the Extent of Substrate Promiscuity in Glutamate Elimination Domains. J Am Chem Soc 2021; 143:13358-13369. [PMID: 34392675 DOI: 10.1021/jacs.1c06470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Formation of dehydroalanine and dehydrobutyrine residues via tRNA-dependent dehydration of serine and threonine is a key post-translational modification in the biosynthesis of lanthipeptide and thiopeptide RiPPs. The dehydration process involves two reactions, wherein the O-glutamyl Ser/Thr intermediate, accessed by a dedicated enzyme utilizing Glu-tRNAGlu as the acyl donor, is recognized by the second enzyme, referred to as the glutamate elimination domain (ED), which catalyzes the eponymous reaction yielding a dehydroamino acid. Many details of ED catalysis remain unexplored because the scope of available substrates for testing is limited to those that the upstream enzymes can furnish. Here, we report two complementary strategies for direct, nonenzymatic access to diverse ED substrates. We establish that a thiol-thioester exchange reaction between a Cys-containing peptide and an α thioester of glutamic acid leads an S-glutamylated intermediate which can act as a substrate for EDs. Furthermore, we show that the native O-glutamylated substrates can be accessible from S-glutamylated peptides upon a site-specific S-to-O acyl transfer reaction. Combined with flexible in vitro translation utilized for rapid peptide production, these chemistries enabled us to dissect the substrate recognition requirements of three known EDs. Our results establish that EDs are uniquely promiscuous enzymes capable of acting on substrates with arbitrary amino acid sequences and performing retro-Michael reaction beyond the canonical glutamate elimination. To facilitate substrate recruitment, EDs apparently engage in nonspecific hydrophobic interactions with their substrates. Altogether, our results establish the substrate scope of EDs and provide clues to their catalysis.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Anal Bioanal Chem 2021; 413:4815-4824. [PMID: 34105020 DOI: 10.1007/s00216-021-03437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by intramolecular thioether cross-links formed between a dehydrated serine/threonine (dSer/dThr) and a cysteine residue. Prochlorosin 2.8 (Pcn2.8) is a class II lanthipeptide that exhibits a non-overlapping thioether ring pattern, for which no biological activity has been reported yet. The variant Pcn2.8[16RGD] has been shown to bind tightly to the αvβ3 integrin receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate structural signatures for the non-overlapping thioether ring pattern of Pcn2.8. CID experiments on Pcn2.8 yielded bi and yj fragments between the thioether cross-links, evidencing the presence of a non-overlapping thioether ring pattern. ECD experiments of Pcn2.8 showed a significant increase of hydrogen migration events near the residues involved in the thioether rings with a more pronounced effect at the dehydrated residues as compared to the cysteine residues. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P8A], [P11A], [P12A], [P8A/P11A], [P8A/P12A], [P11A/P12A], and [P8A/P11A/P12A] variants), demonstrated that Pcn2.8 adopts cis/trans-conformations at Pro8, Pro11, and Pro12 residues. These observations were complementary to recent NMR findings, for which only the Pro8 residue was evidenced to adopt cis/trans-orientations. This study highlights the analytical power of the TIMS-MS/MS workflow for the structural characterization of lanthipeptides and could be a useful tool in our understanding of the biologically important structural elements that drive the thioether cyclization process.
Collapse
|
46
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
47
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Weerasinghe NW, Habibi Y, Uggowitzer KA, Thibodeaux CJ. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Biochemistry 2021; 60:1506-1519. [PMID: 33887902 DOI: 10.1021/acs.biochem.1c00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These genetically encoded peptides are biosynthesized by multifunctional enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity and catalyze iterative rounds of post-translational modification. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These "biophysical" processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native mass spectrometry coupled to ion mobility (native IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its noncovalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes native IM-MS as a versatile approach for characterizing intermolecular interactions and for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.
Collapse
Affiliation(s)
- Nuwani W Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
49
|
|
50
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|