1
|
Kolosova O, Zgadzay Y, Stetsenko A, Sukhinina AP, Atamas A, Validov S, Rogachev A, Usachev K, Jenner L, Dmitriev SE, Yusupova G, Guskov A, Yusupov M. Mechanism of read-through enhancement by aminoglycosides and mefloquine. Proc Natl Acad Sci U S A 2025; 122:e2420261122. [PMID: 40273100 PMCID: PMC12054815 DOI: 10.1073/pnas.2420261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Nonsense mutations are associated with numerous and diverse pathologies, yet effective treatment strategies remain elusive. A promising approach to combat these conditions involves the use of aminoglycosides, particularly in combination with stop-codon read-through enhancers, for developing drugs that can rescue the production of full-length proteins. Using X-ray crystallography and single-particle cryo-EM, we obtained structures of the eukaryotic ribosome in complexes with several aminoglycosides (geneticin G418, paromomycin, and hygromycin B) and the antimalarial drug mefloquine (MFQ), which has also been identified as a read-through enhancer. Our study reveals a binding site of MFQ, which holds significant promise for the development of therapies targeting premature termination codon-related genetic and oncological diseases. The results underscore the crucial role of the bridge B7b/c in mediating the effects of MFQ on subunit rotation dynamics. Through a comprehensive analysis of the interactions between the drugs and the eukaryotic ribosome, we propose a unifying hypothesis for read-through enhancement by small molecules, highlighting the role of decoding center rearrangements and intersubunit rotation dynamics.
Collapse
Affiliation(s)
- Olga Kolosova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Yury Zgadzay
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Anastasia P. Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow119234, Russia
| | - Anastasia Atamas
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Shamil Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan420008, Russia
| | - Andrey Rogachev
- Moscow Centre for Advanced Studies, Moscow123592, Russia
- Joint Institute for Nuclear Research, Dubna141980, Russia
| | - Konstantin Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan420008, Russia
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow119234, Russia
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| |
Collapse
|
2
|
Majoor A, Michel G, Marty P, Boyer L, Pomares C. Leishmaniases: Strategies in treatment development. Parasite 2025; 32:18. [PMID: 40043198 PMCID: PMC11882135 DOI: 10.1051/parasite/2025009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Leishmaniases are vector-borne parasitic diseases that pose a threat to over 1 billion people worldwide. The parasites target cells of the reticulohistiocytic system, such as macrophages, where they replicate. The disease manifests in various forms, ranging from localized cutaneous leishmaniasis to life-threatening visceral forms, which are fatal in 95% of cases without treatment. Current treatments rely on the invasive administration of toxic and expensive drugs that are increasingly encountering resistance. Therefore, finding alternative treatments for this disease is imperative. This literature review focuses on recent advancements in alternative treatments and aims to present the various strategies designed to address current limitations, including cost, toxicity, off-target effects, administration routes, and the emergence of drug resistance. Starting with an overview of the existing approved treatments and their specific limitations, we categorize treatment development strategies into five key sections: (i) combination therapies using existing approved treatments to enhance efficacy and reduce resistance; (ii) nanoparticle formulations, which enable targeted delivery to infected organs and improved therapeutic efficiency; (iii) drug repositioning, a strategy that has already contributed to the approval of over half of current therapeutic compounds; (iv) immunomodulation, used in conjunction with standard chemotherapies to enhance treatment efficacy and lower relapse rates; and (v) ethnobotanicals, which have demonstrated promising in vitro results by combining low toxicity, immunomodulatory properties, and potent anti-parasitic effects. In summary, this review outlines current strategies in treatment development, emphasizing their advantages over conventional therapies while acknowledging their limitations.
Collapse
Affiliation(s)
- Alissa Majoor
- Université Côte d’Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) BP 23194 06204 Nice Cedex 3 France
| | - Grégory Michel
- Université Côte d’Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) BP 23194 06204 Nice Cedex 3 France
| | - Pierre Marty
- Université Côte d’Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) BP 23194 06204 Nice Cedex 3 France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, Hôpital de l’Archet CS 23079 06202 Nice Cedex 3 France
| | - Laurent Boyer
- Université Côte d’Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) BP 23194 06204 Nice Cedex 3 France
| | - Christelle Pomares
- Université Côte d’Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) BP 23194 06204 Nice Cedex 3 France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, Hôpital de l’Archet CS 23079 06202 Nice Cedex 3 France
| |
Collapse
|
3
|
McCann H, Meade C, Williams L, Petrov A, Johnson P, Simon A, Hoksza D, Nawrocki E, Chan P, Lowe T, Ribas C, Sweeney B, Madeira F, Anyango S, Appasamy S, Deshpande M, Varadi M, Velankar S, Zirbel C, Naiden A, Jossinet F, Petrov A. R2DT: a comprehensive platform for visualizing RNA secondary structure. Nucleic Acids Res 2025; 53:gkaf032. [PMID: 39921562 PMCID: PMC11806352 DOI: 10.1093/nar/gkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025] Open
Abstract
RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.
Collapse
Affiliation(s)
- Holly McCann
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, 94305-5102, United States
| | - Caeden D Meade
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Loren Dean Williams
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Anton S Petrov
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague 118 00, Czech Republic
| | - Eric P Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Carlos Eduardo Ribas
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Blake A Sweeney
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio Madeira
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen Anyango
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sri Devan Appasamy
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mandar Deshpande
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mihaly Varadi
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sameer Velankar
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, United States
| | | | - Fabrice Jossinet
- Faculty of Life Sciences, University of Strasbourg, Strasbourg 67000, France
| | - Anton I Petrov
- Riboscope Ltd, 23 King Street, Cambridge CB1 1AH, United Kingdom
| |
Collapse
|
4
|
Singh VK, Tiwari R, Rajneesh, Kumar A, Chauhan SB, Sudarshan M, Mehrotra S, Gautam V, Sundar S, Kumar R. Advancing Treatment for Leishmaniasis: From Overcoming Challenges to Embracing Therapeutic Innovations. ACS Infect Dis 2025; 11:47-68. [PMID: 39737830 DOI: 10.1021/acsinfecdis.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites. This presents an urgent need to identify new therapeutic targets for leishmaniasis treatment. Understanding the complex life cycle of Leishmania and its survival in host macrophages can provide insights into potential targets for intervention. Current treatments, including antimonials, amphotericin B, and miltefosine, are constrained by side effects, costs, resistance, and reduced efficacy. Exploring novel therapeutic targets within the parasite's physiology, such as key metabolic enzymes or essential surface proteins, may lead to the development of more effective and less toxic drugs. Additionally, innovative strategies like drug repurposing, combination therapies, and nanotechnology-based delivery systems could enhance efficacy and combat resistance, thus improving anti-leishmanial therapies.
Collapse
Affiliation(s)
- Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rajneesh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shashi Bhushan Chauhan
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Medhavi Sudarshan
- Department of Zoology, Jagat Narayan Lal College, Patliputra University, Khagaul, Patna-801105, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, U.P. India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| |
Collapse
|
5
|
Zhang H, Yan R, Liu Y, Yu M, He Z, Xiao J, Li K, Liu G, Ning Q, Li Y. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl Trop Dis 2025; 19:e0012735. [PMID: 39752369 PMCID: PMC11698350 DOI: 10.1371/journal.pntd.0012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine. Despite toxicity and resistance (antimonials), hospitalization needs and side effects (amphotericin B), regional efficacy variability (miltefosine), inconsistent outcomes (paromomycin), and severe side effects (pentamidine), these drugs are vital. Novel strategies to overcome the deficiencies of current therapies are highlighted, including combination regimens, advanced drug delivery systems, and immunomodulatory approaches. Comprehensive and cooperative efforts are crucial to fully realize the potential of advancements in antileishmanial pharmacotherapy and to reduce the unacceptable worldwide burden imposed by this neglected disease.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Mengtao Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Xiao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kaijie Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Sundar S, Singh VK, Agrawal N, Singh OP, Kumar R. Investigational new drugs for the treatment of leishmaniasis. Expert Opin Investig Drugs 2024; 33:1029-1046. [PMID: 39225742 DOI: 10.1080/13543784.2024.2400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Over the past 20 years, significant progress has been made in anti-leishmanial therapy. Three new drugs/formulations are available for the treatment of various forms of leishmaniasis, namely oral miltefosine, paromomycin and liposomal amphotericin B. However, these advances in drug development have added considerable complexity for clinicians including toxicity, emergence of resistance and decreased sensitivity of available drugs. The development of newer drugs with less toxicity and more efficacy is urgently needed. AREAS COVERED This review comprehensively examines the latest developments and current status of antileishmanial drugs for the treatment of leishmaniasis across the world. Several new investigational drugs that showed anti-leishmanial activity under in vitro or in vivo conditions and either underwent the phase-I/II clinical trials or are on the verge of entering the trials were reviewed. We also delve into the challenges of drug resistance and discuss the emergence of new and effective antileishmanial compounds. EXPERT OPINION The available treatments for leishmaniasis are limited in number, toxic, expensive, and demand extensive healthcare resources. Every available antileishmanial drug is associated with several disadvantages, such as drug resistance and toxicity or high cost. Miltefosine is potentially teratogenic. New antileishmanial drugs/treatment modalities are sorely needed for expanding future treatment options.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Agrawal
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
McCann H, Meade CD, Williams LD, Petrov AS, Johnson PZ, Simon AE, Hoksza D, Nawrocki EP, Chan PP, Lowe TM, Ribas CE, Sweeney BA, Madeira F, Anyango S, Appasamy SD, Deshpande M, Varadi M, Velankar S, Zirbel CL, Naiden A, Jossinet F, Petrov AI. R2DT: A COMPREHENSIVE PLATFORM FOR VISUALISING RNA SECONDARY STRUCTURE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.611006. [PMID: 39803519 PMCID: PMC11722224 DOI: 10.1101/2024.09.29.611006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
RNA secondary (2D) structure visualisation is an essential tool for understanding RNA function. R2DT is a software package designed to visualise RNA 2D structures in consistent, recognisable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms (SNPs) or SHAPE reactivities. It also offers a new template-free mode allowing visualisation of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualisations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualisation, accessible at https://r2dt.bio.
Collapse
Affiliation(s)
- Holly McCann
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Caeden D. Meade
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Loren Dean Williams
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Anton S. Petrov
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Philip Z. Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague, 118 00, Czech Republic
| | - Eric P. Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Carlos Eduardo Ribas
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Blake A. Sweeney
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Fábio Madeira
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephen Anyango
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Sri Devan Appasamy
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Mandar Deshpande
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Mihaly Varadi
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | - Fabrice Jossinet
- Faculty of Life Sciences, University of Strasbourg, Strasbourg, 67000, France
| | | |
Collapse
|
8
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
9
|
Intakhan N, Saeung A, Rodrigues Oliveira SM, Pereira MDL, Chanmol W. Synergistic Effects of Artesunate in Combination with Amphotericin B and Miltefosine against Leishmania infantum: Potential for Dose Reduction and Enhanced Therapeutic Strategies. Antibiotics (Basel) 2024; 13:806. [PMID: 39334981 PMCID: PMC11428804 DOI: 10.3390/antibiotics13090806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by Leishmania parasites. The disease can be spread by the bite of an infected sand fly. Currently, five chemotherapeutic drugs are available in leishmaniasis treatment. However, these drugs exhibit toxicity and serious adverse effects on infected individuals, necessitating alternative treatment strategies. One such strategy involves using combinations of existing antileishmanial drugs. In this study, we evaluated the interaction between artesunate (AS) and three antileishmanial drugs-amphotericin B (AmB), miltefosine (MF), and paromomycin (PM) against Leishmania infantum. This evaluation marks the first time such an assessment has been conducted. The Chou-Talalay combination index method was employed to analyze the drug interaction. The findings revealed that the interaction between AS and AmB ranged from antagonistic to synergistic, while the interaction between AS and MF showed moderate to strong synergism. In contrast, the interaction between AS and PM resulted in an antagonistic interaction, which differs from the combinations with AmB or MF. This study provides valuable insights for developing novel drug regimens for leishmaniasis treatment, emphasizing the potential of AS and its combination with existing antileishmanial drugs. Further research is necessary to optimize drug combinations and minimize adverse effects, leading to more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Nuchpicha Intakhan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Center of Excellence Research for Melioidosis and Microorganisms, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atiporn Saeung
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sonia M. Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (S.M.R.O.); (M.d.L.P.)
- HMRI—Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (S.M.R.O.); (M.d.L.P.)
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wetpisit Chanmol
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Center of Excellence Research for Melioidosis and Microorganisms, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Zhao Z, Tajkhorshid E. GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules. J Chem Inf Model 2024; 64:5680-5690. [PMID: 38990699 PMCID: PMC12016184 DOI: 10.1021/acs.jcim.4c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment. To address the challenge of ligand modeling in cryo-EM maps, here we report the development of GOLEM (Genetic Optimization of Ligands in Experimental Maps), an automated and robust ligand docking method that predicts a ligand's pose and conformation in cryo-EM maps. GOLEM employs a Lamarckian genetic algorithm to perform a hybrid global/local search for exploring the ligand's conformational, orientational, and positional space. As an important feature, GOLEM explicitly considers water molecules and places them at optimal positions and orientations. GOLEM takes into account both molecular energetics and the correlation with the cryo-EM maps in its scoring function to optimally place the ligand. We have validated GOLEM against multiple cryo-EM structures with a wide range of map resolutions and ligand types, returning ligand poses in excellent agreement with the densities. As a VMD plugin, GOLEM is free of charge and accessible to the community. With these features, GOLEM will provide a valuable tool for ligand modeling in cryo-EM efforts toward drug discovery.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Vignolini T, Couble JEC, Doré GRG, Baumgarten S. Transcript tinkering: RNA modifications in protozoan parasites. Curr Opin Microbiol 2024; 79:102477. [PMID: 38663181 DOI: 10.1016/j.mib.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024]
Abstract
Apicomplexan and trypanosomatid parasites have evolved a wide range of post-transcriptional processes that allow them to replicate, differentiate, and transmit within and among multiple different tissue, host, and vector environments. In this review, we highlight the recent advances that point toward the regulatory potential of RNA modifications in mediating these processes on the coding and noncoding transcriptome throughout the life cycle of protozoan parasites. We discuss the recent technical advancements enabling the study of the 'epitranscriptome' and how parasites evolved RNA modification-mediated mechanisms adapted to their unique lifestyles.
Collapse
Affiliation(s)
- Tiziano Vignolini
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Justine E C Couble
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Grégory R G Doré
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Sebastian Baumgarten
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France.
| |
Collapse
|
12
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
13
|
Mishra RK, Sharma P, Khaja FT, Uday AB, Hussain T. Cryo-EM structure of wheat ribosome reveals unique features of the plant ribosomes. Structure 2024; 32:562-574.e3. [PMID: 38458197 PMCID: PMC7616111 DOI: 10.1016/j.str.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Plants being sessile organisms exhibit unique features in ribosomes, which might aid in rapid gene expression and regulation in response to varying environmental conditions. Here, we present high-resolution structures of the 60S and 80S ribosomes from wheat, a monocot staple crop plant (Triticum aestivum). While plant ribosomes have unique plant-specific rRNA modification (Cm1847) in the peptide exit tunnel (PET), the zinc-finger motif in eL34 is absent, and uL4 is extended, making an exclusive interaction network. We note differences in the eL15-helix 11 (25S) interaction, eL6-ES7 assembly, and certain rRNA chemical modifications between monocot and dicot ribosomes. In eukaryotes, we observe highly conserved rRNA modification (Gm75) in 5.8S rRNA and a flipped base (G1506) in PET. These features are likely involved in sensing or stabilizing nascent chain. Finally, we discuss the importance of the universal conservation of three consecutive rRNA modifications in all ribosomes for their interaction with A-site aminoacyl-tRNA.
Collapse
Affiliation(s)
- Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Faisal Tarique Khaja
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Adwaith B Uday
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India.
| |
Collapse
|
14
|
Ma L, Zhang X, Li C, Ma X, Zhao X, Zhao X, Zhang P, Zhu X. A U2 snRNP-specific protein, U2A', is involved in stress response and drug resistance in Cryptococcus deneoformans. Biochimie 2024; 220:179-187. [PMID: 37806618 DOI: 10.1016/j.biochi.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
The spliceosome, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast Cryptococcus deneoformans. In this study, we identified a U2A' homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the LEA1 gene. Using the "suicide" CRISPR-Cas9 tool, we deleted the LEA1 gene in C. deneoformans JEC21 strain and obtained the disruption mutant lea1Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A' in maintenance of cell wall integrity. Further examination showed that lea1Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure and oxidative stress. The lea1Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of lea1Δ in the Galleria mellonella model was decreased. Our results indicate that the U2A'-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.
Collapse
Affiliation(s)
- Lan Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueqing Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuan Zhao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
16
|
Phan TN, Lee H, Baek KH, No JH. Identification of Novel Flavonoids and Ansa-Macrolides with Activities against Leishmania donovani through Natural Product Library Screening. Pathogens 2024; 13:213. [PMID: 38535556 PMCID: PMC10974828 DOI: 10.3390/pathogens13030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 μM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 μM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 μM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| |
Collapse
|
17
|
Melcón-Fernández E, Galli G, Balaña-Fouce R, García-Fernández N, Martínez-Valladares M, Reguera RM, García-Estrada C, Pérez-Pertejo Y. In Vitro and Ex Vivo Synergistic Effect of Pyrvinium Pamoate Combined with Miltefosine and Paromomycin against Leishmania. Trop Med Infect Dis 2024; 9:30. [PMID: 38393119 PMCID: PMC10891607 DOI: 10.3390/tropicalmed9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
One of the major drawbacks of current treatments for neglected tropical diseases is the low safety of the drugs used and the emergence of resistance. Leishmaniasis is a group of neglected diseases caused by protozoa of the trypanosomatidae family that lacks preventive vaccines and whose pharmacological treatments are scarce and unsafe. Combination therapy is a strategy that could solve the above-mentioned problems, due to the participation of several mechanisms of action and the reduction in the amount of drug necessary to obtain the therapeutic effect. In addition, this approach also increases the odds of finding an effective drug following the repurposing strategy. From the previous screening of two collections of repositioning drugs, we found that pyrvinium pamoate had a potent leishmanicidal effect. For this reason, we decided to combine it separately with two clinically used leishmanicidal drugs, miltefosine and paromomycin. These combinations were tested in axenic amastigotes of Leishmania infantum obtained from bone marrow cells and in intramacrophagic amastigotes obtained from primary cultures of splenic cells, both cell types coming from experimentally infected mice. Some of the combinations showed synergistic behavior, especially in the case of the combination of pyrvinium pamoate with paromomycin, and exhibited low cytotoxicity and good tolerability on intestinal murine organoids, which reveal the potential of these combinations for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Estela Melcón-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Giulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| |
Collapse
|
18
|
Rajan KS, Madmoni H, Bashan A, Taoka M, Aryal S, Nobe Y, Doniger T, Galili Kostin B, Blumberg A, Cohen-Chalamish S, Schwartz S, Rivalta A, Zimmerman E, Unger R, Isobe T, Yonath A, Michaeli S. A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei. Nat Commun 2023; 14:7462. [PMID: 37985661 PMCID: PMC10662448 DOI: 10.1038/s41467-023-43263-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Beathrice Galili Kostin
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Amit Blumberg
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
19
|
Cooper C, Thompson RCA, Clode PL. Investigating parasites in three dimensions: trends in volume microscopy. Trends Parasitol 2023; 39:668-681. [PMID: 37302958 DOI: 10.1016/j.pt.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
To best understand parasite, host, and vector morphologies, host-parasite interactions, and to develop new drug and vaccine targets, structural data should, ideally, be obtained and visualised in three dimensions (3D). Recently, there has been a significant uptake of available 3D volume microscopy techniques that allow collection of data across centimetre (cm) to Angstrom (Å) scales by utilising light, X-ray, electron, and ion sources. Here, we present and discuss microscopy tools available for the collection of 3D structural data, focussing on electron microscopy-based techniques. We highlight their strengths and limitations, such that parasitologists can identify techniques best suited to answer their research questions. Additionally, we review the importance of volume microscopy to the advancement of the field of parasitology.
Collapse
Affiliation(s)
- Crystal Cooper
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia; School of Biological Sciences, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
21
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Tavares GA, Torres A, Le Drean G, Queignec M, Castellano B, Tesson L, Remy S, Anegon I, Pitard B, Kaeffer B. Oral Delivery of miR-320-3p with Lipidic Aminoglycoside Derivatives at Mid-Lactation Alters miR-320-3p Endogenous Levels in the Gut and Brain of Adult Rats According to Early or Regular Weaning. Int J Mol Sci 2022; 24:ijms24010191. [PMID: 36613633 PMCID: PMC9820440 DOI: 10.3390/ijms24010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
To investigate if the artificial delivery of microRNAs naturally present in the breastmilk can impact the gut and brain of young rats according to weaning. Animals from a new transgenic rat line expressing the green-fluorescent protein in the endocrine lineage (cholecystokinin expressing cells) received a single oral bolus of miR-320-3p or miR-375-3p embedded in DiOleyl-Succinyl-Paromomycin (DOSP) on D-12. The pups were weaned early (D-15), or regularly (D-30). The expression of relevant miRNA, mRNAs, chromatin complexes, and duodenal cell density were assessed at 8 h post-inoculation and on D-45. The miR-320-3p/DOSP induced immediate effects on H3K4me3 chromatin complexes with polr3d promoter (p < 0.05). On regular weaning, on D-45, miR-320-3p and 375-3p were found to be downregulated in the stomach and upregulated in the hypothalamus (p < 0.001), whereas miR-320-3p was upregulated in the duodenum. After early weaning, miR-320-3p and miR-375-3p were downregulated in the stomach and the duodenum, but upregulated in the hypothalamus and the hippocampus. Combination of miR-320-3p/DOSP with early weaning enhanced miR-320-3p and chromogranin A expression in the duodenum. In the female brain stem, miR-320-3p, miR-504, and miR-16-5p levels were all upregulated. Investigating the oral miRNA-320-3p loads in the duodenal cell lineage paved the way for designing new therapeutics to avoid unexpected long-term impacts on the brain.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife 56070-901, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| | - Gwenola Le Drean
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| | - Maïwenn Queignec
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| | | | - Laurent Tesson
- Platform Rat Transgenesis ImmunoPhenomic, INSERM UMR 1064-CRTI, SFR François Bonamy, CNRS UMS3556, F-44093 Nantes, France
| | - Séverine Remy
- Platform Rat Transgenesis ImmunoPhenomic, INSERM UMR 1064-CRTI, SFR François Bonamy, CNRS UMS3556, F-44093 Nantes, France
| | - Ignacio Anegon
- Platform Rat Transgenesis ImmunoPhenomic, INSERM UMR 1064-CRTI, SFR François Bonamy, CNRS UMS3556, F-44093 Nantes, France
| | - Bruno Pitard
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, INCIT UMR1302/EMR6001, F-44000 Nantes, France
| | - Bertrand Kaeffer
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
- Correspondence:
| |
Collapse
|
23
|
Isolation, typing, and drug susceptibility of Leishmania (Leishmania) infantum isolates from dogs of the municipality of Embu das Artes, an endemic region for canine leishmaniasis in Brazil. Parasitol Res 2022; 121:2683-2695. [PMID: 35802163 DOI: 10.1007/s00436-022-07594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
The parasitic protozoa Leishmania (Leishmania) infantum is the etiological agent of human visceral leishmaniasis and canine leishmaniasis in South America, where Brazil is the most affected country. This zoonotic disease is transmitted by the bite of an infected phlebotomine sand fly and dogs constitute the main domestic reservoir of the parasite. In this study, we screened 2348 dogs of the municipality of Embu das Artes, Brazil, for antibodies against the parasite. Prevalence for canine leishmaniasis seropositivity was 2.81%, as assessed using a Dual-Path Platform rapid test for canine leishmaniasis. Twenty-five seropositive dogs were euthanized for parasite isolation and 14 isolates were successful obtained. Nucleotide sequencing of the internal transcribed spacer confirmed the isolates to be L. (L.) infantum, and very low sequence variability was observed among them. The in vitro susceptibility to miltefosine and paromomycin was assessed and moderate variation in paromomycin susceptibility was found among the isolates in the promastigote and intracellular amastigote stages. On the other hand, in vitro susceptibility to miltefosine of these isolates was homogenous, particularly in the amastigote stage (EC50 values from 0.69 to 2.07 μM). In addition, the miltefosine sensitivity locus was deleted in all the isolates, which does not corroborate the hypothesis that the absence of this locus is correlated with a low in vitro susceptibility. Our findings confirm that the municipality of Embu das Artes is endemic for canine leishmaniasis and that isolates from this region are susceptible to paromomycin and miltefosine, indicating the potential of these drugs to be clinically evaluated in the treatment of human visceral leishmaniasis in Brazil.
Collapse
|
24
|
Bortolin-Cavaillé ML, Quillien A, Thalalla Gamage S, Thomas J, Sas-Chen A, Sharma S, Plisson-Chastang C, Vandel L, Blader P, Lafontaine DLJ, Schwartz S, Meier J, Cavaillé J. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res 2022; 50:6284-6299. [PMID: 35648437 PMCID: PMC9226516 DOI: 10.1093/nar/gkac404] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 01/06/2023] Open
Abstract
NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | | | | | - Justin M Thomas
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Laurence Vandel
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jérôme Cavaillé
- To whom correspondence should be addressed. Tel: +33 561335927; Fax: +33 561335886;
| |
Collapse
|
25
|
Paromomycin Reduces Vairimorpha (Nosema) ceranae Infection in Honey Bees but Perturbs Microbiome Levels and Midgut Cell Function. Microorganisms 2022; 10:microorganisms10061107. [PMID: 35744625 PMCID: PMC9231153 DOI: 10.3390/microorganisms10061107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Paromomycin is a naturally occurring aminoglycoside antibiotic that has effects on both prokaryotic and eukaryotic microbes. However, previous reports have indicated that it has little effect on microsporidia, including Vairimorpha (Nosema) ceranae, in cell culture models. V. ceranae is one of a number of microsporidia species that cause disease in honey bees and substantial efforts to find new treatment strategies for bees that are infected with these pathogens are ongoing. When testing compounds for potential activity against V. ceranae in whole organisms, we found that paromomycin reduces the infection intensity of this parasite. Critically, the necessary doses of paromomycin have high activity against the bacteria of the honey bee microbiome and cause evident stress in bees. Microsporidia have been shown to lack an essential binding site on the ribosome that is known to allow for maximal inhibition by paromomycin. Thus, it is possible that paromomycin impacts parasite levels through non-cell autonomous effects on microsporidia infection levels via effects on the microbiome or midgut cellular function. As paromomycin treatment could cause widespread honey bee health issues in agricultural settings, it does not represent an appropriate anti-microsporidia agent for use in the field.
Collapse
|
26
|
Westhof E, Thornlow B, Chan PP, Lowe TM. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res 2022; 50:4100-4112. [PMID: 35380696 PMCID: PMC9023262 DOI: 10.1093/nar/gkac222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.
Collapse
Affiliation(s)
- Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Kumar P, Bhardwaj T, Kumar A, Gehi BR, Kapuganti SK, Garg N, Nath G, Giri R. Reprofiling of approved drugs against SARS-CoV-2 main protease: an in-silico study. J Biomol Struct Dyn 2022; 40:3170-3184. [PMID: 33179586 PMCID: PMC7678354 DOI: 10.1080/07391102.2020.1845976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Given the COVID-19 pandemic, currently, there are many drugs in clinical trials against this virus. Among the excellent drug targets of SARS-CoV-2 are its proteases (Nsp3 and Nsp5) that plays vital role in polyprotein processing giving rise to functional nonstructural proteins, essential for viral replication and survival. Nsp5 (also known as Mpro) hydrolyzes replicase polyprotein (1ab) at eleven different sites. For targeting Mpro, we have employed drug repurposing approach to identify potential inhibitors of SARS-CoV-2 in a shorter time span. Screening of approved drugs through docking reveals Hyaluronic acid and Acarbose among the top hits which are showing strong interactions with catalytic site residues of Mpro. We have also performed docking of drugs Lopinavir, Ribavirin, and Azithromycin on SARS-CoV-2 Mpro. Further, binding of these compounds (Hyaluronic acid, Acarbose, and Lopinavir) is validated by extensive molecular dynamics simulation of 500 ns where these drugs show stable binding with Mpro. We believe that the high-affinity binding of these compounds will help in designing novel strategies for structure-based drug discovery against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ankur Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Bhuvaneshwari R. Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
28
|
Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, Yonath A. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res 2022; 50:1770-1782. [PMID: 35100413 PMCID: PMC8860606 DOI: 10.1093/nar/gkac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is a disease caused by the protist Giardia lamblia. As no human vaccines have been approved so far against it, and resistance to current drugs is spreading, new strategies for combating giardiasis need to be developed. The G. lamblia ribosome may provide a promising therapeutic target due to its distinct sequence differences from ribosomes of most eukaryotes and prokaryotes. Here, we report the cryo-electron microscopy structure of the G. lamblia (WB strain) ribosome determined at 2.75 Å resolution. The ribosomal RNA is the shortest known among eukaryotes, and lacks nearly all the eukaryote-specific ribosomal RNA expansion segments. In contrast, the ribosomal proteins are typically eukaryotic with some species-specific insertions/extensions. Most typical inter-subunit bridges are maintained except for one missing contact site. Unique structural features are located mainly at the ribosome's periphery. These may be exploited as target sites for the design of new compounds that inhibit selectively the parasite's ribosomal activity.
Collapse
Affiliation(s)
- Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarit Samiya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-4454, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Robertson MJ, Meyerowitz JG, Skiniotis G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem Sci 2022; 47:124-135. [PMID: 34281791 PMCID: PMC8760134 DOI: 10.1016/j.tibs.2021.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023]
Abstract
Structure-based drug discovery (SBDD) is an indispensable approach for the design and optimization of new therapeutic agents. Here, we highlight the rapid progress that has turned cryo-electron microscopy (cryoEM) into an exceptional SBDD tool, and the wealth of new structural information it is providing for high-value pharmacological targets. We review key advantages of a technique that directly images vitrified biomolecules without the need for crystallization; both in terms of a broader array of systems that can be studied and the different forms of information it can provide, including heterogeneity and dynamics. We discuss near- and far-future developments, working in concert towards achieving the resolution and throughput necessary for cryoEM to make a widespread impact on the SBDD pipeline.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
30
|
Genome instability drives epistatic adaptation in the human pathogen Leishmania. Proc Natl Acad Sci U S A 2021; 118:2113744118. [PMID: 34903666 PMCID: PMC8713814 DOI: 10.1073/pnas.2113744118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Chromosome and gene copy number variations often correlate with the evolution of microbial and cancer drug resistance, thus causing important human mortality. How genome instability is harnessed to generate beneficial phenotypes and how deleterious gene dosage effects are compensated remain open questions. The protist pathogen Leishmania exploits genome instability to regulate expression via gene dosage changes. Using these parasites as a unique model system, we uncover complex epistatic interactions between gene copy number variations and compensatory transcriptomic responses as key processes that harness genome instability for adaptive evolution in Leishmania. Our results propose a model of eukaryotic fitness gain that may be broadly applicable to pathogenic fungi or tumor cells known to exploit genome instability for adaptation. How genome instability is harnessed for fitness gain despite its potential deleterious effects is largely elusive. An ideal system to address this important open question is provided by the protozoan pathogen Leishmania, which exploits frequent variations in chromosome and gene copy number to regulate expression levels. Using ecological genomics and experimental evolution approaches, we provide evidence that Leishmania adaptation relies on epistatic interactions between functionally associated gene copy number variations in pathways driving fitness gain in a given environment. We further uncover posttranscriptional regulation as a key mechanism that compensates for deleterious gene dosage effects and provides phenotypic robustness to genetically heterogenous parasite populations. Finally, we correlate dynamic variations in small nucleolar RNA (snoRNA) gene dosage with changes in ribosomal RNA 2′-O-methylation and pseudouridylation, suggesting translational control as an additional layer of parasite adaptation. Leishmania genome instability is thus harnessed for fitness gain by genome-dependent variations in gene expression and genome-independent compensatory mechanisms. This allows for polyclonal adaptation and maintenance of genetic heterogeneity despite strong selective pressure. The epistatic adaptation described here needs to be considered in Leishmania epidemiology and biomarker discovery and may be relevant to other fast-evolving eukaryotic cells that exploit genome instability for adaptation, such as fungal pathogens or cancer.
Collapse
|
31
|
Sheykhloo H, Milani M, Najafi F, Bani F, Zarebkohan A. Conjugation of Gentamicin to Polyamidoamine Dendrimers Improved Anti-bacterial Properties against Pseudomonas aeruginosa. Adv Pharm Bull 2021; 11:675-683. [PMID: 34888214 PMCID: PMC8642794 DOI: 10.34172/apb.2021.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose: This study aimed to design gentamicin-conjugated poly (amidoamine) (PAMAM) dendrimers to increase the therapeutic efficiency of gentamicin against Pseudomonas aeruginosa. Methods: Gentamicin-presenting dendrimers were synthesized using MAL-PEG3400-NHS as a redox-sensitive linker to attach gentamicin to the surface of G4 PAMAM dendrimers. The gentamicin molecules were thiolated by using Traut reagent. Then, the functionalized gentamicin molecules were attached to PEGylated PAMAM dendrimers through simple and high selectively maleimide (MAL)-thiol reaction. The structure of gentamicin-conjugated PAMAM dendrimers was characterized and confirmed using nuclear magnetic resonance (NMR), dynamic light scattering (DLS), zeta potential analysis, and transmission electron microscopy (TEM) imaging. The antibacterial properties of the synthesized complex were examined on P. aeruginosa and compared to gentamycin alone. Results: NMR, DLS, zeta potential analysis, and TEM imaging revealed the successful conjugation of gentamicin to PAMAM dendrimers. Data showed the appropriate physicochemical properties of the synthesized nanoparticles. We found a 3-fold increase in the antibacterial properties of gentamicin conjugated to the surface of PAMAM dendrimers compared to non-conjugated gentamicin. Based on data, the anti-biofilm effects of PAMAM-Gentamicin dendrimers increased at least 13 times more than the gentamicin in normal conditions. Conclusion: Data confirmed that PAMAM dendrimer harboring gentamicin could be touted as a novel smart drug delivery system in infectious conditions.
Collapse
Affiliation(s)
- Hamed Sheykhloo
- Biotechnology Department, Rabe Rashidi University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
33
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
34
|
Emrizal R, Hamdani HY, Firdaus-Raih M. Graph Theoretical Methods and Workflows for Searching and Annotation of RNA Tertiary Base Motifs and Substructures. Int J Mol Sci 2021; 22:ijms22168553. [PMID: 34445259 PMCID: PMC8395288 DOI: 10.3390/ijms22168553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing number and complexity of structures containing RNA chains in the Protein Data Bank (PDB) have led to the need for automated structure annotation methods to replace or complement expert visual curation. This is especially true when searching for tertiary base motifs and substructures. Such base arrangements and motifs have diverse roles that range from contributions to structural stability to more direct involvement in the molecule's functions, such as the sites for ligand binding and catalytic activity. We review the utility of computational approaches in annotating RNA tertiary base motifs in a dataset of PDB structures, particularly the use of graph theoretical algorithms that can search for such base motifs and annotate them or find and annotate clusters of hydrogen-bond-connected bases. We also demonstrate how such graph theoretical algorithms can be integrated into a workflow that allows for functional analysis and comparisons of base arrangements and sub-structures, such as those involved in ligand binding. The capacity to carry out such automatic curations has led to the discovery of novel motifs and can give new context to known motifs as well as enable the rapid compilation of RNA 3D motifs into a database.
Collapse
Affiliation(s)
- Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia;
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia
| | - Hazrina Yusof Hamdani
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
- Correspondence: (H.Y.H.); (M.F.-R.)
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia;
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia
- Correspondence: (H.Y.H.); (M.F.-R.)
| |
Collapse
|
35
|
Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. mSystems 2021; 6:6/3/e00089-21. [PMID: 33975965 PMCID: PMC8125071 DOI: 10.1128/msystems.00089-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved molecular chaperone responsible for the folding and maturation of nascent proteins. Hsp90 is regarded as a master regulator of protein homeostasis in the cell, and its inhibition affects the functions of a large array of client proteins. The classical Hsp90 inhibitor tanespimycin has shown potent antileishmanial activity. Despite the increasing importance of Hsp90 inhibition in the development of antileishmanial agents, the global effects of these inhibitors on the parasite proteome remain unknown. By combining tanespimycin treatment with bioorthogonal noncanonical amino acid tagging (BONCAT) metabolic labeling and isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic mass spectrometry, for the first time, we robustly profiled the relative changes in the synthesis of hundreds of parasite proteins as functions of dose and duration of the inhibitor treatment. We showed that Hsp90 inhibition dynamically regulates nascent protein synthesis in Leishmania mexicana, with many chaperones and virulence factors showing inhibitor concentration- and treatment duration-dependent changes in relative expression. Many ribosomal proteins showed a downregulation upon severe Hsp90 inhibition, providing the first protein-level evidence that Hsp90 inhibition affects the protein synthesis capacity of the ribosome in this organism. We also provide an unbiased target validation of tanespimycin in L. mexicana using live parasite photoaffinity labeling with a novel chemical probe and quantitative proteomic mass spectrometry. We showed that the classical Hsp90 inhibitor not only engages with its presumed target, Hsp83-1, in L. mexicana promastigotes but also affects multiple proteins involved in protein synthesis and quality control in the parasite. This study defines the Leishmania parasites' response to Hsp90 inhibition at the level of nascent global protein synthesis and provides a rich resource for future studies on Leishmania spp. biology and antileishmanial drug development.IMPORTANCE Leishmania spp. are the causative agents of leishmaniasis, a poverty-related disease, which is endemic in >90 countries worldwide, affecting approximately 12 million people, with an estimated 700,000 to 1 million new cases and around 70,000 deaths annually. Inhibitors of the chaperone protein Hsp90 have shown promising antileishmanial activity. However, further development of the Hsp90 inhibitors as antileishmanials is hampered by a lack of direct information of their downstream effects on the parasite proteome. Using a combination of mass spectrometry-based quantitative proteomics and chemical and metabolic labeling, we provide the first protein-level evidence that Hsp90 inhibition affects global protein synthesis in Leishmania We also provide the precise relative quantitative changes in the expressions of hundreds of affected proteins as functions of both the concentration and duration of the inhibitor treatment. We find that Leishmania regulates its ribosomal proteins under Hsp90 inhibition while a set of virulence factors and chaperones are preferentially synthesized.
Collapse
|
36
|
Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids. Subcell Biochem 2021; 96:433-450. [PMID: 33252739 DOI: 10.1007/978-3-030-58971-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.
Collapse
|
37
|
Ramachandran S, Krogh N, Jørgensen TE, Johansen SD, Nielsen H, Babiak I. The shift from early to late types of ribosomes in zebrafish development involves changes at a subset of rRNA 2'- O-Me sites. RNA (NEW YORK, N.Y.) 2020; 26:1919-1934. [PMID: 32912962 PMCID: PMC7668251 DOI: 10.1261/rna.076760.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'-O-Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'-O-Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA. We identified a subset of sites that changed in methylation status during development and found that some of these could be explained by availability of their cognate SNORDs. Sites that changed during development were enriched in the novel sites revealed in zebrafish. We propose that the early type of rRNA is a specialized form and that its structure and ribose methylation pattern may be an adaptation to features of development, including translation of specific maternal mRNAs.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Henrik Nielsen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Igor Babiak
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|
38
|
Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, Zimermann E, Rozenberg H, Bashan A, Bhushan S, Isobe T, Gray MW, Yonath A, Shalev-Benami M. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res 2020; 48:11750-11761. [PMID: 33091122 PMCID: PMC7672448 DOI: 10.1093/nar/gkaa893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.
Collapse
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Asis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimermann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Westhof E, Liang S, Tong X, Ding X, Zheng L, Dai F. Unusual tertiary pairs in eukaryotic tRNA Ala. RNA (NEW YORK, N.Y.) 2020; 26:1519-1529. [PMID: 32737189 PMCID: PMC7566577 DOI: 10.1261/rna.076299.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
tRNA molecules have well-defined sequence conservations that reflect the conserved tertiary pairs maintaining their architecture and functions during the translation processes. An analysis of aligned tRNA sequences present in the GtRNAdb database (the Lowe Laboratory, University of California, Santa Cruz) led to surprising conservations on some cytosolic tRNAs specific for alanine compared to other tRNA species, including tRNAs specific for glycine. First, besides the well-known G3oU70 base pair in the amino acid stem, there is the frequent occurrence of a second wobble pair at G30oU40, a pair generally observed as a Watson-Crick pair throughout phylogeny. Second, the tertiary pair R15/Y48 occurs as a purine-purine R15/A48 pair. Finally, the conserved T54/A58 pair maintaining the fold of the T-loop is observed as a purine-purine A54/A58 pair. The R15/A48 and A54/A58 pairs always occur together. The G30oU40 pair occurs alone or together with these other two pairs. The pairing variations are observed to a variable extent depending on phylogeny. Among eukaryotes, insects display all variations simultaneously, whereas mammals present either the G30oU40 pair or both R15/A48 and A54/A58. tRNAs with the anticodon 34A(I)GC36 are the most prone to display all those pair variations in mammals and insects. tRNAs with anticodon Y34GC36 have preferentially G30oU40 only. These unusual pairs are not observed in bacterial, nor archaeal, tRNAs, probably because of the avoidance of A34-containing anticodons in four-codon boxes. Among eukaryotes, these unusual pairing features were not observed in fungi and nematodes. These unusual structural features may affect, besides aminoacylation, transcription rates (e.g., 54/58) or ribosomal translocation (30/40).
Collapse
Affiliation(s)
- Eric Westhof
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l'ARN, Institut e Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Shubo Liang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lu Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
40
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
41
|
de Oliveira TM, van Beek L, Shilliday F, Debreczeni JÉ, Phillips C. Cryo-EM: The Resolution Revolution and Drug Discovery. SLAS DISCOVERY 2020; 26:17-31. [PMID: 33016175 DOI: 10.1177/2472555220960401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.
Collapse
Affiliation(s)
| | - Lotte van Beek
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Fiona Shilliday
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Judit É Debreczeni
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Chris Phillips
- Structure, Biophysics and FBLG, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| |
Collapse
|
42
|
Coser EM, Ferreira BA, Branco N, Yamashiro-Kanashiro EH, Lindoso JAL, Coelho AC. Activity of paromomycin against Leishmania amazonensis: Direct correlation between susceptibility in vitro and the treatment outcome in vivo. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:91-98. [PMID: 33011651 PMCID: PMC7548989 DOI: 10.1016/j.ijpddr.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
Paromomycin is an aminoglycoside antibiotic approved in 2006 for the treatment of visceral leishmaniasis caused by Leishmania donovani in Southeast Asia. Although this drug is not approved for the treatment of visceral and cutaneous leishmaniasis in Brazil, it is urgent and necessary to evaluate the potential of this drug as alternative for the treatment against species responsible for these clinical forms of the disease. In Brazil, Leishmania amazonensis is responsible for cutaneous and diffuse cutaneous leishmaniasis. The diffuse cutaneous form of the disease is difficult to treat and frequent relapses are reported, mainly when the treatment is interrupted. Here, we evaluated paromomycin susceptibility in vitro of a L. amazonensis clinical isolate from a patient with cutaneous leishmaniasis and the reference strain L. amazonensis M2269, as well as its in vivo efficacy in a murine experimental model. Although never exposed to paromomycin, a significant differential susceptibility between these two lines was found. Paromomycin was highly active in vitro against the clinical isolate in both forms of the parasite, while its activity against the reference strain was less active. In vivo studies in mice infected with each one of these lines demonstrated that paromomycin reduces lesion size and parasite burden and a direct correlation between the susceptibility in vitro and the effectiveness of this drug in vivo was found. Our findings indicate that paromomycin efficacy in vivo is dependent on intrinsic susceptibility of the parasite. Beyond that, this study contributes for the evaluation of the potential use of paromomycin in chemotherapy of cutaneous leishmaniasis in Brazil caused by L. amazonensis.
Collapse
Affiliation(s)
- Elizabeth M Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bianca A Ferreira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Nilson Branco
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Edite H Yamashiro-Kanashiro
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Imunologia (LIM 48), Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José Angelo L Lindoso
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Instituto de Infectologia Emilio Ribas, São Paulo, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
43
|
Herrero del Valle A, Innis CA. Prospects for antimicrobial development in the cryo-EM era – a focus on the ribosome. FEMS Microbiol Rev 2020; 44:793-803. [DOI: 10.1093/femsre/fuaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.
Collapse
Affiliation(s)
- Alba Herrero del Valle
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
44
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
45
|
Robertson MJ, van Zundert GCP, Borrelli K, Skiniotis G. GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps. Structure 2020; 28:707-716.e3. [PMID: 32413291 DOI: 10.1016/j.str.2020.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/13/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by cryoelectron microscopy (cryo-EM) often presents challenges inherent to the methodology and the dynamic nature of ligand binding. Here, we present GemSpot, an automated pipeline of computational chemistry methods that take into account EM map potentials, quantum mechanics energy calculations, and water molecule site prediction to generate candidate poses and provide a measure of the degree of confidence. The pipeline is validated through several published cryo-EM structures of complexes in different resolution ranges and various types of ligands. In all cases, at least one identified pose produced both excellent interactions with the target and agreement with the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery efforts through cryo-EM.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Rajan KS, Zhu Y, Adler K, Doniger T, Cohen-Chalamish S, Srivastava A, Shalev-Benami M, Matzov D, Unger R, Tschudi C, Günzl A, Carmichael GG, Michaeli S. The large repertoire of 2'-O-methylation guided by C/D snoRNAs on Trypanosoma brucei rRNA. RNA Biol 2020; 17:1018-1039. [PMID: 32250712 DOI: 10.1080/15476286.2020.1750842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The parasite Trypanosoma brucei cycles between insect and mammalian hosts, and is the causative agent of sleeping sickness. Here, we performed genome-wide mapping of 2'-O-methylations (Nms) on trypanosome rRNA using three high-throughput sequencing methods; RibOxi-seq, RiboMeth-seq and 2'-OMe-seq. This is the first study using three genome-wide mapping approaches on rRNA from the same species showing the discrepancy among the methods. RibOxi-seq detects all the sites, but RiboMeth-seq is the only method to evaluate the level of a single Nm site. The sequencing revealed at least ninety-nine Nms guided by eighty-five snoRNAs among these thirty-eight Nms are trypanosome specific sites. We present the sequence and target of the C/D snoRNAs guiding on rRNA. This is the highest number of Nms detected to date on rRNA of a single cell parasite. Based on RiboMeth-seq, several Nm sites were found to be differentially regulated at the two stages of the parasite life cycle, the insect procyclic form (PCF) versus the bloodstream form (BSF) in the mammalian host.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Yinzhou Zhu
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science , Rehovot, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science , Rehovot, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Christian Tschudi
- Departmentof Epidemiology and Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| |
Collapse
|
47
|
Targeting the Human 80S Ribosome in Cancer: From Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies. Cells 2020; 9:cells9030629. [PMID: 32151059 PMCID: PMC7140421 DOI: 10.3390/cells9030629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis. Here we review the role of the human ribosome as a medical target in cancer, and how functional and structural analysis combined with chemical synthesis of new inhibitors can synergize. The possible existence of oncoribosomes is also discussed. The emerging idea is that targeting the human ribosome could not only allow the interference with cancer cell addiction towards protein synthesis and possibly induce their death but may also be highly valuable to decrease the levels of oncogenic proteins that display a high turnover rate (MYC, MCL1). Cryo-electron microscopy (cryo-EM) is an advanced method that allows the visualization of human ribosome complexes with factors and bound inhibitors to improve our understanding of their functioning mechanisms mode. Cryo-EM structures could greatly assist the foundation phase of a novel drug-design strategy. One goal would be to identify new specific and active molecules targeting the ribosome in cancer such as derivatives of cycloheximide, a well-known ribosome inhibitor.
Collapse
|
48
|
Gribling-Burrer AS, Chiabudini M, Zhang Y, Qiu Z, Scazzari M, Wölfle T, Wohlwend D, Rospert S. A dual role of the ribosome-bound chaperones RAC/Ssb in maintaining the fidelity of translation termination. Nucleic Acids Res 2020; 47:7018-7034. [PMID: 31114879 PMCID: PMC6648330 DOI: 10.1093/nar/gkz334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Zonghao Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institute of Biochemistry, Chemical and Pharmaceutical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
49
|
Hu J, Hu Q, He X, Liu C, Kong Y, Cheng Y, Zhang Y. Stimuli-Responsive Hydrogels with Antibacterial Activity Assembled from Guanosine, Aminoglycoside, and a Bifunctional Anchor. Adv Healthc Mater 2020; 9:e1901329. [PMID: 31814315 DOI: 10.1002/adhm.201901329] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 01/09/2023]
Abstract
Multistimuli-responsive hydrogels with specific functions have attracted great interest for biomedical applications; however, these smart hydrogels usually require the presynthesis of macromolecular building blocks with multiple ligands and the integration of bioactive cargoes into the gels. Here, a multistimuli-responsive hydrogel with potent antibacterial activity by a combination of supramolecular assembly and iminoboronate chemistry is reported. The hydrogel consists of all-small-molecule building blocks including aminoglycoside, guanosine, potassium ion, and a bifunctional anchor bearing both boronic acid and aldehyde groups. Guanosines form quadruplexes in the presence of potassium ions via supramolecular assembly, and the bifunctional anchor connects aminoglycosides, a class of potent antibiotics to cis-diol groups on quadruplexes via dynamic iminoboronate chemistry, yielding a smart hydrogel containing abundant antibiotics. The hydrogel is sensitive to multistimuli such as heat, acids, oxidants, glucose and crown ether, which promote the release of antibiotics from the gels. Moreover, the prepared hydrogels show potent antibacterial activities both in vitro and in vivo. The results provide a new option to prepare antibacterial hydrogels with multistimuli responsiveness via facile chemistry using all-small-molecule building blocks.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Qianyu Hu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Xu He
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Cenxi Liu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Yanlong Kong
- Department of OrthopaedicsFengxian Hospital Affiliated to Anhui University of Science and Technology Shanghai 201499 China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yadong Zhang
- Department of OrthopaedicsFengxian Hospital Affiliated to Anhui University of Science and Technology Shanghai 201499 China
- Department of OrthopaedicsFengxian Hospital Affiliated to Southern Medical University Shanghai 201499 China
- Southern Medical University Guangdong 510515 P. R. China
| |
Collapse
|
50
|
Van Haute L, Hendrick AG, D'Souza AR, Powell CA, Rebelo-Guiomar P, Harbour ME, Ding S, Fearnley IM, Andrews B, Minczuk M. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Nucleic Acids Res 2019; 47:10267-10281. [PMID: 31665743 PMCID: PMC6821322 DOI: 10.1093/nar/gkz735] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for the elucidation of the functional roles of specific RNA modifications. Ten modified sites have been thus far identified in the mammalian mitochondrial rRNA. Enzymes responsible for two of these modifications have not been characterized. Here, we identify METTL15, show that it is the main N4-methylcytidine (m4C) methyltransferase in human cells and demonstrate that it is responsible for the methylation of position C839 in mitochondrial 12S rRNA. We show that the lack of METTL15 results in a reduction of the mitochondrial de novo protein synthesis and decreased steady-state levels of protein components of the oxidative phosphorylation system. Without functional METTL15, the assembly of the mitochondrial ribosome is decreased, with the late assembly components being unable to be incorporated efficiently into the small subunit. We speculate that m4C839 is involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits. Taken together our data show that METTL15 is a novel protein necessary for efficient translation in human mitochondria.
Collapse
Affiliation(s)
- Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Alan G Hendrick
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Aaron R D'Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.,STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Byron Andrews
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|