1
|
Aroeti L, Elbaz N, Faigenbaum-Romm R, Yakovian O, Altuvia Y, Argaman L, Katsowich N, Bejerano-Sagie M, Ravins M, Margalit H, Ben-Yehuda S, Rosenshine I. Formation of a membraneless compartment regulates bacterial virulence. Nat Commun 2025; 16:3834. [PMID: 40268935 PMCID: PMC12019536 DOI: 10.1038/s41467-025-58829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The RNA-binding protein CsrA regulates the expression of hundreds of genes in several bacterial species, thus controlling virulence and other processes. However, the outcome of the CsrA-mRNA interactions is modulated by competing small RNAs and other factors through mechanisms that are only partially understood. Here, we show that CsrA accumulates in a dynamic membraneless compartment in cells of E. coli and other pathogenic species. In addition to CsrA, the compartment contains components of the RNA-degrading complex (degradosome), regulatory small RNAs, and selected mRNAs. Formation of the compartment is associated with a switch between promoting and repressing virulence gene expression by CsrA. We suggest that similar CsrA switches may be widespread in diverse bacteria.
Collapse
Affiliation(s)
- Lior Aroeti
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netanel Elbaz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raya Faigenbaum-Romm
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Oren Yakovian
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Katsowich
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Duan Z, Liao L, Lai T, Yang R, Zhang J, Chen B. Dynamic and intricate regulation by the Csr sRNAs in the Arctic Pseudoalteromonas fuliginea. Commun Biol 2025; 8:369. [PMID: 40044903 PMCID: PMC11882849 DOI: 10.1038/s42003-025-07780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The Csr (Carbon Storage Regulator) system is pivotal in controlling various cellular functions in most bacteria, primarily through the CsrA protein and its antagonistic sRNAs. However, riboregulatory networks are less explored in non-model organisms, particularly those in extreme environments. In this study, we discovered two new sRNAs of the Csr system, Pf2 and Pf3, in the Arctic bacterium Pseudoalteromonas fuliginea BSW20308, along with the previously known Pf1. By studying the impact of these Pf sRNAs on CsrA targetomes and physiological processes, we found a significant influence on various cellular functions and a collective effect on the interaction dynamics between CsrA and RNAs. Furthermore, we identified additional sRNAs that can interact with CsrA and mRNAs. Overall, our results emphasize the growing influence of the Csr system on cellular physiology through intricate sRNA regulation of CsrA, revealing riboregulatory network complexity and significance in non-model organisms.
Collapse
Affiliation(s)
- Zedong Duan
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.
| | - Tingyi Lai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Ruyi Yang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
3
|
Lubrano P, Smollich F, Schramm T, Lorenz E, Alvarado A, Eigenmann SC, Stadelmann A, Thavapalan S, Waffenschmidt N, Glatter T, Hoffmann N, Müller J, Peter S, Drescher K, Link H. Metabolic mutations reduce antibiotic susceptibility of E. coli by pathway-specific bottlenecks. Mol Syst Biol 2025; 21:274-293. [PMID: 39748127 PMCID: PMC11876631 DOI: 10.1038/s44320-024-00084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic variation across pathogenic bacterial strains can impact their susceptibility to antibiotics and promote the evolution of antimicrobial resistance (AMR). However, little is known about how metabolic mutations influence metabolism and which pathways contribute to antibiotic susceptibility. Here, we measured the antibiotic susceptibility of 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins. Across all mutants, we observed modest increases of the minimal inhibitory concentration (twofold to tenfold) without any cases of major resistance. Most mutants that showed reduced susceptibility to either of the two tested antibiotics carried mutations in metabolic genes. The effect of metabolic mutations on antibiotic susceptibility was antibiotic- and pathway-specific: mutations that reduced susceptibility against the β-lactam antibiotic carbenicillin converged on purine nucleotide biosynthesis, those against the aminoglycoside gentamicin converged on the respiratory chain. In addition, metabolic mutations conferred tolerance to carbenicillin by reducing growth rates. These results, along with evidence that metabolic bottlenecks are common among clinical E. coli isolates, highlight the contribution of metabolic mutations for AMR.
Collapse
Affiliation(s)
- Paul Lubrano
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- M3 Research Center, Otfried-Müller-Straße 37, University of Tübingen, 72076, Tübingen, Germany
| | - Fabian Smollich
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- M3 Research Center, Otfried-Müller-Straße 37, University of Tübingen, 72076, Tübingen, Germany
| | - Thorben Schramm
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Elisabeth Lorenz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
| | | | - Amelie Stadelmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- M3 Research Center, Otfried-Müller-Straße 37, University of Tübingen, 72076, Tübingen, Germany
| | - Sevvalli Thavapalan
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- M3 Research Center, Otfried-Müller-Straße 37, University of Tübingen, 72076, Tübingen, Germany
| | - Nils Waffenschmidt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Nadine Hoffmann
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jennifer Müller
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), 72076, Tübingen, Germany
| | - Silke Peter
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), 72076, Tübingen, Germany
| | - Knut Drescher
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany.
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076, Tübingen, Germany.
- M3 Research Center, Otfried-Müller-Straße 37, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Khanduja A, Mohanty D. SProtFP: a machine learning-based method for functional classification of small ORFs in prokaryotes. NAR Genom Bioinform 2025; 7:lqae186. [PMID: 39781515 PMCID: PMC11704790 DOI: 10.1093/nargab/lqae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins. We have also trained a model for identification of small open reading frame (smORF)-encoded antimicrobial peptides (AMPs). Comprehensive benchmarking of SProtFP revealed an average area under the receiver operator curve (ROC-AUC) of 0.92 during 10-fold cross-validation and an ROC-AUC of 0.94 and 0.93 on held-out balanced and imbalanced test sets. Utilizing our method to annotate bacterial isolates from the human gut microbiome, we could identify thousands of remote homologs of known small protein families and assign putative functions to uncharacterized proteins. This highlights the utility of SProtFP for large-scale functional annotation of microbiome datasets, especially in cases where sequence homology is low. SProtFP is freely available at http://www.nii.ac.in/sprotfp.html and can be combined with genome annotation tools such as ProsmORF-pred to uncover the functional repertoire of novel small proteins in bacteria.
Collapse
Affiliation(s)
- Akshay Khanduja
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
Su MS, Dickins B, Kiang FY, Tsai W, Chen Y, Chen J, Wang S, Tsai P, Wu J. Flagellar Assembly Factor FliW2 De-Represses Helicobacter pylori FlaA-Mediated Motility by Allosteric Obstruction of Global Regulator CsrA. Helicobacter 2025; 30:e70019. [PMID: 40079448 PMCID: PMC11905337 DOI: 10.1111/hel.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Helicobacter pylori colonizes the human stomach as a dominant member of the gastric microbiota and constitutively expresses flagellar motility for survival. Carbon storage regulator A (CsrA) is a posttranscriptional global regulator and a critical determinant of H. pylori's motility and pathogenicity. The regulation of H. pylori CsrA is still uncertain although in other species CsrA is reported to be antagonized by small RNAs and proteins. In this study, we attempted to unveil how CsrA is regulated and hypothesized that H. pylori CsrA activity is antagonized by a flagellar assembly factor, FliW2, via protein allosteric obstruction. MATERIALS AND METHODS Multiple sequence comparisons indicated that, along its length and in contrast to fliW1, the fliW2 of H. pylori J99 is conserved. We then generated an isogenic ΔfliW2 strain whose function was characterized using phenotypic and biochemical approaches. We also applied a machine learning approach (AlphaFold2) to predict FliW2-CsrA binding domains and investigated the FliW2-CsrA interaction using pull-down assays and in vivo bacterial two-hybrid systems. RESULTS We observed the reduced expression of major flagellin FlaA and impaired flagellar filaments that attenuated the motility of the ΔfliW2 strain. Furthermore, a direct interaction between FliW2 and CsrA was demonstrated, and a novel region of the C-terminal extension of CsrA was suggested to be crucial for CsrA interacting with FliW2. Based on our AlphaFold2 prediction, this C-terminal region of FliW2-CsrA interaction does not overlap with CsrA's N-terminal RNA binding domain, implying that FliW2 allosterically antagonizes CsrA activity and restricts CsrA's binding to flaA mRNAs. CONCLUSIONS Our data points to novel regulatory roles that the H. pylori flagellar assembly factor FliW2 has in obstructing CsrA activity, and thus FliW2 may indirectly antagonize CsrA's regulation of flaA mRNA processing and translation. Our findings reveal a new regulatory mechanism of flagellar motility in H. pylori.
Collapse
Affiliation(s)
- Marcia Shu‐Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health SciencesAsia UniversityTaichungTaiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Benjamin Dickins
- Department of BiosciencesNottingham Trent UniversityNottinghamUK
| | - Fang Yie Kiang
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei‐Jiun Tsai
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health SciencesAsia UniversityTaichungTaiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
| |
Collapse
|
6
|
Lukasiewicz AJ, Leistra AN, Hoefner L, Monzon E, Gode CJ, Zorn BT, Janssen KH, Yahr TL, Wolfgang MC, Contreras LM. Thermodynamic modeling of RsmA - mRNA interactions capture novel direct binding across the Pseudomonas aeruginosa transcriptome. Front Mol Biosci 2025; 12:1493891. [PMID: 40051501 PMCID: PMC11882435 DOI: 10.3389/fmolb.2025.1493891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its survivability to numerous sensing and signaling pathways; conferring fitness due to speed of response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene expression in response to the environment. The conserved post-transcriptional regulator RsmA is involved in regulating translation of genes involved in pathways that contribute to virulence, metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory landscape of RsmA have estimated a target pool of approximately 500 genes; however, these approaches have been limited to a narrow range of growth phase, strain, and media conditions. Computational modeling presents a condition-independent approach to generating predictions for binding between the RsmA protein and highest affinity mRNAs. In this study, we improve upon a two-state thermodynamic model to predict the likelihood of RsmA binding to the 5' UTR sequence of genes present in the PA genome. Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457 novel mRNA targets. We then perform GO term enrichment tests on our predictions that reveal significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing, biofilm formation, and two-component signaling pathways were represented in KEGG enrichment analysis. We confirm binding predictions using in vitro binding assays, and regulatory effects using in vivo translational reporters. These reveal RsmA binding and regulation of a broader number of genes not previously reported. An important new observation of this work is the direct regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and the Type IV Secretion system, such as rsaL and mvaT. Our study demonstrates the utility of thermodynamic modeling for predicting interactions independent of complex and environmentally-sensitive systems, specifically for profiling the post-transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both supports our model and expands upon the pool of characterized target genes in PA. Overall, our findings demonstrate that a modeling approach can differentiate direct from indirect binding interactions and predict specific sites of binding for this global regulatory protein, thus broadening our understanding of the role of RsmA regulation in this relevant pathogen.
Collapse
Affiliation(s)
- Alexandra J. Lukasiewicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Lily Hoefner
- Department of Biology, The University of Texas at Austin, Austin, TX, United States
| | - Erika Monzon
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Cindy J. Gode
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kayley H. Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
- Bellin College, Green Bay, WI, United States
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lv X, Zhang Q, Chen J, Cui S, Yang B. Use of proteomics to elucidate characteristics of Cronobacter sakazakii under mild heat stress. Int J Food Microbiol 2024; 425:110885. [PMID: 39178661 DOI: 10.1016/j.ijfoodmicro.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Cronobacter sakazakii is an opportunistic pathogen known for causing severe diseases. Mild heat treatment is commonly used in food processing, however, the pathogenic characteristics and underlying mechanisms of Cronobacter sakazakii strains remain poorly understood. In this study, we found that mild heat stress (MHS) at 52 °C can induce several deleterious effects in Cronobacter sakazakii, including damage to the cell wall, genomic DNA breakage, and misfolding of cytoplasmic proteins. These conditions lead to a decreased survival ability under acid, desiccation, and osmotic stress; a reduction in biofilm formation; and diminished motility. Notably, surviving C. sakazakii cells retain their pathogenicity, causing significant intestinal damage in newborn mice. This damage is characterized by epithelial sloughing and disruption of the intestinal structure. Tandem mass tag (TMT)-based proteomics identified 736 proteins with differential abundance across C. sakazakii strains subjected to mild heat stress, highlighting adaptations in biofilm formation, motility, and stress tolerance. Key regulatory changes were observed in phospholipid metabolism and protein synthesis, which underpin this complex stress response. This data illustrates a sophisticated balance between environmental adaptability and pathogenic potential. The metabolic and pathogenic responses of C. sakazakii to mild heat stress are closely linked to its phospholipid metabolism and the production of secretory proteins, both crucial for its virulence and reliant on membrane transport. This complex interplay emphasizes the need to understand these mechanisms to develop effective control strategies.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
9
|
Liu M, Jin Z, Xiang Q, He H, Huang Y, Long M, Wu J, Zhi Huang C, Mao C, Zuo H. Rational Design of Untranslated Regions to Enhance Gene Expression. J Mol Biol 2024; 436:168804. [PMID: 39326490 DOI: 10.1016/j.jmb.2024.168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
How to improve gene expression by optimizing mRNA structures is a crucial question for various medical and biotechnological applications. Previous efforts focus largely on investigation of the 5' UTR hairpin structures. In this study, we present a rational strategy that enhances mRNA stability and translation by engineering both the 5' and 3' UTR sequences. We have successfully demonstrated this strategy using green fluorescent protein (GFP) as a model in Escherichia coli and across different expression vectors. We further validated it with luciferase and Plasmodium falciparum lactate dehydrogenase (PfLDH). To elucidate the underlying mechanism, we have quantitatively analyzed both protein, mRNA levels and half-life time. We have identified several key aspects of UTRs that significantly influence mRNA stability and protein expression in our system: (1) The optimal length of the single-stranded spacer between the stabilizer hairpin and ribosome binding site (RBS) in the 5' UTR is 25-30 nucleotide (nt) long. An optimal 32% GC content in the spacer yielded the highest levels of GFP protein production. (2) The insertion of a homodimerdizable, G-quadruplex structure containing RNA aptamer, "Corn", in the 3' UTR markedly increased the protein expression. Our findings indicated that the carefully engineered 5' UTRs and 3' UTRs significantly boosted gene expression. Specifically, the inclusion of 5 × Corn in the 3' UTR appeared to facilitate the local aggregation of mRNA, leading to the formation of mRNA condensates. Aside from shedding light on the regulation of mRNA stability and expression, this study is expected to substantially increase biological protein production.
Collapse
Affiliation(s)
- Mingchun Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhuoer Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Xiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huawei He
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengfei Long
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Simmons TR, Partipilo G, Buchser R, Stankes AC, Srivastava R, Chiu D, Keitz BK, Contreras LM. Rewiring native post-transcriptional global regulators to achieve designer, multi-layered genetic circuits. Nat Commun 2024; 15:8752. [PMID: 39384772 PMCID: PMC11479628 DOI: 10.1038/s41467-024-52976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
As synthetic biology expands, creating "drag-and-drop" regulatory tools that can achieve diverse regulatory outcomes are paramount. Herein, we develop a approach for engineering complex post-transcriptional control by rewiring the Carbon Storage Regulatory (Csr) Network of Escherichia coli. We co-opt native interactions of the Csr Network to establish post-transcriptional logic gates and achieve complex bacterial regulation. First, we rationally engineer RNA-protein interactions to create a genetic toolbox of 12 BUFFER Gates that achieves a 15-fold range of expression. Subsequently, we develop a Csr-regulated NOT Gate by integrating a cognate 5' UTR that is natively Csr-activated into our platform. We then deploy the BUFFER and NOT gates to build a bi-directional regulator, two input Boolean Logic gates OR, NOR, AND and NAND and a pulse-generating circuit. Last, we port our Csr-regulated BUFFER Gate into three industrially relevant bacteria simply by leveraging the conserved Csr Network in each species.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anna C Stankes
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Gifford I, Suárez GA, Barrick JE. Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators. PLoS Genet 2024; 20:e1011306. [PMID: 39283914 PMCID: PMC11426457 DOI: 10.1371/journal.pgen.1011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/26/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.
Collapse
Affiliation(s)
- Isaac Gifford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
12
|
Monti M, Herman R, Mancini L, Capitanchik C, Davey K, Dawson CS, Ule J, Thomas GH, Willis AE, Lilley KS, Villanueva E. Interrogation of RNA-protein interaction dynamics in bacterial growth. Mol Syst Biol 2024; 20:573-589. [PMID: 38531971 PMCID: PMC11066096 DOI: 10.1038/s44320-024-00031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Characterising RNA-protein interaction dynamics is fundamental to understand how bacteria respond to their environment. In this study, we have analysed the dynamics of 91% of the Escherichia coli expressed proteome and the RNA-interaction properties of 271 RNA-binding proteins (RBPs) at different growth phases. We find that 68% of RBPs differentially bind RNA across growth phases and characterise 17 previously unannotated proteins as bacterial RBPs including YfiF, a ncRNA-binding protein. While these new RBPs are mostly present in Proteobacteria, two of them are orthologs of human mitochondrial proteins associated with rare metabolic disorders. Moreover, we reveal novel RBP functions for proteins such as the chaperone HtpG, a new stationary phase tRNA-binding protein. For the first time, the dynamics of the bacterial RBPome have been interrogated, showcasing how this approach can reveal the function of uncharacterised proteins and identify critical RNA-protein interactions for cell growth which could inform new antimicrobial therapies.
Collapse
Affiliation(s)
- Mie Monti
- MRC Toxicology Unit, University of Cambridge, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Reyme Herman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Leonardo Mancini
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Charlotte Capitanchik
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- UK Dementia Research Institute at King's College London, The Wohl, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Karen Davey
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- UK Dementia Research Institute at King's College London, The Wohl, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Charlotte S Dawson
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- UK Dementia Research Institute at King's College London, The Wohl, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, University of Cambridge, CB2 1QR, Cambridge, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, Cambridge, UK.
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, Cambridge, UK.
| |
Collapse
|
13
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Rojano-Nisimura AM, Grismore KB, Ruzek JS, Avila JL, Contreras LM. The Post-Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with Stress-Response Regulatory Hubs: The EvgA and AcnA Cases. Microorganisms 2024; 12:636. [PMID: 38674581 PMCID: PMC11052181 DOI: 10.3390/microorganisms12040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Global rewiring of bacterial gene expressions in response to environmental cues is mediated by regulatory proteins such as the CsrA global regulator from E. coli. Several direct mRNA and sRNA targets of this protein have been identified; however, high-throughput studies suggest an expanded RNA targetome for this protein. In this work, we demonstrate that CsrA can extend its network by directly binding and regulating the evgA and acnA transcripts, encoding for regulatory proteins. CsrA represses EvgA and AcnA expression and disrupting the CsrA binding sites of evgA and acnA, results in broader gene expression changes to stress response networks. Specifically, altering CsrA-evgA binding impacts the genes related to acidic stress adaptation, and disrupting the CsrA-acnA interaction affects the genes involved in metal-induced oxidative stress responses. We show that these interactions are biologically relevant, as evidenced by the improved tolerance of evgA and acnA genomic mutants depleted of CsrA binding sites when challenged with acid and metal ions, respectively. We conclude that EvgA and AcnA are intermediate regulatory hubs through which CsrA can expand its regulatory role. The indirect CsrA regulation of gene networks coordinated by EvgA and AcnA likely contributes to optimizing cellular resources to promote exponential growth in the absence of stress.
Collapse
Affiliation(s)
| | - Kobe B. Grismore
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Josie S. Ruzek
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Jacqueline L. Avila
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Lydia M. Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| |
Collapse
|
15
|
Zheng J, Zuo G, Zhou Z, Shi Z, Guo H, Sun Z, Feng Y. Indole inhibited the expression of csrA gene in Escherichia coli. J GEN APPL MICROBIOL 2024; 69:239-248. [PMID: 37423745 DOI: 10.2323/jgam.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
- School of Life Science, Langfang Normal University
| | - Guocai Zuo
- School of Life Science, Langfang Normal University
| | - Zhiguo Zhou
- School of Life Science, Langfang Normal University
| | - Zhenxia Shi
- School of Life Science, Langfang Normal University
| | - Huiying Guo
- School of Life Science, Langfang Normal University
| | - Zemin Sun
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
16
|
Yang Y, Guo S, Hong CJ, Liang ZX, Ho CL. Initial cyclic-di-GMP upregulation triggers sporadic cellular expansion leading to improved cellular survival. Biotechnol J 2024; 19:e2300542. [PMID: 38403404 DOI: 10.1002/biot.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation.
Collapse
Affiliation(s)
- Yongshuai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Siyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Can-Jian Hong
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhao-Xun Liang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
17
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
18
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA selectively modulates sRNA-mRNA regulator outcomes. Front Mol Biosci 2023; 10:1249528. [PMID: 38116378 PMCID: PMC10729762 DOI: 10.3389/fmolb.2023.1249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
19
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Hua J, Hua P, Qin K. Highly fluorescent N, F co-doped carbon dots with tunable light emission for multicolor bio-labeling and antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132331. [PMID: 37604034 DOI: 10.1016/j.jhazmat.2023.132331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Carbon dots (CDs) have emerged as potential biomaterials for bioimaging and antimicrobial applications. However, the lack of tunable long-wavelength emission performance and imprecise antibacterial mechanism limit their practical application. Thus, developing versatile CDs that combine outstanding optical performance and excellent antibacterial activity is of great practical significance. Herein, we prepared a novel nitrogen and fluorine co-doped CDs (N, F-CDs) from o-phenylenediamine and 2,3,5,6-tetrafluoroterephthalic acid, which exhibit high fluorescence quantum yield of 52.2%, large Stokes shift of 112 nm, as well tunable multicolor emission light from blue to red region. Thanks to the high biocompatibility and excellent photostability, the N, F-CDs were successfully implemented to multicolor biolabeling of mammalian cells, protozoan cells and plant cells. Moreover, the negatively charged N, F-CDs hold inherent efficient antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). By thoroughly studying the underlying antibacterial mechanisms at the molecular level through real-time quantitative PCR assay, we found the expression of related genes was notably down-regulated, further demonstrated that N, F-CDs against two bacterial strains had distinct target pathways. Our work provides a new reference for developing highly fluorescent multicolor CDs, and may facilitate the design and application of CDs-based nanomaterials in biological environment.
Collapse
Affiliation(s)
- Jianhao Hua
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Peng Hua
- Third People's Hospital of Yunnan Province, Kunming, Yunnan Province, 650011, China
| | - Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
21
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
22
|
Meng YY, Peng JH, Qian J, Fei FL, Guo YY, Pan YJ, Zhao Y, Liu HQ. The two-component system expression patterns and immune regulatory mechanism of Vibrio parahaemolyticus with different genotypes at the early stage of infection in THP-1 cells. mSystems 2023; 8:e0023723. [PMID: 37432027 PMCID: PMC10469919 DOI: 10.1128/msystems.00237-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Vibrio parahaemolyticus must endure various challenging circumstances while being swallowed by phagocytes of the innate immune system. Moreover, bacteria should recognize and react to environmental signals quickly in host cells. Two-component system (TCS) is an important way for bacteria to perceive external environmental signals and transmit them to the interior to trigger the associated regulatory mechanism. However, the regulatory function of V. parahaemolyticus TCS in innate immune cells is unclear. Here, the expression patterns of TCS in V. parahaemolyticus-infected THP-1 cell-derived macrophages at the early stage were studied for the first time. Based on protein-protein interaction network analysis, we mined and analyzed seven critical TCS genes with excellent research value in the V. parahaemolyticus regulating macrophages, as shown below. VP1503, VP1502, VPA0021, and VPA0182 could regulate the ATP-binding-cassette (ABC) transport system. VP1735, uvrY, and peuR might interact with thermostable hemolysin proteins, DNA cleavage-related proteins, and TonB-dependent siderophore enterobactin receptor, respectively, which may assist V. parahaemolyticus in infected macrophages. Subsequently, the potential immune escape pathways of V. parahaemolyticus regulating macrophages were explored by RNA-seq. The results showed that V. parahaemolyticus might infect macrophages by controlling apoptosis, actin cytoskeleton, and cytokines. In addition, we found that the TCS (peuS/R) could enhance the toxicity of V. parahaemolyticus to macrophages and might contribute to the activation of macrophage apoptosis. IMPORTANCE This study could offer crucial new insights into the pathogenicity of V. parahaemolyticus without tdh and trh genes. In addition, we also provided a novel direction of inquiry into the pathogenic mechanism of V. parahaemolyticus and suggested several TCS key genes that may assist V. parahaemolyticus in innate immune regulation and interaction.
Collapse
Affiliation(s)
- Yuan-Yuan Meng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Hui Peng
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, China
| | - Jiang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Fu-Lin Fei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Ying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Hai-Quan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
23
|
Nava-Galeana J, Núñez C, Bustamante VH. Proteomic analysis reveals the global effect of the BarA/SirA-Csr regulatory cascade in Salmonella Typhimurium grown in conditions that favor the expression of invasion genes. J Proteomics 2023; 286:104960. [PMID: 37451358 DOI: 10.1016/j.jprot.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In many bacteria, the BarA/SirA and Csr regulatory systems control expression of genes encoding a wide variety of cellular functions. The BarA/SirA two-component system induces the expression of CsrB and CsrC, two small non-coding RNAs that sequester CsrA, a protein that binds to target mRNAs and thus negatively or positively regulates their expression. BarA/SirA and CsrB/C induce expression of the Salmonella Pathogenicity Island 1 (SPI-1) genes required for Salmonella invasion of host cells. To further investigate the regulatory role of the BarA/SirA and Csr systems in Salmonella, we performed LC-MS/MS proteomic analysis using the WT S. Typhimurium strain and its derived ΔsirA and ΔcsrB ΔcsrC mutants grown in SPI-1-inducing conditions. The expression of 164 proteins with a wide diversity, or unknown, functions was significantly affected positively or negatively by the absence of SirA and/or CsrB/C. Interestingly, 19 proteins were identified as new targets for SirA-CsrB/C. Our results support that SirA and CsrB/C act in a cascade fashion to regulate gene expression in S. Typhimurium in the conditions tested. Notably, our results show that SirA-CsrB/C-CsrA controls expression of proteins required for the replication of Salmonella in the intestinal lumen, in an opposite way to its control exerted on the SPI-1 proteins. SIGNIFICANCE: The BarA/SirA and Csr global regulatory systems control a wide range of cellular processes, including the expression of virulence genes. For instance, in Salmonella, BarA/SirA and CsrB/C positively regulate expression of the SPI-1 genes, which are required for Salmonella invasion to host cells. In this study, by performing a proteomic analysis, we identified 164 proteins whose expression was positively or negatively controlled by SirA and CsrB/C in SPI-1-inducing conditions, including 19 new possible targets of these systems. Our results support the action of SirA and CsrB/C in a cascade fashion to control different cellular processes in Salmonella. Interestingly, our data indicate that SirA-CsrB/C-CsrA controls inversely the expression of proteins required for invasion of the intestinal epithelium and for replication in the intestinal lumen, which suggests a role for this regulatory cascade as a molecular switch for Salmonella virulence. Thus, our study further expands the insight into the regulatory mechanisms governing the virulence and physiology of an important pathogen.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
24
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
25
|
Ferrara S, Brignoli T, Bertoni G. Little reason to call them small noncoding RNAs. Front Microbiol 2023; 14:1191166. [PMID: 37455713 PMCID: PMC10339803 DOI: 10.3389/fmicb.2023.1191166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Hundreds of different species of small RNAs can populate a bacterial cell. This small transcriptome contains important information for the adaptation of cellular physiology to environmental changes. Underlying cellular networks involving small RNAs are RNA-RNA and RNA-protein interactions, which are often intertwined. In addition, small RNAs can function as mRNAs. In general, small RNAs are referred to as noncoding because very few are known to contain translated open reading frames. In this article, we intend to highlight that the number of small RNAs that fall within the set of translated RNAs is bound to increase. In addition, we aim to emphasize that the dynamics of the small transcriptome involve different functional codes, not just the genetic code. Therefore, since the role of small RNAs is always code-driven, we believe that there is little reason to continue calling them small noncoding RNAs.
Collapse
|
26
|
Silva-Rohwer AR, Held K, Yakhnin H, Babitzke P, Vadyvaloo V. CsrA-Mediated Translational Activation of the hmsE mRNA Enhances HmsD-Dependent C-di-GMP-Enabled Biofilm Production in Yersinia pestis. J Bacteriol 2023; 205:e0010523. [PMID: 37191545 PMCID: PMC10294631 DOI: 10.1128/jb.00105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
The plague bacterium, Yersinia pestis, forms a biofilm-mediated blockage in the flea foregut that enhances its transmission by fleabite. Biofilm formation is positively controlled by cyclic di-GMP (c-di-GMP), which is synthesized by the diguanylate cyclases (DGC), HmsD and HmsT. While HmsD primarily promotes biofilm-mediated blockage of fleas, HmsT plays a more minor role in this process. HmsD is a component of the HmsCDE tripartite signaling system. HmsC and HmsE posttranslationally inhibit or activate HmsD, respectively. HmsT-dependent c-di-GMP levels and biofilm formation are positively regulated by the RNA-binding protein CsrA. In this study we determined whether CsrA positively regulates HmsD-dependent biofilm formation through interactions with the hmsE mRNA. Gel mobility shift assays determined that CsrA binds specifically to the hmsE transcript. RNase T1 footprint assays identified a single CsrA binding site and CsrA-induced structural changes in the hmsE leader region. Translational activation of the hmsE mRNA was confirmed in vivo using plasmid-encoded inducible translational fusion reporters and by HmsE protein expression studies. Furthermore, mutation of the CsrA binding site in the hmsE transcript significantly reduced HmsD-dependent biofilm formation. These results suggest that CsrA binding leads to structural changes in the hmsE mRNA that enhance its translation to enable increased HmsD-dependent biofilm formation. Given the requisite function of HmsD in biofilm-mediated flea blockage, this CsrA-dependent increase in HmsD activity underscores that complex and conditionally defined modulation of c-di-GMP synthesis within the flea gut is required for Y. pestis transmission. IMPORTANCE Mutations enhancing c-di-GMP biosynthesis drove the evolution of Y. pestis to flea-borne transmissibility. c-di-GMP-dependent biofilm-mediated blockage of the flea foregut enables regurgitative transmission of Y. pestis by fleabite. The Y. pestis diguanylate cyclases (DGC), HmsT and HmsD, which synthesize c-di-GMP, play significant roles in transmission. Several regulatory proteins involved in environmental sensing, as well as signal transduction and response regulation, tightly control DGC function. An example is CsrA, a global posttranscriptional regulator that modulates carbon metabolism and biofilm formation. CsrA integrates alternative carbon usage metabolism cues to activate c-di-GMP biosynthesis through HmsT. Here, we demonstrated that CsrA additionally activates hmsE translation to promote c-di-GMP biosynthesis through HmsD. This emphasizes that a highly evolved regulatory network controls c-di-GMP synthesis and Y. pestis transmission.
Collapse
Affiliation(s)
- Amelia R. Silva-Rohwer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Kiara Held
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Hauke M, Metz F, Rapp J, Faass L, Bats SH, Radziej S, Link H, Eisenreich W, Josenhans C. Helicobacter pylori Modulates Heptose Metabolite Biosynthesis and Heptose-Dependent Innate Immune Host Cell Activation by Multiple Mechanisms. Microbiol Spectr 2023; 11:e0313222. [PMID: 37129481 PMCID: PMC10269868 DOI: 10.1128/spectrum.03132-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Heptose metabolites including ADP-d-glycero-β-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as β-d-ADP-heptose and β-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Felix Metz
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Johanna Rapp
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Larissa Faass
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Simon H. Bats
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Sandra Radziej
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| |
Collapse
|
28
|
Contreras FU, Camacho MI, Pannuri A, Romeo T, Alvarez AF, Georgellis D. Spatiotemporal regulation of the BarA/UvrY two-component signaling system. J Biol Chem 2023:104835. [PMID: 37201582 DOI: 10.1016/j.jbc.2023.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
The BarA/UvrY two-component signal transduction system mediates adaptive responses of Escherichia coli to changes in growth stage. At late exponential growth phase, the BarA sensor kinase auto-phosphorylates and transphosphorylates UvrY, which activates transcription of the CsrB and CsrC noncoding RNAs. CsrB and CsrC, in turn, sequester and antagonize the RNA binding protein CsrA, which post-transcriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that, during stationary phase of growth, the HflKC complex recruits BarA to the poles of the cells, and silences its kinase activity. Moreover, we show that, during the exponential phase of growth, CsrA inhibits hflK and hflC expression, thereby enabling BarA activation upon encountering its stimulus. Thus, in addition to temporal control of BarA activity, spatial regulation is demonstrated.
Collapse
Affiliation(s)
- Fernanda Urias Contreras
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | - Martha I Camacho
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | - Archana Pannuri
- Department of Microbiology and Cell Science, PO Box 110700, University of Florida, Gainesville, FL 32611-0700, USA
| | | | - Adrian F Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México D.F., México.
| |
Collapse
|
29
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA Shows Selective Regulation of sRNA-mRNA Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534774. [PMID: 37034808 PMCID: PMC10081199 DOI: 10.1101/2023.03.29.534774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
30
|
Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae. mBio 2023; 14:e0309322. [PMID: 36598194 PMCID: PMC9973317 DOI: 10.1128/mbio.03093-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.
Collapse
|
31
|
Kurniyati K, Chang Y, Guo W, Liu J, Malkowski MG, Li C. Anti-σ 28 Factor FlgM Regulates Flagellin Gene Expression and Flagellar Polarity of Treponema denticola. J Bacteriol 2023; 205:e0046322. [PMID: 36715541 PMCID: PMC9945498 DOI: 10.1128/jb.00463-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
FlgM, an antagonist of FliA (also known as σ28), inhibits transcription of bacterial class 3 flagellar genes. It does so primarily through binding to free σ28 to prevent it from forming a complex with core RNA polymerase. We recently identified an FliA homolog (FliATd) in the oral spirochete Treponema denticola; however, its antagonist FlgM remained uncharacterized. Herein, we provide several lines of evidence that TDE0201 functions as an antagonist of FliATd. TDE0201 is structurally similar to FlgM proteins, although its sequence is not conserved. Heterologous expression of TDE0201 in Escherichia coli inhibits its flagellin gene expression and motility. Biochemical and mutational analyses demonstrate that TDE0201 binds to FliATd and prevents it from binding to the σ28-dependent promoter. Deletions of flgM genes typically enhance bacterial class 3 flagellar gene expression; however, deletion of TDE0201 has an opposite effect (e.g., the mutant has a reduced level of flagellins). Follow-up studies revealed that deletion of TDE0201 leads to FliATd turnover, which in turn impairs the expression of flagellin genes. Swimming plate, cell tracking, and cryo-electron tomography analyses further disclosed that deletion of TDE0201 impairs spirochete motility and alters flagellar number and polarity: i.e., instead of having bipolar flagella, the mutant has flagella only at one end of cells. Collectively, these results indicate that TDE0201 is a FlgM homolog but acts differently from its counterparts in other bacteria. IMPORTANCE Spirochetes are a group of bacteria that cause several human diseases. A unique aspect of spirochetes is that they have bipolar periplasmic flagella (PFs), which bestow on the spirochetes a unique spiral shape and distinct swimming behaviors. While the structure and function of PFs have been extensively studied in spirochetes, the molecular mechanism that regulates the PFs' morphogenesis and assembly is poorly understood. In this report, FlgM, an anti-σ28 factor, is identified and functionally characterized in the oral spirochete Treponema denticola. Our results show that FlgM regulates the number and polarity of PFs via a unique mechanism. Identification of FliA and FlgM in T. denticola sets a benchmark to investigate their roles in other spirochetes.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Wen J, Liao L, Duan Z, Su S, Zhang J, Chen B. Identification and Regulatory Roles of a New Csr Small RNA from Arctic Pseudoalteromonas fuliginea BSW20308 in Temperature Responses. Microbiol Spectr 2023; 11:e0409422. [PMID: 36625662 PMCID: PMC9927453 DOI: 10.1128/spectrum.04094-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Small RNAs (sRNAs) play a very important role in gene regulation at the posttranscriptional level. However, sRNAs from nonmodel microorganisms, extremophiles in particular, have been rarely explored. We discovered a putative sRNA, termed Pf1 sRNA, in Pseudoalteromonas fuliginea BSW20308 isolated from the polar regions in our previous work. In this study, we identified the sRNA and investigated its regulatory role in gene expression under different temperatures. Pf1 sRNA was confirmed to be a new member of the CsrB family but has little sequence similarity with Escherichia coli CsrB. However, Pf1 sRNA was able to bind to CsrA from E. coli and P. fuliginea BSW20308 to regulate glycogen synthesis. The Pf1 sRNA knockout strain (ΔPf1) affected motility, fitness, and global gene expression in transcriptomes and proteomes at 4°C and 32°C. Genes related to carbon metabolism, amino acid metabolism, salinity tolerance, antibiotic resistance, oxidative stress, motility, chemotaxis, biofilm, and secretion systems were differentially expressed in the wild-type strain and the ΔPf1 mutant. Our study suggested that Pf1 sRNA might play an important role in response to environmental changes by regulating global gene expression. Specific targets of the Pf1 sRNA-CsrA system were tentatively proposed, such as genes involved in the type VI secretion system, TonB-dependent receptors, and response regulators, but most of them have an unknown function. Since this is the first study of CsrB family sRNA in Pseudoalteromonas and microbes from the polar regions, it provides a novel insight at the posttranscriptional level into the responses and adaptation to temperature changes in bacteria from extreme environments. This study also sheds light on the evolution of sRNA in extreme environments and expands the bacterial sRNA database. IMPORTANCE Previous research on microbial temperature adaptation has focused primarily on functional genes, with little attention paid to posttranscriptional regulation. Small RNAs, the major posttranscriptional modulators of gene expression, are greatly underexplored, especially in nonpathogenic and nonmodel microorganisms. In this study, we verified the first Csr sRNA, named Pf1 sRNA, from Pseudoalteromonas, a model genus for studying cold adaptation. We revealed that Pf1 sRNA played an important role in global regulation and was indispensable in improving fitness. This study provided us a comprehensive view of sRNAs from Pseudoalteromonas and expanded our understanding of bacterial sRNAs from extreme environments.
Collapse
Affiliation(s)
- Jiao Wen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Zedong Duan
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Shiyuan Su
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
33
|
Ormazábal A, Pierdominici-Sottile G, Palma J. Recognition and Binding of RsmE to an AGGAC Motif of RsmZ: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6614-6627. [PMID: 35470666 DOI: 10.1021/acs.jcim.2c00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CsrA/RsmE is a post-transcriptional regulator protein widely distributed in bacteria. It impedes the expression of target mRNAs by attaching their 5' untranslated region. The translation is restored by small, noncoding RNAs that sequester CsrA/RsmE acting as sponges. In both cases, the protein recognizes and attaches to specific AGGAX and AXGGAX motifs, where X refers to any nucleotide. RsmZ of Pseudomonas protegens is one of these small RNAs. The structures of some of its complexes with RsmE were disclosed a few years ago. We have used umbrella sampling simulations to force the unbinding of RsmE from the AGGAC motif located in the single-stranded region sited between stem loops 2 and 3 of RsmZ. The calculations unveiled the identity of the main residues and nucleotides involved in the process. They also showed that the region adopts a hairpin-like conformation during the initial stages of the binding. The ability to acquire this conformation requires that the region has a length of at least nine nucleotides. Besides, we performed standard molecular dynamics simulations of the isolated fragments, analyzed their typical conformations, and characterized their movements. This analysis revealed that the free molecules oscillate along specific collective coordinates that facilitate the initial stages of the binding. The results strongly suggest that the flexibility of the single-stranded region of RsmZ crucially affects the ability of its binding motif to catch RsmE.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| |
Collapse
|
34
|
Wei G, Li S, Ye S, Wang Z, Zarringhalam K, He J, Wang W, Shao Z. High-Resolution Small RNAs Landscape Provides Insights into Alkane Adaptation in the Marine Alkane-Degrader Alcanivorax dieselolei B-5. Int J Mol Sci 2022; 23:ijms232415995. [PMID: 36555635 PMCID: PMC9788540 DOI: 10.3390/ijms232415995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.
Collapse
Affiliation(s)
- Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Sujie Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Correspondence: (W.W.); (Z.S.)
| | - Zongze Shao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (W.W.); (Z.S.)
| |
Collapse
|
35
|
Raad N, Tandon D, Hapfelmeier S, Polacek N. The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence. Nucleic Acids Res 2022; 50:11858-11875. [PMID: 36354005 PMCID: PMC9723502 DOI: 10.1093/nar/gkac1025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Bacterial pathogens employ a plethora of virulence factors for host invasion, and their use is tightly regulated to maximize infection efficiency and manage resources in a nutrient-limited environment. Here we show that during Escherichia coli stationary phase the 3' UTR-derived small non-coding RNA FimR2 regulates fimbrial and flagellar biosynthesis at the post-transcriptional level, leading to biofilm formation as the dominant mode of survival under conditions of nutrient depletion. FimR2 interacts with the translational regulator CsrA, antagonizing its functions and firmly tightening control over motility and biofilm formation. Generated through RNase E cleavage, FimR2 regulates stationary phase biology by fine-tuning target mRNA levels independently of the chaperones Hfq and ProQ. The Salmonella enterica orthologue of FimR2 induces effector protein secretion by the type III secretion system and stimulates infection, thus linking the sRNA to virulence. This work reveals the importance of bacterial sRNAs in modulating various aspects of bacterial physiology including stationary phase and virulence.
Collapse
Affiliation(s)
- Nicole Raad
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland
| | - Disha Tandon
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Norbert Polacek
- To whom correspondence should be addressed. Tel: +41 31 684 43 20;
| |
Collapse
|
36
|
Chihara K, Gerovac M, Hör J, Vogel J. Global profiling of the RNA and protein complexes of Escherichia coli by size exclusion chromatography followed by RNA sequencing and mass spectrometry (SEC-seq). RNA (NEW YORK, N.Y.) 2022; 29:rna.079439.122. [PMID: 36328526 PMCID: PMC9808575 DOI: 10.1261/rna.079439.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.
Collapse
Affiliation(s)
- Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | | | - Jens Hör
- Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
37
|
Pan Y, Huo F, Kang M, Liu B, Wu M, Pei D. Alternative splicing of HSPA12A pre-RNA by SRSF11 contributes to metastasis potential of colorectal cancer. Clin Transl Med 2022; 12:e1113. [PMID: 36394206 PMCID: PMC9670187 DOI: 10.1002/ctm2.1113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dysregulation of alternative splicing (AS) induced by serine/arginine-rich proteins has recently been linked to cancer metastasis. Nonetheless, as a member of the serine/arginine-rich protein family, the involvement of SRSF11 in colorectal cancer (CRC) is unknown. METHODS The TCGA dataset and clinical samples were used to assess SRSF11 expression levels in CRC. For SRSF11, functional experiments were conducted both in vitro and in vivo. RNA-seq technology was used to analyze and screen SRSF11-triggered AS events, which were then confirmed by in vivo UV crosslinking and immunoprecipitation (CLIP) and mini-gene reporter assays. Jalview software was used to determine the preferential binding motif with relation to exon skipping (ES) events. Furthermore, coimmunoprecipitation (Co-IP) and Phospho-tag SDS-PAGE experiments were used to investigate PAK5-mediated phosphorylation regulation on SRSF11, and in vitro kinase experiments validated the interaction. RESULTS In CRC, SRSF11 was discovered to be overexpressed and associated with a poor prognosis. And SRSF11 played a pro-metastatic role in vitro and in vivo. By screening SRSF11-regulated AS events, we identified the binding motif of SRSF11-triggered splicing-switching of HSPA12A AS, which specifically regulated HSPA12A AS by directly binding to a motif in exon 2. Mechanistically, the HSPA12A transcript with exon 2 retention increased N-cadherin expression by promoting RNA stability. Furthermore, the oncogenic kinase PAK5 phosphorylated SRSF11 at serine 287, protecting it from ubiquitination degradation. CONCLUSIONS SRSF11 exerts pro-metastatic effects in CRC by inhibiting the AS of HSPA12A pre-RNA. Our findings point to SRSF11-regulated HSPA12A splicing as a novel relationship between SRSF11-regulated splicing and CRC metastasis and suggest a PAK5/SRSF11/HSPA12A axis as a potential therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Yao‐Jie Pan
- Laboratory of Clinical and Experimental PathologyXuzhou Medical UniversityXuzhouChina
| | - Fu‐Chun Huo
- Laboratory of Clinical and Experimental PathologyXuzhou Medical UniversityXuzhouChina
| | - Meng‐Jie Kang
- Laboratory of Clinical and Experimental PathologyXuzhou Medical UniversityXuzhouChina
| | - Bo‐Wen Liu
- Department of General SurgeryXuzhou Medical UniversityXuzhouChina
| | - Meng‐Di Wu
- Laboratory of Clinical and Experimental PathologyXuzhou Medical UniversityXuzhouChina
| | - Dong‐Sheng Pei
- Laboratory of Clinical and Experimental PathologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
38
|
Wong JJ, Ho FK, Choo PY, Chong KKL, Ho CMB, Neelakandan R, Keogh D, Barkham T, Chen J, Liu CF, Kline KA. Escherichia coli BarA-UvrY regulates the pks island and kills Staphylococci via the genotoxin colibactin during interspecies competition. PLoS Pathog 2022; 18:e1010766. [PMID: 36067266 PMCID: PMC9481169 DOI: 10.1371/journal.ppat.1010766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/16/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition. Wound infections are often polymicrobial in nature and are associated with poor disease prognoses. Escherichia coli and Staphylococcus aureus are among the top five most cultured pathogens from wound infections. However, little is known about the polymicrobial interactions between E. coli and S. aureus during wound infections. In this study, we show that E. coli kills S. aureus both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. We also show that the BarA-UvrY two component system (TCS) regulates the pks island during this mixed species interaction, acting through the carbon storage global regulatory (Csr) system to control colibactin production. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.
Collapse
Affiliation(s)
- Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Chee Meng Benjamin Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ramesh Neelakandan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Damien Keogh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
40
|
Liu P, Yue C, Liu L, Gao C, Lyu Y, Deng S, Tian H, Jia X. The function of small RNA in Pseudomonas aeruginosa. PeerJ 2022; 10:e13738. [PMID: 35891650 PMCID: PMC9308961 DOI: 10.7717/peerj.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection, is a gram-negative bacterium with the largest genome among the known bacteria. The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains in clinic are: the drug-resistant genes in its genome and the drug resistance easily induced by single antibiotic treatment. With the development of high-throughput sequencing technology and bioinformatics, the functions of various small RNAs (sRNA) in Pseudomonas aeruginosa are being revealed. Different sRNAs regulate gene expression by binding to protein or mRNA to play an important role in the complex regulatory network. In this article, first, the importance and biological functions of different sRNAs in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that sRNAs served as drug therapeutic targets are discussed, which may introduce new directions to develop novel disease treatment strategies.
Collapse
Affiliation(s)
- Pei Liu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Lihua Liu
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Can Gao
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Shanshan Deng
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongying Tian
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Xu Jia
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,School of Basic Medical Science, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
42
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
43
|
Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems 2022; 7:e0020222. [PMID: 35477304 PMCID: PMC9238428 DOI: 10.1128/msystems.00202-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.
Collapse
|
44
|
Pi H, Weiss A, Laut CL, Grunenwald CM, Lin HK, Yi XI, Stauff DL, Skaar EP. An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis. Nat Commun 2022; 13:1491. [PMID: 35314695 PMCID: PMC8938561 DOI: 10.1038/s41467-022-29209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Clare L Laut
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Caroline M Grunenwald
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Hannah K Lin
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Xinjie I Yi
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
45
|
Lemos Rocha LF, Peters K, Biboy J, Depelteau JS, Briegel A, Vollmer W, Blokesch M. The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae. PLoS Genet 2022; 18:e1010143. [PMID: 35344548 PMCID: PMC8989286 DOI: 10.1371/journal.pgen.1010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.
Collapse
Affiliation(s)
- Leonardo F. Lemos Rocha
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jamie S. Depelteau
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
46
|
Liou GG, Chao Kaberdina A, Wang WS, Kaberdin VR, Lin-Chao S. Combined Transcriptomic and Proteomic Profiling of E. coli under Microaerobic versus Aerobic Conditions: The Multifaceted Roles of Noncoding Small RNAs and Oxygen-Dependent Sensing in Global Gene Expression Control. Int J Mol Sci 2022; 23:2570. [PMID: 35269716 PMCID: PMC8910356 DOI: 10.3390/ijms23052570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including Escherichia coli, may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of E. coli grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (gadAXW, gadAB, hdeAB-yhiD and hdeD operons), cell adhesion/biofilm formation (pgaABCD and csgDEFG operons), electron transport (cydAB), oligopeptide transport (oppABCDF), and anaerobic respiration/fermentation (hyaABCDEF and hycABCDEFGHI operons). In contrast, downregulated genes were involved in iron transport (fhuABCD, feoABC and fepA-entD operons), iron-sulfur cluster assembly (iscRSUA and sufABCDSE operons), aerobic respiration (sdhDAB and sucABCDSE operons), and de novo nucleotide synthesis (nrdHIEF). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain E. coli growth when oxygen levels are low.
Collapse
Affiliation(s)
- Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
| | - Anna Chao Kaberdina
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
| | - Wei-Syuan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
47
|
Vazquez-Laslop N, Sharma CM, Mankin A, Buskirk AR. Identifying Small Open Reading Frames in Prokaryotes with Ribosome Profiling. J Bacteriol 2022; 204:e0029421. [PMID: 34339296 PMCID: PMC8765392 DOI: 10.1128/jb.00294-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small proteins encoded by open reading frames (ORFs) shorter than 50 codons (small ORFs [sORFs]) are often overlooked by annotation engines and are difficult to characterize using traditional biochemical techniques. Ribosome profiling has tremendous potential to empirically improve the annotations of prokaryotic genomes. Recent improvements in ribosome profiling methods for bacterial model organisms have revealed many new sORFs in well-characterized genomes. Antibiotics that trap ribosomes just after initiation have played a key role in these developments by allowing the unambiguous identification of the start codons (and, hence, the reading frame) for novel ORFs. Here, we describe these new methods and highlight critical controls and considerations for adapting ribosome profiling to different prokaryotic species.
Collapse
Affiliation(s)
- Nora Vazquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cynthia M. Sharma
- Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alexander Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Roncarati D, Scarlato V, Vannini A. Targeting of Regulators as a Promising Approach in the Search for Novel Antimicrobial Agents. Microorganisms 2022; 10:microorganisms10010185. [PMID: 35056634 PMCID: PMC8777881 DOI: 10.3390/microorganisms10010185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Since the discovery of penicillin in the first half of the last century, antibiotics have become the pillars of modern medicine for fighting bacterial infections. However, pathogens resistant to antibiotic treatment have increased in recent decades, and efforts to discover new antibiotics have decreased. As a result, it is becoming increasingly difficult to treat bacterial infections successfully, and we look forward to more significant efforts from both governments and the scientific community to research new antibacterial drugs. This perspective article highlights the high potential of bacterial transcriptional and posttranscriptional regulators as targets for developing new drugs. We highlight some recent advances in the search for new compounds that inhibit their biological activity and, as such, appear very promising for treating bacterial infections.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| |
Collapse
|
49
|
Lai YJ, Yakhnin H, Pannuri A, Pourciau C, Babitzke P, Romeo T. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol Microbiol 2022; 117:32-53. [PMID: 34107125 PMCID: PMC10000020 DOI: 10.1111/mmi.14769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 02/03/2023]
Abstract
The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.
Collapse
Affiliation(s)
- Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Jakob V, Zoller BG, Rinkes J, Wu Y, Kiefer AF, Hust M, Polten S, White AM, Harvey PJ, Durek T, Craik DJ, Siebert A, Kazmaier U, Empting M. Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. Eur J Med Chem 2022; 231:114148. [DOI: 10.1016/j.ejmech.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|