1
|
Kragel JE, Lurie SM, Issa NP, Haider HA, Wu S, Tao JX, Warnke PC, Schuele S, Rosenow JM, Zelano C, Schatza M, Disterhoft JF, Widge AS, Voss JL. Closed-loop control of theta oscillations enhances human hippocampal network connectivity. Nat Commun 2025; 16:4061. [PMID: 40307237 PMCID: PMC12043829 DOI: 10.1038/s41467-025-59417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Theta oscillations are implicated in regulating information flow within cortico-hippocampal networks to support memory and cognition. However, causal evidence tying theta oscillations to network communication in humans is lacking. Here we report experimental findings using a closed-loop, phase-locking algorithm to apply direct electrical stimulation to neocortical nodes of the hippocampal network precisely timed to ongoing hippocampal theta rhythms in human neurosurgical patients. We show that repetitive stimulation of lateral temporal cortex synchronized to hippocampal theta increases hippocampal theta while it is delivered, suggesting theta entrainment of hippocampal neural activity. After stimulation, network connectivity is persistently increased relative to baseline, as indicated by theta-phase synchrony of hippocampus to neocortex and increased amplitudes of the hippocampal evoked response to isolated neocortical stimulation. These indicators of network connectivity are not affected by control stimulation delivered with approximately the same rhythm but without phase locking to hippocampal theta. These findings support the causal role of theta oscillations in routing neural signals across the hippocampal network and suggest phase-synchronized stimulation as a promising method to modulate theta- and hippocampal-dependent behaviors.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| | - Sarah M Lurie
- Interdepartmental Neuroscience Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Hiba A Haider
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Stephan Schuele
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mark Schatza
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Alik S Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Joel L Voss
- Department of Neurology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Kitazawa Y, Sakakura K, Uda H, Kuroda N, Ueda R, Firestone E, Lee MH, Jeong JW, Sonoda M, Osawa SI, Ukishiro K, Ishida M, Kakinuma K, Ota S, Takayama Y, Iijima K, Kambara T, Endo H, Suzuki K, Nakasato N, Iwasaki M, Asano E. Visualization of functional and effective connectivity underlying auditory descriptive naming. Clin Neurophysiol 2025; 175:2010729. [PMID: 40349545 DOI: 10.1016/j.clinph.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVE We visualized functional and effective connectivity within specific white matter networks in response to auditory descriptive questions. METHODS We investigated 40 Japanese-speaking patients with focal epilepsy and estimated connectivity measures using cortical high-gamma dynamics and MRI tractography. RESULTS Hearing a wh-interrogative at question onset enhanced inter-hemispheric functional connectivity, with left-to-right callosal facilitatory flows between the superior-temporal gyri, contrasted by functional connectivity diminution with right-to-left callosal suppressive flows between dorsolateral prefrontal regions. Processing verbs associated with concrete objects or adverbs increased left intra-hemispheric connectivity, with bidirectional facilitatory flows through extensive white matter pathways. Questions beginning with what, compared to where, induced greater neural engagement in the left posterior inferior-frontal gyrus at question offset, linked to enhanced functional connectivity and bidirectional facilitatory flows to the temporal lobe neocortex via the arcuate fasciculus. During overt responses, inter-hemispheric functional connectivity was enhanced, with bidirectional callosal flows between Rolandic areas, and individuals with higher IQ scores exhibited less prolonged neural engagement in the left posterior middle frontal gyrus. CONCLUSIONS Visualization of directional neural interactions within white matter networks during overt naming is feasible. SIGNIFICANCE Phrase order may influence network dynamics in listeners, even when presented with auditory descriptive questions conveying similar meanings.
Collapse
Affiliation(s)
- Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan; Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 9808574, Japan
| | - Kazushi Ukishiro
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Makoto Ishida
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuo Kakinuma
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Shoko Ota
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 9808574, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA.
| |
Collapse
|
3
|
Rao AM, DeHaan RD, Kahana MJ. Synchronous Theta Networks Characterize Successful Memory Retrieval. J Neurosci 2025; 45:e1332242025. [PMID: 40032520 PMCID: PMC12005240 DOI: 10.1523/jneurosci.1332-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Memory retrieval activates regions across the brain, including not only the hippocampus and medial temporal lobe (MTL), but also frontal, parietal, and lateral temporal cortical regions. What remains unclear, however, is how these regions communicate to organize retrieval-specific processing. Here, we elucidate the role of theta (3-8 Hz) synchronization, broadly implicated in memory function, during the spontaneous retrieval of episodic memories. Analyzing a dataset of 382 neurosurgical patients (213 males, 168 females, and 1 unknown) implanted with intracranial electrodes who completed a free-recall task, we find that synchronous networks of theta phase synchrony span the brain in the moments before spontaneous recall, in comparison to periods of deliberation and incorrect recalls. Hubs of the retrieval network, which systematically synchronize with other regions, appear throughout the prefrontal cortex and lateral and medial temporal lobes, as well as other areas. Theta synchrony increases appear more prominently for slow (3 Hz) theta than for fast (8 Hz) theta in the recall-deliberation contrast, but not in the encoding or recall-intrusion contrasts, and theta power and synchrony correlate positively throughout the theta band. These results implicate diffuse brain-wide synchronization of theta rhythms, especially slow theta, in episodic memory retrieval.
Collapse
Affiliation(s)
- Aditya M Rao
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
4
|
Fang W, Jiang X, Chen J, Zhang C, Wang L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr Biol 2025; 35:1495-1507.e5. [PMID: 40086442 DOI: 10.1016/j.cub.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
To process sequential streams of information, e.g., language, the brain must encode multiple items in sequence working memory (SWM) according to their ordinal relationship. While the geometry of neural states could represent sequential events in the frontal cortex, the control mechanism over these neural states remains unclear. Using high-throughput electrophysiology recording in the macaque frontal cortex, we observed widespread theta responses after each stimulus entry. Crucially, by applying targeted dimensionality reduction to extract task-relevant neural subspaces from both local field potential (LFP) and spike data, we found that theta power transiently encoded each sequentially presented stimulus regardless of its order. At the same time, theta-spike interaction was rank-selectively associated with memory subspaces, thereby potentially supporting the binding of items to appropriate ranks. Furthermore, this putative theta control can generalize to length-variable and error sequences, predicting behavior. Thus, decomposed entry/rank-WM subspaces and theta-spike interactions may underlie the control of SWM.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Jiang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwen Chen
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cong Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
5
|
Ueda R, Uda H, Hatano K, Sakakura K, Kuroda N, Kitazawa Y, Kanno A, Lee MH, Jeong JW, Luat AF, Asano E. Millisecond-Scale White Matter Dynamics Underlying Visuomotor Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646029. [PMID: 40236156 PMCID: PMC11996303 DOI: 10.1101/2025.03.28.646029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the conventional neuropsychological model, nonverbal visuospatial processing is predominantly handled by the right hemisphere, whereas verbal processing occurs in the left, with right-hand responses governed by the left motor cortex. Using intracranial EEG and MRI tractography, we investigated the timing and white matter networks involved in processing nonverbal visuospatial stimuli, forming response decisions, and generating motor outputs. Within 200 ms of stimulus onset, we observed widespread increases in functional connectivity and bidirectional neural flows from visual to association cortices, predominantly in the right hemisphere. Engagement of the right anterior middle frontal gyrus improved response accuracy; however, the accompanying enhancement in intra-hemispheric connectivity delayed response times. In the final 100 ms before right-hand response, functional connectivity and bidirectional communication via the corpus callosum between the right and left motor cortices became prominent. These findings provide millisecond-level support for the established model of hemispheric specialization, while highlighting a trade-off between accuracy and speed governed by the right dorsolateral prefrontal network. They also underscore the critical timing of callosal transmission of response decisions formed in right-hemispheric networks to the left-hemispheric motor system. Highlights Neural information propagates through fasciculi during a visuomotor task.Non-verbal visuospatial analysis is mediated with right-hemispheric dominance.The right middle frontal gyrus improves response accuracy but delays responses.Interhemispheric information transfer occurs immediately before motor responses.This transfer between motor cortices is mediated by the corpus callosum.
Collapse
|
6
|
Solomon EA, Hassan U, Trapp NT, Boes AD, Keller CJ. DLPFC Stimulation Suppresses High-Frequency Neural Activity in the Human sgACC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645556. [PMID: 40235994 PMCID: PMC11996418 DOI: 10.1101/2025.03.26.645556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (DLPFC) is hypothesized to relieve symptoms of depression by inhibiting activity in the subgenual anterior cingulate cortex (sgACC). However, we have a limited understanding of how TMS influences neural activity in the sgACC, owing to its deep location within the brain. To better understand the mechanism of antidepressant response to TMS, we recruited two neurosurgical patients with indwelling electrodes and delivered TMS pulses to the DLPFC while simultaneously recording local field potentials from the sgACC. Spectral analysis revealed a decrease in high-frequency activity (HFA; 70-180 Hz) after each stimulation pulse, which was especially pronounced in the sgACC relative to other regions. TMS-evoked HFA power was generally anticorrelated between the DLPFC and sgACC, even while low-frequency phase locking between the two regions was enhanced. Together, these findings support the notion that TMS to the DLPFC can suppress neural firing in the sgACC, suggesting a possible mechanism by which this treatment regulates mood.
Collapse
|
7
|
Moraresku S, Hammer J, Dimakopoulos V, Kajsova M, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG. Neurosci Bull 2025:10.1007/s12264-025-01371-x. [PMID: 40095210 DOI: 10.1007/s12264-025-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Vasileios Dimakopoulos
- Klinik für Neurochirurgie, Universitätsspital Zürich, Universität Zürich, Zurich, Switzerland
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia.
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia.
| |
Collapse
|
8
|
Khalil R, Frühholz S, Godde B. Emotion Induction Modulates Neural Dynamics Related to the Originality of Ideational Creativity. Hum Brain Mapp 2025; 46:e70182. [PMID: 40071472 PMCID: PMC11897728 DOI: 10.1002/hbm.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
Emotions remarkably impact our creative minds; nevertheless, a comprehensive mapping of their underlying neural mechanisms remains elusive. Therefore, we examined the influence of emotion induction on ideational originality and its associated neural dynamics. Participants were randomly presented with three short videos with sad, neutral, and happy content. After each video, ideational originality was evaluated using the alternate uses task. Both happy and sad inductions significantly enhanced ideational originality relative to the neutral induction condition. However, no significant difference was observed in ideational originality between the happy and sad emotion inductions. Associated neural dynamics were assessed through EEG time-frequency (TF) power and phase-amplitude coupling (PAC) analyses. Our findings suggest that emotional states elicit distinct TF and PAC profiles associated with ideational originality. Relative to baseline, gamma activity was enhanced after the neutral induction and more enhanced after the induction of a happy emotion but reduced after the induction of sad emotion 2-4 s after starting the task. Our functional connectivity couplings suggest that inducing happy and sad emotions may influence the working memory and attentional system differently, leading to varying effects on associated processing modes. Inducing a happy emotion may result in decreased neural activity and processing of rich information in working memory for exploring more original ideas through cognitive flexibility. In contrast, inducing a sad emotion may enhance neural activity and increase coupling within the attention system to exploit and select fewer original ideas through cognitive persistence.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision SciencesConstructor UniversityBremenGermany
| | - Sascha Frühholz
- Cognitive and Affective Neuroscience UnitZurichSwitzerland
- Department of PsychologyUniversity of OsloOsloNorway
| | - Ben Godde
- School of Business, Social and Decision SciencesConstructor UniversityBremenGermany
| |
Collapse
|
9
|
Goelman G, Benoliel T, Israel Z, Heymann S, Leon J, Ekstein D. Velocities of hippocampal traveling waves are proportional to their coherence frequency. PLoS One 2025; 20:e0313900. [PMID: 39982932 PMCID: PMC11844891 DOI: 10.1371/journal.pone.0313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Cortical traveling waves, defined by their spatial, temporal, and frequency characteristics, provide key insights into active brain regions, timing, frequency, and the direction of activity propagation. Emerging evidence suggests that the directionality and spatiotemporal extent of these waves encode cognitive processes. However, the relationship between frequency and this encoding mechanism remains unclear. We investigate the hypothesis that coherence frequency determines wave propagation velocity. By employing both bivariate linear and multivariate nonlinear coherence analyses, we demonstrate that coherence frequency encodes propagation velocity. Unlike linear analyses, which may overestimate velocities due to bidirectional flow when assessing multiple pair coherences, our nonlinear approach-calculating propagation along four-node pathways-treats pathways as holistic units with net unidirectional flow, making it more appropriate for calculating wave velocities. We extracted pairwise coherence and four-node pathways from local field potentials recorded via intracranial electrodes positioned along the hippocampal longitudinal axis in patients with drug-resistant epilepsy. Our findings reveal that average coherence values and contact pair distances calculated by the multivariate analysis are more consistent across frequencies compared to pairwise coherence. The average coherence values are higher, and the average pair distances and wave velocities are lower in the multivariate analysis than in the pairwise approach. Propagation velocities along the hippocampus at low frequencies (<~35 Hz) exhibit a linear dependence on frequency in the alpha and beta bands, with a steeper slope in the gamma band, indicating distinct mechanisms for velocity-frequency dependence across oscillation bands. While observed within the hippocampus, these findings suggest that the relationship between frequency and wave velocity may extend to other cortical areas. Our nonlinear multivariate analysis appears better suited than pairwise coherence for investigating brain network dynamics. Further research is needed to elucidate the role of conduction velocity in brain function.
Collapse
Affiliation(s)
- Gadi Goelman
- Department of Neurology and Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Benoliel
- Department of Neurology and Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zvi Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Sami Heymann
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Juan Leon
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Dana Ekstein
- Department of Neurology and Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Pinet S, Longcamp M. Commentary: Handwriting but not typewriting leads to widespread brain connectivity: a high-density EEG study with implications for the classroom. Front Psychol 2025; 15:1517235. [PMID: 39845543 PMCID: PMC11750765 DOI: 10.3389/fpsyg.2024.1517235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Svetlana Pinet
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
11
|
Seger S, Kriegel J, Lega B, Ekstrom A. Differences and similarities between human hippocampal low-frequency oscillations during navigation and mental simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626897. [PMID: 39677778 PMCID: PMC11643049 DOI: 10.1101/2024.12.04.626897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Low frequency oscillations in the hippocampus emerge during by both spatial navigation and episodic memory function in humans. We have recently shown that in humans, memory-related processing is a stronger driver of low frequency oscillations than navigation. These findings and others support the idea that low-frequency oscillations are more strongly associated with a general memory function than with a specific role in spatial navigation. However, whether the low-frequency oscillations that support episodic memory and those during navigation could still share some similar functional roles remains unclear. In this study, patients undergoing intracranial electroencephalography (iEEG) monitoring performed a navigation task in which they navigated and performed internally directed route replay, similar to episodic memory. We trained a random forest classification model to use patterns in low-frequency power (2-12 Hz) to learn the position during navigation and subsequently used the same model to successfully decode position during mental simulation. We show that removal of background differences in power between navigation and mental simulation is critical to detecting the overlapping patterns. These results suggest that the low-frequency oscillations that emerge during navigation are more associated with a role in memory than specifically with a navigation related function.
Collapse
Affiliation(s)
- Sarah Seger
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Jennifer Kriegel
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Brad Lega
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Arne Ekstrom
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| |
Collapse
|
12
|
Kraft JD, Hampstead BM. A Systematic Review of tACS Effects on Cognitive Functioning in Older Adults Across the Healthy to Dementia Spectrum. Neuropsychol Rev 2024; 34:1165-1190. [PMID: 37882864 PMCID: PMC11045666 DOI: 10.1007/s11065-023-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation that has experienced rapid growth within the aging population over the past decade due to its potential for modulating cognitive functioning across the "intact" to dementia spectrum. For this reason, we performed a systematic review of the literature to evaluate the efficacy of tACS on cognitive functioning in older adults, including those with cognitive impairment. Our review was completed in June 2023 using Psych INFO, Embase, PubMed, and Cochrane databases. Out of 479 screened articles, 21 met inclusion criteria and were organized according to clinical diagnoses. Seven out of nine studies targeted cognitively intact older adults and showed some type of cognitive improvement after stimulation, whereas nine out of twelve studies targeted clinical diagnoses and showed improved cognitive performance to varying degrees. Studies showed considerable heterogeneity in methodology, stimulation parameters, participant characteristics, choice of cognitive task, and analytic strategy, all of which reinforce the need for standardized reporting of tACS methods. Through this heterogeneity, multiple patterns are described, such as disease progression influencing tACS effects and the need for individualized tailoring. For clinical translation, it is imperative that the field (a) better understand the physiological effects of tACS in these populations, especially in respect to biomarkers, (b) document a causal relationship between tACS delivery and neurophysiological/cognitive effects, and (c) systematically establish dosing parameters (e.g., amplitude, stimulation frequency, number and duration of sessions, need for booster/maintenance sessions).
Collapse
Affiliation(s)
- Jacob D Kraft
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA.
- Department of Psychiatry &, Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| | - Benjamin M Hampstead
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA
- Mental Health Service, Neuropsychology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| |
Collapse
|
13
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall revealed through multi-experiment iEEG replication. eLife 2024; 13:RP99018. [PMID: 39556109 PMCID: PMC11573350 DOI: 10.7554/elife.99018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience network (SN), default mode network (DMN), and frontoparietal network (FPN), provides a framework for understanding these interactions. We analyzed intracranial electroencephalography (EEG) recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally driven memory encoding and internally governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
14
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
15
|
Olson RJ, Bartlett L, Sonneborn A, Milton R, Bretton-Granatoor Z, Firdous A, Harris AZ, Abbas AI. Decoupling of cortical activity from behavioral state following administration of the classic psychedelic DOI. Neuropharmacology 2024; 257:110030. [PMID: 38851531 PMCID: PMC11260522 DOI: 10.1016/j.neuropharm.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Administration or consumption of classic psychedelics (CPs) leads to profound changes in experience which are often described as highly novel and meaningful. They have shown substantial promise in treating depressive symptoms and may be therapeutic in other situations. Although research suggests that the therapeutic response is correlated with the intensity of the experience, the neural circuit basis for the alterations in experience caused by CPs requires further study. The medial prefrontal cortex (mPFC), where CPs have been shown to induce rapid, 5-HT2A receptor-dependent structural and neurophysiological changes, is believed to be a key site of action. To investigate the acute neural circuit changes induced by CPs, we recorded single neurons and local field potentials in the mPFC of freely behaving male mice after administration of the 5-HT2A/2C receptor-selective CP, 2,5-Dimethoxy-4-iodoamphetamine (DOI). We segregated recordings into active and rest periods in order to examine cortical activity during desynchronized (active) and synchronized (rest) states. We found that DOI induced a robust decrease in low frequency power when animals were at rest, attenuating the usual synchronization that occurs during less active behavioral states. DOI also increased broadband gamma power and suppressed activity in fast-spiking neurons in both active and rest periods. Together, these results suggest that the CP DOI induces persistent desynchronization in mPFC, including during rest when mPFC typically exhibits more synchronized activity. This shift in cortical dynamics may in part underlie the longer-lasting effects of CPs on plasticity, and may be critical to their therapeutic properties.
Collapse
Affiliation(s)
- Randall J Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Lowell Bartlett
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Russell Milton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | | | - Ayesha Firdous
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA
| | - Alexander Z Harris
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA; Department of Psychiatry, Columbia University, New York, NY, 10034, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA; Department of Psychiatry, Oregon Health and Science University, Portland OR 97239, USA; VA Portland Health Care System, Portland OR, 97239, USA.
| |
Collapse
|
16
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall: A multi-experiment iEEG replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582593. [PMID: 38463954 PMCID: PMC10925291 DOI: 10.1101/2024.02.28.582593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience (SN), default mode (DMN), and frontoparietal (FPN) networks, provides a framework for understanding these interactions. We analyzed intracranial EEG recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting-state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally-driven memory encoding and internally-governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
17
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
18
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
19
|
Cherenfant M, Chandanathil M, Robinson RE, Millis RM. Prefrontal, Frontal, and Temporal Theta EEG Asymmetries and Self-Reports of Emotional Regulation. Cureus 2024; 16:e68771. [PMID: 39246638 PMCID: PMC11378327 DOI: 10.7759/cureus.68771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Previous studies have shown that right-sided frontal alpha asymmetry (fAA) is an electroencephalography (EEG) marker for negatively valenced emotions and a marker for negative self-perceptions of a person's psychosocial interactions. Alpha activity is affected by the changes in visual stimulation associated with eye-opening and eye-closing; theta activity is not so affected. Therefore, this analysis investigates the relationship between an individual's theta asymmetry and self-perceptions of their psychosocial interactions. We used quantitative electroencephalographic (qEEG) data from eight right-handed male medical students aged between 19 and 38 years, recorded under eyes-open (EO) and eyes-closed (EC) conditions. Significant correlations were found between self-reported measures of psychosocial interactions via the Interactive Self-Report Inventory (ISI). The main finding was that greater left-sided frontal temporal asymmetry (fTA) under both EO and EC conditions was associated with lower "regulated" ISI scores and lower "dependent" ISI scores. Greater left-sided temporal theta asymmetry (tTA), under EC conditions, was associated with higher "anxious" ISI scores. Greater left-sided prefrontal theta symmetry (pfTA), under EO conditions, was associated with lower "relaxed" ISI scores. These findings suggest that theta asymmetries in the frontal, prefrontal, and temporal cortices may be indicative of negative emotional states. The results of this study underscore the potential of pfTA, fTA, and tTA to be used as biomarkers for cognitive-emotional balance. The implications for mental health interventions, particularly personalized therapeutic approaches, are significant.
Collapse
Affiliation(s)
- Mylorde Cherenfant
- Department of Medicine, College of Graduate Studies, American University of Antigua, St. Johns, ATG
| | - Merin Chandanathil
- Department of Physiology, American University of Antigua, St. Johns, ATG
| | - Raymond E Robinson
- Department of Clinical Medicine, American University of Antigua, St. Johns, ATG
| | - Richard M Millis
- Department of Physiology, American University of Antigua, St. Johns, ATG
| |
Collapse
|
20
|
Gorshkov O, Ombao H. Assessment of Fractal Synchronization during an Epileptic Seizure. ENTROPY (BASEL, SWITZERLAND) 2024; 26:666. [PMID: 39202136 PMCID: PMC11353581 DOI: 10.3390/e26080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
In this paper, we define fractal synchronization (FS) based on the idea of stochastic synchronization and propose a mathematical apparatus for estimating FS. One major advantage of our proposed approach is that fractal synchronization makes it possible to estimate the aggregate strength of the connection on multiple time scales between two projections of the attractor, which are time series with a fractal structure. We believe that one of the promising uses of FS is the assessment of the interdependence of encephalograms. To demonstrate this approach in evaluating the cross-dependence between channels in a network of electroencephalograms, we evaluated the FS of encephalograms during an epileptic seizure. Fractal synchronization demonstrates the presence of desynchronization during an epileptic seizure.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | | |
Collapse
|
21
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
22
|
Szirmai D, Zabihi A, Kói T, Hegyi P, Wenning AS, Engh MA, Molnár Z, Csukly G, Horváth AA. EEG connectivity and network analyses predict outcome in patients with disorders of consciousness - A systematic review and meta-analysis. Heliyon 2024; 10:e31277. [PMID: 38826755 PMCID: PMC11141356 DOI: 10.1016/j.heliyon.2024.e31277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Outcome prediction in prolonged disorders of consciousness (DOC) remains challenging. This can result in either inappropriate withdrawal of treatment or unnecessary prolongation of treatment. Electroencephalography (EEG) is a cheap, portable, and non-invasive device with various opportunities for complex signal analysis. Computational EEG measures, such as EEG connectivity and network metrics, might be ideal candidates for the investigation of DOC, but their capacity in prognostication is still undisclosed. We conducted a meta-analysis aiming to compare the prognostic power of the widely used clinical scale, Coma Recovery Scale-Revised - CRS-R and EEG connectivity and network metrics. We found that the prognostic power of the CRS-R scale was moderate (AUC: 0.67 (0.60-0.75)), but EEG connectivity and network metrics predicted outcome with significantly (p = 0.0071) higher accuracy (AUC:0.78 (0.70-0.86)). We also estimated the prognostic capacity of EEG spectral power, which was not significantly (p = 0.3943) inferior to that of the EEG connectivity and graph-theory measures (AUC:0.75 (0.70-0.80)). Multivariate automated outcome prediction tools seemed to outperform clinical and EEG markers.
Collapse
Affiliation(s)
- Danuta Szirmai
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Arashk Zabihi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Mathematical Institute, Department of Stochastics, Budapest University of Technology and Economics, Budapest, Hungary (Műegyetem rkp. 3, Budapest, H-1111, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary (Tömő u. 25-29, Budapest, H-1083, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary (Szigeti út 12., Pécs, H-7624, Hungary
| | - Alexander Schulze Wenning
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
| | - Zsolt Molnár
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary (Üllői út 78., Budapest, H-1082, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland (49 Przybyszewskiego St, Poznan, Poland, 60-355, Poland
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary (Balassa u. 6, Budapest, H-1083, Hungary
| | - András Attila Horváth
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Baross utca 22., Budapest, H-1085, Hungary
- Neurocognitive Research Center, National Institute of Mental Health, Neurology, Neurosurgery, Budapest, Hungary (Amerikai út 57., Budapest, H-1145, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary (Üllői út 26., Budapest, H-1085, Hungary
| |
Collapse
|
23
|
Lin R, Meng X, Chen F, Li X, Jensen O, Theeuwes J, Wang B. Neural evidence for attentional capture by salient distractors. Nat Hum Behav 2024; 8:932-944. [PMID: 38538771 DOI: 10.1038/s41562-024-01852-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Salient objects often capture our attention, serving as distractors and hindering our current goals. It remains unclear when and how salient distractors interact with our goals, and our knowledge on the neural mechanisms responsible for attentional capture is limited to a few brain regions recorded from non-human primates. Here we conducted a multivariate analysis on human intracranial signals covering most brain regions and successfully dissociated distractor-specific representations from target-arousal signals in the high-frequency (60-100 Hz) activity. We found that salient distractors were processed rapidly around 220 ms, while target-tuning attention was attenuated simultaneously, supporting initial capture by distractors. Notably, neuronal activity specific to the distractor representation was strongest in the superior and middle temporal gyrus, amygdala and anterior cingulate cortex, while there were smaller contributions from the parietal and frontal cortices. These results provide neural evidence for attentional capture by salient distractors engaging a much larger network than previously appreciated.
Collapse
Affiliation(s)
- Rongqi Lin
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, University of Hongkong Shenzhen Hospital, Shenzhen, China
| | - Xinyu Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Benchi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
24
|
Li Y, Pazdera JK, Kahana MJ. EEG decoders track memory dynamics. Nat Commun 2024; 15:2981. [PMID: 38582783 PMCID: PMC10998865 DOI: 10.1038/s41467-024-46926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Encoding- and retrieval-related neural activity jointly determine mnemonic success. We ask whether electroencephalographic activity can reliably predict encoding and retrieval success on individual trials. Each of 98 participants performed a delayed recall task on 576 lists across 24 experimental sessions. Logistic regression classifiers trained on spectral features measured immediately preceding spoken recall of individual words successfully predict whether or not those words belonged to the target list. Classifiers trained on features measured during word encoding also reliably predict whether those words will be subsequently recalled and further predict the temporal and semantic organization of the recalled items. These findings link neural variability predictive of successful memory with item-to-context binding, a key cognitive process thought to underlie episodic memory function.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Jesse K Pazdera
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Baselgia S, Kasten FH, Herrmann CS, Rasch B, Paβmann S. No Benefit in Memory Performance after Nocturnal Memory Reactivation Coupled with Theta-tACS. Clocks Sleep 2024; 6:211-233. [PMID: 38651390 PMCID: PMC11036246 DOI: 10.3390/clockssleep6020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.
Collapse
Affiliation(s)
- Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Florian H. Kasten
- Centre de Recherche Cerveau & Cognition, CNRS & Université Toulouse III Paul Sabatier, 31062 Toulouse, France;
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany;
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Sven Paβmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
26
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
27
|
Duville MM, Alonso-Valerdi LM, Ibarra-Zarate DI. Improved emotion differentiation under reduced acoustic variability of speech in autism. BMC Med 2024; 22:121. [PMID: 38486293 PMCID: PMC10941423 DOI: 10.1186/s12916-024-03341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Socio-emotional impairments are among the diagnostic criteria for autism spectrum disorder (ASD), but the actual knowledge has substantiated both altered and intact emotional prosodies recognition. Here, a Bayesian framework of perception is considered suggesting that the oversampling of sensory evidence would impair perception within highly variable environments. However, reliable hierarchical structures for spectral and temporal cues would foster emotion discrimination by autistics. METHODS Event-related spectral perturbations (ERSP) extracted from electroencephalographic (EEG) data indexed the perception of anger, disgust, fear, happiness, neutral, and sadness prosodies while listening to speech uttered by (a) human or (b) synthesized voices characterized by reduced volatility and variability of acoustic environments. The assessment of mechanisms for perception was extended to the visual domain by analyzing the behavioral accuracy within a non-social task in which dynamics of precision weighting between bottom-up evidence and top-down inferences were emphasized. Eighty children (mean 9.7 years old; standard deviation 1.8) volunteered including 40 autistics. The symptomatology was assessed at the time of the study via the Autism Diagnostic Observation Schedule, Second Edition, and parents' responses on the Autism Spectrum Rating Scales. A mixed within-between analysis of variance was conducted to assess the effects of group (autism versus typical development), voice, emotions, and interaction between factors. A Bayesian analysis was implemented to quantify the evidence in favor of the null hypothesis in case of non-significance. Post hoc comparisons were corrected for multiple testing. RESULTS Autistic children presented impaired emotion differentiation while listening to speech uttered by human voices, which was improved when the acoustic volatility and variability of voices were reduced. Divergent neural patterns were observed from neurotypicals to autistics, emphasizing different mechanisms for perception. Accordingly, behavioral measurements on the visual task were consistent with the over-precision ascribed to the environmental variability (sensory processing) that weakened performance. Unlike autistic children, neurotypicals could differentiate emotions induced by all voices. CONCLUSIONS This study outlines behavioral and neurophysiological mechanisms that underpin responses to sensory variability. Neurobiological insights into the processing of emotional prosodies emphasized the potential of acoustically modified emotional prosodies to improve emotion differentiation by autistics. TRIAL REGISTRATION BioMed Central ISRCTN Registry, ISRCTN18117434. Registered on September 20, 2020.
Collapse
Affiliation(s)
- Mathilde Marie Duville
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México.
| | - Luz María Alonso-Valerdi
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México
| | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México
| |
Collapse
|
28
|
Van der Weel FR(R, Van der Meer ALH. Handwriting but not typewriting leads to widespread brain connectivity: a high-density EEG study with implications for the classroom. Front Psychol 2024; 14:1219945. [PMID: 38343894 PMCID: PMC10853352 DOI: 10.3389/fpsyg.2023.1219945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2025] Open
Abstract
As traditional handwriting is progressively being replaced by digital devices, it is essential to investigate the implications for the human brain. Brain electrical activity was recorded in 36 university students as they were handwriting visually presented words using a digital pen and typewriting the words on a keyboard. Connectivity analyses were performed on EEG data recorded with a 256-channel sensor array. When writing by hand, brain connectivity patterns were far more elaborate than when typewriting on a keyboard, as shown by widespread theta/alpha connectivity coherence patterns between network hubs and nodes in parietal and central brain regions. Existing literature indicates that connectivity patterns in these brain areas and at such frequencies are crucial for memory formation and for encoding new information and, therefore, are beneficial for learning. Our findings suggest that the spatiotemporal pattern from visual and proprioceptive information obtained through the precisely controlled hand movements when using a pen, contribute extensively to the brain's connectivity patterns that promote learning. We urge that children, from an early age, must be exposed to handwriting activities in school to establish the neuronal connectivity patterns that provide the brain with optimal conditions for learning. Although it is vital to maintain handwriting practice at school, it is also important to keep up with continuously developing technological advances. Therefore, both teachers and students should be aware of which practice has the best learning effect in what context, for example when taking lecture notes or when writing an essay.
Collapse
Affiliation(s)
| | - Audrey L. H. Van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
29
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Schonhaut DR, Rao AM, Ramayya AG, Solomon EA, Herweg NA, Fried I, Kahana MJ. MTL neurons phase-lock to human hippocampal theta. eLife 2024; 13:e85753. [PMID: 38193826 PMCID: PMC10948143 DOI: 10.7554/elife.85753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Abstract
Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4 Hz) or fast (6-10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13-20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.
Collapse
Affiliation(s)
- Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aditya M Rao
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Ashwin G Ramayya
- Department of Neurosurgery, University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan A Solomon
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Nora A Herweg
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Itzhak Fried
- Department of Neurosurgery, Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos AngelesUnited States
- Faculty of Medicine, Tel-Aviv UniversityTel-AvivIsrael
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
31
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
32
|
Parenti L, Navare UP, Marchesi S, Roselli C, Wykowska A. Theta synchronization as a neural marker of flexible (re-)use of socio-cognitive mechanisms for a new category of (artificial) interaction partners. Cortex 2023; 169:249-258. [PMID: 37956508 DOI: 10.1016/j.cortex.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 11/15/2023]
Abstract
Previous work shows that in some instances artificial agents, such as robots, can elicit higher-order socio-cognitive mechanisms, similar to those elicited by humans. This suggests that these socio-cognitive mechanisms, such as mentalizing processes, originally developed for interaction with other humans, might be flexibly (re-)used, or "hijacked", for approaching this new category of interaction partners (Wykowska, 2020). In this study, we set out to identify neural markers of such flexible reuse of socio-cognitive mechanisms. We focused on fronto-parietal theta synchronization, as it has been proposed to be a substrate of cognitive flexibility in general (Fries, 2005). We analyzed EEG data from two experiments (Bossi et al., 2020; Roselli et al., submitted), in which participants completed a test measuring their individual likelihood to adopt the intentional stance towards robots, the intentional stance (IST) test. Our results show that participants with higher scores on the IST, indicating that they had higher likelihood of adopting the intentional stance towards a robot, had a significantly higher theta synchronization value, relative to participants with lower scores on the IST. These results suggest that long-range synchronization in the theta band might be a marker socio-cognitive process that can be flexibly applied towards non-human agents, such as robots.
Collapse
Affiliation(s)
- Lorenzo Parenti
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, Genova, Italy; Department of Psychology, University of Turin, Turin, Italy.
| | - Uma Prashant Navare
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, Genova, Italy; Department of Computer Science, University of Manchester, Manchester, United Kingdom.
| | - Serena Marchesi
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, Genova, Italy.
| | - Cecilia Roselli
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, Genova, Italy.
| | - Agnieszka Wykowska
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, Genova, Italy.
| |
Collapse
|
33
|
Collomb-Clerc A, Gueguen MCM, Minotti L, Kahane P, Navarro V, Bartolomei F, Carron R, Regis J, Chabardès S, Palminteri S, Bastin J. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning. Nat Commun 2023; 14:6534. [PMID: 37848435 PMCID: PMC10582006 DOI: 10.1038/s41467-023-42380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.
Collapse
Affiliation(s)
- Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Maëlle C M Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrice Bartolomei
- Timone University Hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, University Hospital of Marseille, Marseille, France
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Timone University Hospital, Department of functional and stereotactic neurosurgery, University Hospital of Marseille, Marseille, France
| | - Jean Regis
- Neurosurgery Department, University Hospital of Marseille, Marseille, France
| | - Stephan Chabardès
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurosurgery Department, University Hospital of Grenoble, Grenoble, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d'Etudes Cognitives, ENS, PSL, INSERM, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
34
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Seger SE, Kriegel JLS, Lega BC, Ekstrom AD. Memory-related processing is the primary driver of human hippocampal theta oscillations. Neuron 2023; 111:3119-3130.e4. [PMID: 37467749 PMCID: PMC10685603 DOI: 10.1016/j.neuron.2023.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Decades of work in rodents suggest that movement is a powerful driver of hippocampal low-frequency "theta" oscillations. Puzzlingly, such movement-related theta increases in primates are less sustained and of lower frequency, leading to questions about their functional relevance. Verbal memory encoding and retrieval lead to robust increases in low-frequency oscillations in humans, and one possibility is that memory might be a stronger driver of hippocampal theta oscillations in humans than navigation. Here, neurosurgical patients navigated routes and then immediately mentally simulated the same routes while undergoing intracranial recordings. We found that mentally simulating the same route that was just navigated elicited oscillations that were of greater power, higher frequency, and longer duration than those involving navigation. Our findings suggest that memory is a more potent driver of human hippocampal theta oscillations than navigation, supporting models of internally generated theta oscillations in the human hippocampus.
Collapse
Affiliation(s)
- Sarah E Seger
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| | - Jennifer L S Kriegel
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Brad C Lega
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Arne D Ekstrom
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| |
Collapse
|
36
|
Herz N, Bukala BR, Kragel JE, Kahana MJ. Hippocampal activity predicts contextual misattribution of false memories. Proc Natl Acad Sci U S A 2023; 120:e2305292120. [PMID: 37751551 PMCID: PMC10556612 DOI: 10.1073/pnas.2305292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.
Collapse
Affiliation(s)
- Noa Herz
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Bernard R. Bukala
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - James E. Kragel
- Department of Neurology, University of Chicago, Chicago, IL60637
| | - Michael J. Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
37
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
38
|
Gedankien T, Tan RJ, Qasim SE, Moore H, McDonagh D, Jacobs J, Lega B. Acetylcholine modulates the temporal dynamics of human theta oscillations during memory. Nat Commun 2023; 14:5283. [PMID: 37648692 PMCID: PMC10469188 DOI: 10.1038/s41467-023-41025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.
Collapse
Affiliation(s)
- Tamara Gedankien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ryan Joseph Tan
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Salman Ehtesham Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haley Moore
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - David McDonagh
- Department of Anesthesiology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA.
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
39
|
Koizumi K, Kunii N, Ueda K, Nagata K, Fujitani S, Shimada S, Nakao M. Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe. Biomedicines 2023; 11:2262. [PMID: 37626758 PMCID: PMC10452721 DOI: 10.3390/biomedicines11082262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up-Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF's potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF's application to memory and provides valuable insights into developing more efficient memory enhancement strategies.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Kazutaka Ueda
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Masayuki Nakao
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| |
Collapse
|
40
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
41
|
Frolov N, Pitsik E, Grubov V, Badarin A, Maksimenko V, Zakharov A, Kurkin S, Hramov A. Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:6420. [PMID: 37514714 PMCID: PMC10385696 DOI: 10.3390/s23146420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.
Collapse
Affiliation(s)
- Nikita Frolov
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Pitsik
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vadim Grubov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Artem Badarin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vladimir Maksimenko
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Zakharov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Semen Kurkin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Hramov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
42
|
Kahana MJ, Ezzyat Y, Wanda PA, Solomon EA, Adamovich-Zeitlin R, Lega BC, Jobst BC, Gross RE, Ding K, Diaz-Arrastia RR. Biomarker-guided neuromodulation aids memory in traumatic brain injury. Brain Stimul 2023; 16:1086-1093. [PMID: 37414370 DOI: 10.1016/j.brs.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of cognitive disability in adults, often characterized by marked deficits in episodic memory and executive function. Prior studies have found that direct electrical stimulation of the temporal cortex yielded improved memory in epilepsy patients, but it is not clear if these results generalize to patients with a specific history of TBI. Here we asked whether applying closed-loop, direct electrical stimulation to lateral temporal cortex could reliably improve memory in a TBI cohort. Among a larger group of patients undergoing neurosurgical evaluation for refractory epilepsy, we recruited a subset of patients with a history of moderate-to-severe TBI. By analyzing neural data from indwelling electrodes as patients studied and recalled lists of words, we trained personalized machine-learning classifiers to predict momentary fluctuations in mnemonic function in each patient. We subsequently used these classifiers to trigger high-frequency stimulation of the lateral temporal cortex (LTC) at moments when memory was predicted to fail. This strategy yielded a 19% boost in recall performance on stimulated as compared with non-stimulated lists (P = 0.012). These results provide a proof-of-concept for using closed-loop stimulation of the brain in treatment of TBI-related memory impairment.
Collapse
Affiliation(s)
- Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Youssef Ezzyat
- Department of Psychology, Wesleyan University, Middletown, CT, 06459, USA
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ethan A Solomon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
43
|
Wang DX, Ng N, Seger SE, Ekstrom AD, Kriegel JL, Lega BC. Machine learning classifiers for electrode selection in the design of closed-loop neuromodulation devices for episodic memory improvement. Cereb Cortex 2023; 33:8150-8163. [PMID: 36997155 PMCID: PMC10321120 DOI: 10.1093/cercor/bhad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023] Open
Abstract
Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.
Collapse
Affiliation(s)
- David X Wang
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nicole Ng
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sarah E Seger
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
| | - Arne D Ekstrom
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
- Department of Psychology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer L Kriegel
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bradley C Lega
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
44
|
Johnson EL, Lin JJ, King-Stephens D, Weber PB, Laxer KD, Saez I, Girgis F, D'Esposito M, Knight RT, Badre D. A rapid theta network mechanism for flexible information encoding. Nat Commun 2023; 14:2872. [PMID: 37208373 DOI: 10.1038/s41467-023-38574-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Jack J Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Ignacio Saez
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Departments of Neuroscience, Neurosurgery, and Neurology, Ichan School of Medicine at Mt. Sinai, New York, NY, USA
| | - Fady Girgis
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
45
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
46
|
Murray NWG, Graham PL, Sowman PF, Savage G. Theta tACS impairs episodic memory more than tDCS. Sci Rep 2023; 13:716. [PMID: 36639676 PMCID: PMC9839727 DOI: 10.1038/s41598-022-27190-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Episodic memory deficits are a common consequence of aging and are associated with a number of neurodegenerative disorders (e.g., Alzheimer's disease). Given the importance of episodic memory, a great deal of research has investigated how we can improve memory performance. Transcranial electrical stimulation (TES) represents a promising tool for memory enhancement but the optimal stimulation parameters that reliably boost memory are yet to be determined. In our double-blind, randomised, sham-controlled study, 42 healthy adults (36 females; 23.3 ± 7.7 years of age) received anodal transcranial direct current stimulation (tDCS), theta transcranial alternating current stimulation (tACS) and sham stimulation during a list-learning task, over three separate sessions. Stimulation was applied over the left temporal lobe, as encoding and recall of information is typically associated with mesial temporal lobe structures (e.g., the hippocampus and entorhinal cortex). We measured word recall within each stimulation session, as well as the average number of intrusion and repetition errors. In terms of word recall, participants recalled fewer words during tDCS and tACS, compared to sham stimulation, and significantly fewer words recalled during tACS compared with tDCS. Significantly more memory errors were also made during tACS compared with sham stimulation. Overall, our findings suggest that TES has a deleterious effect on memory processes when applied to the left temporal lobe.
Collapse
Affiliation(s)
- Nicholas W G Murray
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia.
| | - Petra L Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| |
Collapse
|
47
|
Linde LD, Ortiz O, Choles CM, Kramer JLK. Pain-related gamma band activity is dependent on the features of nociceptive stimuli: a comparison of laser and contact heat. J Neurophysiol 2023; 129:262-270. [PMID: 36541610 DOI: 10.1152/jn.00357.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Painful contact heat and laser stimulation offer an avenue to characterize nociceptive pathways involved in acute pain processing, by way of evoked potentials. Direct comparisons of radiant laser and contact heat are limited, particularly in context of examining time-frequency responses to stimulation. This is important in light of recent evidence to suggest that gamma band oscillations (GBOs) represent a functionally heterogeneous measure of pain. The purpose of the current study was to investigate differences in GBOs generated in response to laser and contact heat stimulation of the nondominant forearm. Following intensity matching to pain ratings, evoked electroencephalography (EEG) responses to laser and contact heat stimulation were examined in the time-frequency domain in the same participants (19 healthy adults) across two sessions. At ∼200 ms, both contact heat and laser stimulation resulted in significant, group-level event-related synchronization (ERS) in the low gamma band (i.e., 30-60 Hz) in central electrode locations (Cc, Cz, Ci). Laser stimulation also generated ERS in the 60-100 Hz range (i.e., high gamma), at ∼200 ms, while contact heat led to a significant period of desynchronization in the high gamma range between 400 and 600 ms. Both contact heat and laser GBOs were stronger on the central electrodes contralateral to the stimulated forearm, indicative of primary somatosensory cortex involvement. Based on our findings, and taken in conjunction with previous studies, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.NEW & NOTEWORTHY Despite matching pain perception between noxious laser and contact heat stimuli, we report notable differences in gamma band oscillations (GBO), measured via electroencephalography. GBOs produced following contact heat more closely resembled that of nonnoxious stimuli, while GBOs following laser stimuli were in line with previous reports. Taken together, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.
Collapse
Affiliation(s)
- Lukas D Linde
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Ortiz
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Cassandra M Choles
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Mossad SI, Vandewouw MM, de Villa K, Pang EW, Taylor MJ. Characterising the spatial and oscillatory unfolding of Theory of Mind in adults using fMRI and MEG. Front Hum Neurosci 2022; 16:921347. [PMID: 36204717 PMCID: PMC9530400 DOI: 10.3389/fnhum.2022.921347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Theory of Mind (ToM) is a core social cognitive skill that refers to the ability to attribute mental states to others. ToM involves understanding that others have beliefs, thoughts and desires that may be different from one's own and from reality. ToM is crucial to predict behaviour and navigate social interactions. This study employed the complementary methodological advantages of both functional MRI (fMRI) and magnetoencephalography (MEG) to examine the neural underpinnings of ToM in adults. Twenty healthy adults were first recruited to rate and describe 28 videos (15s long), each containing three moving shapes designed to depict either social interactions or random motion (control condition). The first sample of adults produced consistent narratives for 6 of those social videos and of those, 4 social videos and 4 control videos were chosen to include in the neuroimaging study. Another sample of twenty-five adults were then recruited to complete the neuroimaging in MEG and fMRI. In fMRI, we found increased activation in frontal-parietal regions in the social compared to the control condition corroborating previous fMRI findings. In MEG, we found recruitment of ToM networks in the social condition in theta, beta and gamma bands. The right supramarginal and angular gyri (right temporal parietal junction), right inferior parietal lobe and right temporal pole were recruited in the first 5s of the videos. Frontal regions such as the superior frontal gyrus were recruited in the second time window (5–10s). Brain regions such as the bilateral amygdalae were also recruited (5–10s), indicating that various social processes were integrated in understanding the social videos. Our study is one of the first to combine multi-modal neuroimaging to examine the neural networks underlying social cognitive processes, combining the strengths of the spatial resolution of fMRI and temporal resolution of MEG. Understanding this information from both modalities helped delineate the mechanism by which ToM processing unfolds over time in healthy adults. This allows us to determine a benchmark against which clinical populations can be compared.
Collapse
Affiliation(s)
- Sarah I. Mossad
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Sarah I. Mossad
| | - Marlee M. Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth W. Pang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Departments of Psychology and of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Yeh WH, Ju YJ, Liu YT, Wang TY. Systematic Review and Meta-Analysis on the Effects of Neurofeedback Training of Theta Activity on Working Memory and Episodic Memory in Healthy Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11037. [PMID: 36078752 PMCID: PMC9517899 DOI: 10.3390/ijerph191711037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The main purpose of this study was to investigate the effects of neurofeedback training (NFT) of theta activity on working memory (WM) and episodic memory (EM) in healthy participants via a systematic review and meta-analysis. A total of 337 articles obtained from electronic databases were assessed; however, only 11 articles met the criteria for meta-analysis after manually screening and eliminating unnecessary studies. A meta-analysis calculating the Hedges' g effect size metric with 95% confidence intervals using random effects models was employed. Heterogeneity was estimated using I2 statistics. Theta NFT is effective in improving memory outcomes, including WM with a Hedges' g of 0.56 [0.10; 1.02] (I2 = 62.9% and p = 0.02), and EM with a Hedges' g of 0.62 [0.13; 1.10] (I2 = 42.04% and p = 0.01). Overall, the results suggest that theta NFT seems to be useful as nonpharmacological/adjunct training to improve WM and EM in healthy participants.
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Ya-Ju Ju
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ting-Yi Wang
- Department of Doctorate of Nursing Practice Program, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Mushiake H. Neurophysiological Perspective on Allostasis and Homeostasis: Dynamic Adaptation in Viable Systems. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allostasis is a physiological principle based on a dynamic regulatory system, contrary to homeostasis, in which the goal is to reach a steady state and recover from deviation from a set point in the internal environment. The concept of allostasis has continued to develop with advances in the field of neuroscience. In this short review, the author presents several new findings in neuroscience and extend the concept of allostasis as mutual regulation between cognitive, somatic, and autonomic systems. In this manner, biological systems adapt to external and internal environments by changing themselves.
Collapse
|