1
|
Zhang M, Traspov A, Yang J, Zheng M, Kharzinova VR, Ai H, Zinovieva NA, Huang L. Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars. Commun Biol 2025; 8:116. [PMID: 39856249 PMCID: PMC11759952 DOI: 10.1038/s42003-025-07536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China. Demographic analysis revealed the appearance of Russian wild boars in Far East of Asia (RUA) and Europe (RUE) after the last glacial maximum till ~ 10 thousand years ago. Recent gene flow (<100 years) from RUA to RUE reflects human-mediated introductions. Cold-region wild boars exhibit strong selection signatures indicative of genetic adaptation to cold climates. Further pathway and transcriptomic analyses reveal a novel cold resistance mechanism centered on enhanced vitamin A metabolism and catalysis, involving the reuse of UGT2B31 and rhythm regulation by ANGPTL8, RLN3 and ZBTB20. This may compensate for the pig's lack of brown fat/UCP1 thermogenesis. These findings provide new insights into the molecular basis of cold adaptation and improve our understanding of Eurasian wild boar migration history.
Collapse
Affiliation(s)
- Mingpeng Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, P.R. China
| | - Aleksei Traspov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Min Zheng
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Veronika R Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| | - Natalia A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
2
|
Poulin R, Salloum PM, Bennett J. Evolution of parasites in the Anthropocene: new pressures, new adaptive directions. Biol Rev Camb Philos Soc 2024; 99:2234-2252. [PMID: 38984760 DOI: 10.1111/brv.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures. Here, we synthesise current knowledge on human-induced evolution in eukaryotic parasites of animals, and present a multidisciplinary framework for its study and monitoring. Parasites generally have short generation times and huge fecundity, features that predispose them for rapid evolution. We begin by reviewing evidence that parasites often have substantial standing genetic variation, and examples of their rapid evolution both under conditions of livestock production and in serial passage experiments. We then present a two-step conceptual overview of the causal chain linking anthropogenic impacts to parasite evolution. First, we review the major anthropogenic factors impacting parasites, and identify the selective pressures they exert on parasites through increased mortality of either infective stages or adult parasites, or through changes in host density, quality or immunity. Second, we discuss what new phenotypic traits are likely to be favoured by the new selective pressures resulting from altered parasite mortality or host changes; we focus mostly on parasite virulence and basic life-history traits, as these most directly influence the transmission success of parasites and the pathology they induce. To illustrate the kinds of evolutionary changes in parasites anticipated in the Anthropocene, we present a few scenarios, either already documented or hypothetical but plausible, involving parasite taxa in livestock, aquaculture and natural systems. Finally, we offer several approaches for investigations and real-time monitoring of rapid, human-induced evolution in parasites, ranging from controlled experiments to the use of state-of-the-art genomic tools. The implications of fast-evolving parasites in the Anthropocene for disease emergence and the dynamics of infections in domestic animals and wildlife are concerning. Broader recognition that it is not only the conditions for parasite transmission that are changing, but the parasites themselves, is needed to meet better the challenges ahead.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
3
|
Erickson PA, Bangerter A, Gunter A, Polizos NT, Bergland AO. Limited population structure but signals of recent selection in introduced African Fig Fly (Zaprionus indianus) in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614190. [PMID: 39386550 PMCID: PMC11463544 DOI: 10.1101/2024.09.20.614190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Invasive species have devastating consequences for human health, food security, and the environment. Many invasive species adapt to new ecological niches following invasion, but little is known about the early steps of adaptation. Here we examine population genomics of a recently introduced drosophilid in North America, the African Fig Fly, Zaprionus indianus. This species is likely intolerant of subfreezing temperatures and recolonizes temperate environments yearly. We generated a new chromosome-level genome assembly for Z. indianus. Using resequencing of over 200 North American individuals collected over four years in temperate Virginia, plus a single collection from subtropical Florida, we tested for signatures of recolonization, population structure, and adaptation within invasive populations. We show founding populations are sometimes small and contain close genetic relatives, yet temporal population structure and differentiation of populations is mostly absent across recurrent recolonization events. Although we find limited signals of genome-wide spatial or temporal population structure, we identify haplotypes on the X chromosome that are repeatedly differentiated between Virginia and Florida populations. These haplotypes show signatures of natural selection and are not found in African populations. We also find evidence for several large structural polymorphisms segregating within North America populations and show X chromosome evolution in invasive populations is strikingly different from the autosomes. These results show that despite limited population structure, populations may rapidly evolve genetic differences early in an invasion. Further uncovering how these genomic regions influence invasive potential and success in new environments will advance our understanding of how organisms evolve in changing environments.
Collapse
|
4
|
Donthu R, Marcelino JAP, Giordano R, Tao Y, Weber E, Avalos A, Band M, Akraiko T, Chen SC, Reyes MP, Hao H, Ortiz-Alvarado Y, Cuff CA, Claudio EP, Soto-Adames F, Smith-Pardo AH, Meikle WG, Evans JD, Giray T, Abdelkader FB, Allsopp M, Ball D, Morgado SB, Barjadze S, Correa-Benitez A, Chakir A, Báez DR, Chavez NHM, Dalmon A, Douglas AB, Fraccica C, Fernández-Marín H, Galindo-Cardona A, Guzman-Novoa E, Horsburgh R, Kence M, Kilonzo J, Kükrer M, Le Conte Y, Mazzeo G, Mota F, Muli E, Oskay D, Ruiz-Martínez JA, Oliveri E, Pichkhaia I, Romane A, Sanchez CG, Sikombwa E, Satta A, Scannapieco AA, Stanford B, Soroker V, Velarde RA, Vercelli M, Huang Z. HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations. BMC Bioinformatics 2024; 25:278. [PMID: 39192185 DOI: 10.1186/s12859-024-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited. RESULTS We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples. CONCLUSION HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.
Collapse
Affiliation(s)
- Ravikiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA
- Centre for Life Sciences, Mahindra University, Bahadurpally, Hyderabad, 500043, India
| | - Jose A P Marcelino
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA.
- Institute of Environment, Florida International University, Miami, FL, 33199, USA.
| | - Yudong Tao
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Everett Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, 03755, USA
| | - Arian Avalos
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA, 70820, USA
| | - Mark Band
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Tatsiana Akraiko
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Shu-Ching Chen
- Data Science and Analytics Innovation Center (dSAIC), University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Maria P Reyes
- Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Haiping Hao
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - Charles A Cuff
- Department of Biology, University of Puerto Rico, San Juan, PR, 00931, USA
| | - Eddie Pérez Claudio
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Felipe Soto-Adames
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | | | - William G Meikle
- USDA-ARS, Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, San Juan, PR, 00931, USA.
| | - Faten B Abdelkader
- University of Carthage, National Agronomic Institute of Tunisia, 1082, Tunis, Tunisia
| | - Mike Allsopp
- Honey Bee Research Section, ARC-Plant Protection & Health, P/Bag X5017, Stellenbosch, 7599, South Africa
| | | | - Susana B Morgado
- Meltagus, Associação de Apicultores do Parque Natural do Tejo Internacional, 6000-790, Castelo Branco, Portugal
| | - Shalva Barjadze
- Institute of Zoology, Ilia State University, 3 Giorgi Tsereteli Street, 0162, Tbilisi, Georgia
| | - Adriana Correa-Benitez
- Facultad de MedicinaVeterinaria y Zootecnia, Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Aquáticos (DMZ:ACyOA), Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, CP, Mexico
| | - Amina Chakir
- Applied Chemistry Laboratory, Semlalia Faculty of Sciences, University Cadi Ayyad, Marrakech, Morocco
| | | | - Nabor H M Chavez
- Cochabamba Beekeepers Federation (FEDAC), Aniceto Padilla, 493, Cochabamba, Bolivia
| | - Anne Dalmon
- INRAE, French National Research Institute for Agriculture, Food and Environment. UR Abeilles et Environment, 84914, Avignon, France
| | - Adrian B Douglas
- Institute of Earth Systems, Rural Sciences Farmhouse, University of Malta, Msida, 2080, MSD, Malta
| | - Carmen Fraccica
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton Panama, 0843-01103, Panama
| | - Alberto Galindo-Cardona
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Yerba Buena, CC 34, CP 4107, Tucumán, Argentina
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Robert Horsburgh
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Meral Kence
- Biology Department, Middle East Technical University, 06530, Ankara, Turkey
| | - Joseph Kilonzo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Mert Kükrer
- Biology Department, Middle East Technical University, 06530, Ankara, Turkey
- Molecular Biology and Genetics Department, Kilis 7 Aralık University, Kilis, Turkey
| | - Yves Le Conte
- INRAE, French National Research Institute for Agriculture, Food and Environment. UR Abeilles et Environment, 84914, Avignon, France
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi Di Catania, Catania, Italy
| | - Fernando Mota
- Independent Beekeeper, 6000, Castelo Branco, Portugal
| | - Elliud Muli
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- South Eastern Kenya University (SEKU), JXFW+X3C, Kitui, Kenya
| | - Devrim Oskay
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030, Tekirdağ, Turkey
| | - José A Ruiz-Martínez
- Professional Training in Livestock and Animal Health, High School Lope de Vega, Fuente Obejuna, Córdoba, Spain
| | - Eugenia Oliveri
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129, Palermo, Italy
| | - Igor Pichkhaia
- Chkhorotsku Local Historical Museum, David Aghmashenebeli St., 5000, Chkhorotsku, Georgia
| | - Abderrahmane Romane
- Applied Chemistry Laboratory, Semlalia Faculty of Sciences, University Cadi Ayyad, Marrakech, Morocco
| | - Cesar Guillen Sanchez
- Escuela de Agronomía, Sede del Atlántico, University of Costa Rica, Turrialba, 30501, Costa Rica
| | | | - Alberto Satta
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
| | | | - Brandi Stanford
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Institute of Plant Protection, Department of Entomology, Bet-Dagan, Israel
| | - Rodrigo A Velarde
- Bolivian Apiculture Institute (IAB), PROMIEL-SEDEM, Jaimes Freyre No 2344, La Paz, Bolivia
| | | | - Zachary Huang
- Department of Entomology, MSU Apiculture Lab, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Dogantzis KA, Raffiudin R, Putra RE, Shaleh I, Conflitti IM, Pepinelli M, Roberts J, Holmes M, Oldroyd BP, Zayed A, Gloag R. Post-invasion selection acts on standing genetic variation despite a severe founding bottleneck. Curr Biol 2024; 34:1349-1356.e4. [PMID: 38428415 DOI: 10.1016/j.cub.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Rika Raffiudin
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ramadhani Eka Putra
- Bandung Institute of Technology, School of Life Sciences and Technology, Bandung 40132, West Java, Indonesia
| | - Ismail Shaleh
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - John Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Michael Holmes
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rosalyn Gloag
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
7
|
Traniello IM, Bukhari SA, Dibaeinia P, Serrano G, Avalos A, Ahmed AC, Sankey AL, Hernaez M, Sinha S, Zhao SD, Catchen J, Robinson GE. Single-cell dissection of aggression in honeybee colonies. Nat Ecol Evol 2023; 7:1232-1244. [PMID: 37264201 DOI: 10.1038/s41559-023-02090-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Understanding how genotypic variation results in phenotypic variation is especially difficult for collective behaviour because group phenotypes arise from complex interactions among group members. A genome-wide association study identified hundreds of genes associated with colony-level variation in honeybee aggression, many of which also showed strong signals of positive selection, but the influence of these 'colony aggression genes' on brain function was unknown. Here we use single-cell (sc) transcriptomics and gene regulatory network (GRN) analyses to test the hypothesis that genetic variation for colony aggression influences individual differences in brain gene expression and/or gene regulation. We compared soldiers, which respond to territorial intrusion with stinging attacks, and foragers, which do not. Colony environment showed stronger influences on soldier-forager differences in brain gene regulation compared with brain gene expression. GRN plasticity was strongly associated with colony aggression, with larger differences in GRN dynamics detected between soldiers and foragers from more aggressive relative to less aggressive colonies. The regulatory dynamics of subnetworks composed of genes associated with colony aggression genes were more strongly correlated with each other across different cell types and brain regions relative to other genes, especially in brain regions involved with olfaction and vision and multimodal sensory integration, which are known to mediate bee aggression. These results show how group genetics can shape a collective phenotype by modulating individual brain gene regulatory network architecture.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, USA.
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | | | | | - Guillermo Serrano
- Computational Biology Program, CIMA University of Navarra, Pamplona, Spain
| | - Arian Avalos
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, Agricultural Research Services, United States Department of Agriculture, Baton Rouge, LA, USA
| | - Amy Cash Ahmed
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA
| | - Alison L Sankey
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA
| | - Mikel Hernaez
- Computational Biology Program, CIMA University of Navarra, Pamplona, Spain
| | - Saurabh Sinha
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA
- Department of Computer Science, UIUC, Urbana, IL, USA
| | - Sihai Dave Zhao
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA
- Department of Statistics, UIUC, Urbana, IL, USA
| | - Julian Catchen
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA
- Department of Evolution, Ecology and Behavior, UIUC, Urbana, IL, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, USA.
- Carl R Woese Institute for Genomic Biology, UIUC, Urbana, IL, USA.
- Department of Entomology, UIUC, Urbana, IL, USA.
| |
Collapse
|
8
|
Chen B, Bai Y, Wang J, Ke Q, Zhou Z, Zhou T, Pan Y, Wu R, Wu X, Zheng W, Xu P. Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:141-154. [PMID: 37275538 PMCID: PMC10232709 DOI: 10.1007/s42995-023-00165-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 06/07/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00165-2.
Collapse
Affiliation(s)
- Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Jiaying Wang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350000 China
| | - Renxie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012 China
| | - Weiqiang Zheng
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
9
|
Chen B, Zhou Z, Shi Y, Gong J, Li C, Zhou T, Li Y, Zhang D, Xu P. Genome-wide evolutionary signatures of climate adaptation in spotted sea bass inhabiting different latitudinal regions. Evol Appl 2023; 16:1029-1043. [PMID: 37216029 PMCID: PMC10197228 DOI: 10.1111/eva.13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Consideration of the thermal adaptation of species is essential in both evolutionary biology and climate-change biology because it frequently leads to latitudinal gradients of various phenotypes among populations. The spotted sea bass (Lateolabrax maculatus) has a broad latitudinal distribution range along the marginal seas of the Northwest Pacific and thus provides an excellent teleost model for population genetic and climate adaptation studies. We generated over 8.57 million SNP loci using whole-genome resequencing from 100 samples collected at 14 geographic sites (five or ten samples per site). We estimated the genetic structure of the sampled fish and clustered them into three highly differentiated populations. The genetic differentiation pattern estimated by multivariable models combining geographic distance and sea surface temperature differences suggests that isolation by distance and isolation by environment both have significant effects on this species. Further investigation of genome-wide evolutionary signatures of climate adaptation identified many genes related to growth, muscle contraction, and vision that are under positive natural selection. Moreover, the contrasting patterns of natural selection in high-latitude and low-latitude populations prompted different strategies of trade-offs between growth rate and other traits that may play an essential role in adaptation to different local climates. Our results offer an opportunity to better understand the genetic basis of the phenotypic variation in eurythermal fishes inhabiting different climatic regions.
Collapse
Affiliation(s)
- Baohua Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Shenzhen Research Institute of Xiamen University Shenzhen China
| | - Zhixiong Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Shenzhen Research Institute of Xiamen University Shenzhen China
| | - Yue Shi
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Shenzhen Research Institute of Xiamen University Shenzhen China
| | - Jie Gong
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Shenzhen Research Institute of Xiamen University Shenzhen China
| | - Chengyu Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Shenzhen Research Institute of Xiamen University Shenzhen China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences Xiamen University Xiamen China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Yun Li
- The Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Dianchang Zhang
- South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Peng Xu
- Shenzhen Research Institute of Xiamen University Shenzhen China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences Xiamen University Xiamen China
| |
Collapse
|
10
|
Pérez Matos AE, Bacci G, Borruso L, Landolfi M, Petrocchi D, Renzi S, Perito B. Characterization of the Bacterial Communities Inhabiting Tropical Propolis of Puerto Rico. Microorganisms 2023; 11:1130. [PMID: 37317104 DOI: 10.3390/microorganisms11051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Propolis is a resinous material produced by honeybees from different plant sources and used in the hive as a building material and to protect the colony from parasites and pathogens. Despite its antimicrobial properties, recent studies showed that propolis hosts diverse microbial strains, some with great antimicrobial potential. In this study, the first description of the bacterial community of propolis produced by the gentle Africanized honeybee was reported. Propolis was sampled from hives of two different geographic areas of Puerto Rico (PR, USA), and the associated microbiota investigated by both cultivation and metataxonomic approaches. Metabarcoding analysis showed appreciable bacterial diversity in both areas and statistically significant dissimilarity in the taxa composition of the two areas, probably due to the different climatic conditions. Both metabarcoding and cultivation data revealed the presence of taxa already detected in other hive components and compatible with the bee's foraging environment. Isolated bacteria and propolis extracts showed antimicrobial activity against Gram-positive and Gram-negative bacterial tester strains. These results support the hypothesis that the propolis microbiota could contribute to propolis' antimicrobial properties.
Collapse
Affiliation(s)
- Ana E Pérez Matos
- Biotechnology and Agrobiotechnology Research and Learning Center, Department of Natural Sciences, Pontifical Catholic University of Puerto Rico, Ponce 00717, Puerto Rico
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy
| | - Maria Landolfi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
- Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy
| | - Dominique Petrocchi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
- Scientific Laboratory of Opificio delle Pietre Dure, Viale F. Strozzi 1, 50129 Firenze, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
11
|
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. GLOBAL CHANGE BIOLOGY 2023; 29:943-954. [PMID: 36333958 PMCID: PMC10100130 DOI: 10.1111/gcb.16512] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 05/31/2023]
Abstract
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.
Collapse
|
12
|
Avalos A, Bilodeau L. Russian honey bee genotype identification through enhanced marker panel set. FRONTIERS IN INSECT SCIENCE 2022; 2:998310. [PMID: 38468798 PMCID: PMC10926385 DOI: 10.3389/finsc.2022.998310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/14/2022] [Indexed: 03/13/2024]
Abstract
Russian honey bees (RHB) are a breeding population developed by USDA-ARS as an effort to provide Varroa-resistant honey bees to beekeepers. The selection strategy for this breeding population was the first in honey bees to incorporate genetic stock identification (GSI). The original GSI approach has been in use for over a decade, and though effective, novel technologies and analytical approaches recently developed provide an opportunity for improvement. Here we outline a novel genotyping assay that capitalizes on the markers used in the GSI as well as new loci recently identified in a whole genome pooled study of commercial honey bee stocks. Our approach utilizes a microfluidic platform and machine learning analyses to arrive at an accurate, high throughput assay. This novel approach provides an improved tool that can be readily incorporated into breeding decisions towards healthier more productive bees.
Collapse
Affiliation(s)
- Arian Avalos
- Honey Bee Breeding, Genetics, and Physiology Research Laboratory, USDA-ARS, Baton Rouge, LA, United States
| | | |
Collapse
|
13
|
Giordano R, Galindo-Cardona A, Melendez-Ackerman E, Chen SC, Giray T. Editorial: Adaptation of Invasive Species to Islands and the Puerto Rican Honey Bee. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Zhong L, Zhu Y, Olsen KM. Hard versus soft selective sweeps during domestication and improvement in soybean. Mol Ecol 2022; 31:3137-3153. [PMID: 35366022 DOI: 10.1111/mec.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Genome scans for selection can provide an efficient way to dissect the genetic basis of domestication traits and understand mechanisms of adaptation during crop evolution. Selection involving soft sweeps (simultaneous selection for multiple alleles) is probably common in plant genomes but is under-studied, and few if any studies have systematically scanned for soft sweeps in the context of crop domestication. Using genome resequencing data from 302 wild and domesticated soybean accessions, we conducted selection scans using five widely employed statistics to identify selection candidates under classical (hard) and soft sweeps. Across the genome, inferred hard sweeps are predominant in domesticated soybean landraces and improved varieties, whereas soft sweeps are more prevalent in a representative subpopulation of the wild ancestor. Six domestication-related genes, representing both hard and soft sweeps and different stages of domestication, were used as positive controls to assess the detectability of domestication-associated sweeps. Performance of various test statistics suggests that differentiation-based (FST ) methods are robust for detecting complete hard sweeps, and that LD-based strategies perform well for identifying recent/ongoing sweeps; however, none of the test statistics detected a known soft sweep we previously documented at the domestication gene Dt1. Genome scans yielded a set of 66 candidate loci that were identified by both differentiation-based and LD-based (iHH) methods; notably, this shared set overlaps with many previously identified QTLs for soybean domestication/improvement traits. Collectively, our results will help to advance genetic characterizations of soybean domestication traits and shed light on selection modes involved in adaptation in domesticated plant species.
Collapse
Affiliation(s)
- Limei Zhong
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Marcelino J, Braese C, Christmon K, Evans JD, Gilligan T, Giray T, Nearman A, Niño EL, Rose R, Sheppard WS, vanEngelsdorp D, Ellis JD. The Movement of Western Honey Bees (Apis mellifera L.) Among United States and Territories: History, Benefits, Risks, and Mitigation Strategies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beekeeping is a cornerstone activity that has led to the human-mediated, global spread of western honey bees (Apis mellifera L.) outside their native range of Europe, western Asia, and Africa. The exportation/importation of honey bees (i.e., transfer of honey bees or germplasm between countries) is regulated at the national level in many countries. Honey bees were first imported into the United States in the early 1600’s. Today, honey bee movement (i.e., transport of honey bees among states and territories) is regulated within the United States at the state, territory, and federal levels. At the federal level, honey bees present in the country (in any state or territory) can be moved among states and territories without federal restriction, with the exception of movement to Hawaii. In contrast, regulations at the state and territory levels vary substantially, ranging from no additional regulations beyond those stipulated at the federal level, to strict regulations for the introduction of live colonies, packaged bees, or queens. This variability can lead to inconsistencies in the application of regulations regarding the movement of honey bees among states and territories. In November 2020, we convened a technical working group (TWG), composed of academic and USDA personnel, to review and summarize the (1) history of honey bee importation into/movement within the United States, (2) current regulations regarding honey bee movement and case studies on the application of those regulations, (3) benefits associated with moving honey bees within the United States, (4) risks associated with moving honey bees within the United States, and (5) risk mitigation strategies. This review will be helpful for developing standardized best practices for the safe movement of honey bees between the 48 contiguous states and other states/territories within the United States.
Collapse
|
16
|
Colgan TJ, Arce AN, Gill RJ, Ramos Rodrigues A, Kanteh A, Duncan EJ, Li L, Chittka L, Wurm Y. Genomic Signatures of Recent Adaptation in a Wild Bumblebee. Mol Biol Evol 2022; 39:msab366. [PMID: 35134226 PMCID: PMC8845123 DOI: 10.1093/molbev/msab366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental changes threaten insect pollinators, creating risks for agriculture and ecosystem stability. Despite their importance, we know little about how wild insects respond to environmental pressures. To understand the genomic bases of adaptation in an ecologically important pollinator, we analyzed genomes of Bombus terrestris bumblebees collected across Great Britain. We reveal extensive genetic diversity within this population, and strong signatures of recent adaptation throughout the genome affecting key processes including neurobiology and wing development. We also discover unusual features of the genome, including a region containing 53 genes that lacks genetic diversity in many bee species, and a horizontal gene transfer from a Wolbachia bacteria. Overall, the genetic diversity we observe and how it is distributed throughout the genome and the population should support the resilience of this important pollinator species to ongoing and future selective pressures. Applying our approach to more species should help understand how they can differ in their adaptive potential, and to develop conservation strategies for those most at risk.
Collapse
Affiliation(s)
- Thomas J Colgan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Abdoulie Kanteh
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Li Li
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Lars Chittka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
17
|
Bianchi E, Agra MN, García C, Gennari G, Maldonado L, Rodríguez GA, Palacio MA, Scannapieco AC, Lanzavecchia SB. Defensive Behavior and Morphometric Variation in Apis mellifera Colonies From Two Different Agro-Ecological Zones of North-Western Argentina. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.590225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
European lineages of Apis mellifera were first introduced into America for beekeeping purposes. A subsequent introduction and accidental release of A. m. scutellata resulted in hybridization events that gave rise to Africanized populations that rapidly spread throughout the continent. In Argentina, Africanized honey bees (AHBs) have been mostly detected in northern regions of the territory, and represent a valuable genetic resource for the selection of stocks with advantageous characteristics for beekeeping. The objective of the present study was to profile honey bee colonies of wild origin with potential beneficial traits for apiculture using morphological, molecular and behavioral traits. Honey bee colonies chosen for evaluation were located in two different agro-ecological regions in north-western Argentina (Tucumán province): The Chaco Depressed Plain (Leales apiary) and the Piedmont (Famaillá apiary). Each apiary was surveyed three times during the 2017–2018 season (mid-season, wintertime, and early spring) for: brood population, phoretic Varroa level and defensive behavior (run, fly, sting, and hang). At the midpoint of the beekeeping season colonies were also characterized by morphometry (45 variables) and mitochondrial haplotypes (COI–COII intergenic region). Apiaries studied showed similar patterns throughout the beekeeping season, for most of the characteristics monitored. However, significant variation in defensive behavior parameters was found between apiaries at the different times of evaluation. Twelve of 45 morphometric variables also showed significant differences between apiaries. The mitochondrial haplotype analysis revealed a high representation of African A4 and A1 haplotypes (91%) in both apiaries. Haplotype variation was associated with morphometric and behavioral traits. Multivariate analyses [principal component analysis (PCA) and principal coordinate analysis (PCoA)] including morphometric and behavior variables explained 65.3% (PCA) and 48.1% (PCoA) of the variability observed between colonies in the first two components. Several morphometric parameters and “fly” behavior were mainly associated with the separation of the colonies. The results from this study point to a possible association between morphometric and behavioral variation and the adaptation of honey bee colonies to differential agro-ecological conditions. We discuss how the detected variation between apiaries can be used for the selection and preservation of honey bee ecotypes in regional breeding programs.
Collapse
|
18
|
Hofmeister NR, Werner SJ, Lovette IJ. Environmental correlates of genetic variation in the invasive European starling in North America. Mol Ecol 2021; 30:1251-1263. [PMID: 33464634 DOI: 10.1111/mec.15806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Effects of aversive conditioning on expression of physiological stress in honey bees (Apis mellifera). Neurobiol Learn Mem 2020; 178:107363. [PMID: 33333317 DOI: 10.1016/j.nlm.2020.107363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Stress is defined as any deviation from an organism's baseline physiological levels. Therefore, introduction of new stimuli and information, such as in learning, can be defined as a stressor. A large body of research exists examining the role that stress plays in learning, but virtually none addresses whether or not learning itself is a measurable cause of stress. The current study used a wide variety of learning centric stress responses. Researchers examined changes in expression of ten stress and learning related genes in various physiological systems in domesticated honey bees (Apis mellifera) as a result of exposure to an aversive conditioning task. Gene expression was examined using quantitative real-time polymerase chain reaction following the learning task. Results indicate that learning affects expression of some stress related genes.
Collapse
|
20
|
Guzman-Novoa E, Morfin N, De la Mora A, Macías-Macías JO, Tapia-González JM, Contreras-Escareño F, Medina-Flores CA, Correa-Benítez A, Quezada-Euán JJG. The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.608091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
21
|
Feliciano-Cardona S, Döke MA, Aleman J, Agosto-Rivera JL, Grozinger CM, Giray T. Honey Bees in the Tropics Show Winter Bee-Like Longevity in Response to Seasonal Dearth and Brood Reduction. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Saelao P, Simone-Finstrom M, Avalos A, Bilodeau L, Danka R, de Guzman L, Rinkevich F, Tokarz P. Genome-wide patterns of differentiation within and among U.S. commercial honey bee stocks. BMC Genomics 2020; 21:704. [PMID: 33032523 PMCID: PMC7545854 DOI: 10.1186/s12864-020-07111-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The population genetics of U.S. honey bee stocks remain poorly characterized despite the agricultural importance of Apis mellifera as the major crop pollinator. Commercial and research-based breeding programs have made significant improvements of favorable genetic traits (e.g. production and disease resistance). The variety of bees produced by artificial selection provides an opportunity to characterize the genetic diversity and regions of the genome undergoing selection in commonly managed stocks. RESULTS Pooled sequencing of eight honey bee stocks found strong genetic similarity among six of the stocks. Two stocks, Pol-line and Hilo, showed significant differentiation likely due to their intense and largely closed breeding for resistance to the parasitic Varroa mite. Few variants were identified as being specific to any one stock, indicating potential admixture among the sequenced stocks. Juxtaposing the underlying genetic variation of stocks selected for disease- and parasite-resistance behavior, we identified genes and candidate regions putatively associated with resistance regulated by hygienic behavior. CONCLUSION This study provides important insights into the distinct genetic characteristics and population diversity of honey bee stocks used in the United States, and provides further evidence of high levels of admixture in commercially managed honey bee stocks. Furthermore, breeding efforts to enhance parasite resistance in honey bees may have created unique genetic profiles. Genomic regions of interest have been highlighted for potential future work related to developing genetic markers for selection of disease and parasite resistance traits. Due to the vast genomic similarities found among stocks in general, our findings suggest that additional data regarding gene expression, epigenetic and regulatory information are needed to more fully determine how stock phenotypic diversity is regulated.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
- Present Address: USDA-ARS Knipling-Bushland U.S. Livestock Arthropod Pests Research Unit, Kerrville, TX 78028 USA
| | | | - Arian Avalos
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Lelania Bilodeau
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Robert Danka
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Lilia de Guzman
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Frank Rinkevich
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Philip Tokarz
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| |
Collapse
|
23
|
Calfee E, Agra MN, Palacio MA, Ramírez SR, Coop G. Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas. PLoS Genet 2020; 16:e1009038. [PMID: 33075065 PMCID: PMC7595643 DOI: 10.1371/journal.pgen.1009038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/29/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent biological invasions offer 'natural' laboratories to understand the genetics and ecology of adaptation, hybridization, and range limits. One of the most impressive and well-documented biological invasions of the 20th century began in 1957 when Apis mellifera scutellata honey bees swarmed out of managed experimental colonies in Brazil. This newly-imported subspecies, native to southern and eastern Africa, both hybridized with and out-competed previously-introduced European honey bee subspecies. Populations of scutellata-European hybrid honey bees rapidly expanded and spread across much of the Americas in less than 50 years. We use broad geographic sampling and whole genome sequencing of over 300 bees to map the distribution of scutellata ancestry where the northern and southern invasions have presently stalled, forming replicated hybrid zones with European bee populations in California and Argentina. California is much farther from Brazil, yet these hybrid zones occur at very similar latitudes, consistent with the invasion having reached a climate barrier. At these range limits, we observe genome-wide clines for scutellata ancestry, and parallel clines for wing length that span hundreds of kilometers, supporting a smooth transition from climates favoring scutellata-European hybrid bees to climates where they cannot survive winter. We find no large effect loci maintaining exceptionally steep ancestry transitions. Instead, we find most individual loci have concordant ancestry clines across South America, with a build-up of somewhat steeper clines in regions of the genome with low recombination rates, consistent with many loci of small effect contributing to climate-associated fitness trade-offs. Additionally, we find no substantial reductions in genetic diversity associated with rapid expansions nor complete dropout of scutellata ancestry at any individual loci on either continent, which suggests that the competitive fitness advantage of scutellata ancestry at lower latitudes has a polygenic basis and that scutellata-European hybrid bees maintained large population sizes during their invasion. To test for parallel selection across continents, we develop a null model that accounts for drift in ancestry frequencies during the rapid expansion. We identify several peaks within a larger genomic region where selection has pushed scutellata ancestry to high frequency hundreds of kilometers past the present cline centers in both North and South America and that may underlie high-fitness traits driving the invasion.
Collapse
Affiliation(s)
- Erin Calfee
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | | | - María Alejandra Palacio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad de Mar del Plata, Balcarce, Argentina
| | - Santiago R. Ramírez
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
24
|
Harpur BA, Kadri SM, Orsi RO, Whitfield CW, Zayed A. Defense Response in Brazilian Honey Bees (Apis mellifera scutellata × spp.) Is Underpinned by Complex Patterns of Admixture. Genome Biol Evol 2020; 12:1367-1377. [PMID: 32597950 PMCID: PMC7487160 DOI: 10.1093/gbe/evaa128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
In 1957, an invasive and highly defensive honey bee began to spread across Brazil. In the previous year, Brazilian researchers hoped to produce a subtropical-adapted honey bee by crossing local commercial honey bees (of European origin) with a South African honey bee subspecies (Apis mellifera scutellata; an A-lineage honey bee subspecies). The resulting cross-African hybrid honey bees (AHBs)-escaped from their enclosure and spread through the Americas. Today, AHB is the most common honey bee from Northern Argentina to the Southern United States. AHBs are much more likely to sting nest intruders than managed European-derived honey bee colonies. Previous studies have explored how genetic variation contributes to differences in defense response between European-derived honey bee and AHB. Although this work demonstrated very strong genetic effects on defense response, they have yet to pinpoint which genes influence variation in defense response within AHBs, specifically. We quantified defense response for 116 colonies in Brazil and performed pooled sequencing on the most phenotypically divergent samples. We identified 65 loci containing 322 genes that were significantly associated with defense response. Loci were strongly associated with metabolic function, consistent with previous functional genomic analyses of this phenotype. Additionally, defense-associated loci had nonrandom and unexpected patterns of admixture. Defense response was not simply the product of more A-lineage honey bee ancestry as previously assumed, but rather an interaction between A-lineage and European alleles. Our results suggest that a combination of A-lineage and European alleles play roles in defensive behavior in AHBs.
Collapse
Affiliation(s)
| | - Samir M Kadri
- Departamento de Produção Animal, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Univervidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Ricardo O Orsi
- Departamento de Produção Animal, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Univervidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | | | - Amro Zayed
- Department of Biology, Faculty of Sciences, York University, Toronto, Canada
| |
Collapse
|
25
|
Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies. Proc Natl Acad Sci U S A 2020; 117:17135-17141. [PMID: 32631983 DOI: 10.1073/pnas.1922927117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For social animals, the genotypes of group members affect the social environment, and thus individual behavior, often indirectly. We used genome-wide association studies (GWAS) to determine the influence of individual vs. group genotypes on aggression in honey bees. Aggression in honey bees arises from the coordinated actions of colony members, primarily nonreproductive "soldier" bees, and thus, experiences evolutionary selection at the colony level. Here, we show that individual behavior is influenced by colony environment, which in turn, is shaped by allele frequency within colonies. Using a population with a range of aggression, we sequenced individual whole genomes and looked for genotype-behavior associations within colonies in a common environment. There were no significant correlations between individual aggression and specific alleles. By contrast, we found strong correlations between colony aggression and the frequencies of specific alleles within colonies, despite a small number of colonies. Associations at the colony level were highly significant and were very similar among both soldiers and foragers, but they covaried with one another. One strongly significant association peak, containing an ortholog of the Drosophila sensory gene dpr4 on linkage group (chromosome) 7, showed strong signals of both selection and admixture during the evolution of gentleness in a honey bee population. We thus found links between colony genetics and group behavior and also, molecular evidence for group-level selection, acting at the colony level. We conclude that group genetics dominates individual genetics in determining the fatal decision of honey bees to sting.
Collapse
|
26
|
Groeneveld LF, Kirkerud LA, Dahle B, Sunding M, Flobakk M, Kjos M, Henriques D, Pinto MA, Berg P. Conservation of the dark bee ( Apis mellifera mellifera): Estimating C-lineage introgression in Nordic breeding stocks. ACTA AGR SCAND A-AN 2020. [DOI: 10.1080/09064702.2020.1770327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- L. F. Groeneveld
- Farm Animal Section, The Nordic Genetic Resource Center, Ås, Norway
| | | | - B. Dahle
- Norges Birøkterlag, Kløfta, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - M. Sunding
- The Danish Agricultural Agency, Copenhagen, Denmark
| | | | | | - D. Henriques
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - P. Berg
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
27
|
Grozinger CM, Zayed A. Improving bee health through genomics. Nat Rev Genet 2020; 21:277-291. [DOI: 10.1038/s41576-020-0216-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
|
28
|
Abstract
Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.
Collapse
|
29
|
Acevedo‐Gonzalez JP, Galindo‐Cardona A, Avalos A, Whitfield CW, Rodriguez DM, Uribe‐Rubio JL, Giray T. Colonization history and population differentiation of the Honey Bees ( Apis mellifera L.) in Puerto Rico. Ecol Evol 2019; 9:10895-10902. [PMID: 31641443 PMCID: PMC6802029 DOI: 10.1002/ece3.5330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022] Open
Abstract
Honey bees (Apis mellifera L.) are the primary commercial pollinators across the world. The subspecies A. m. scutellata originated in Africa and was introduced to the Americas in 1956. For the last 60 years, it hybridized successfully with European subspecies, previous residents in the area. The result of this hybridization was called Africanized honey bee (AHB). AHB has spread since then, arriving to Puerto Rico (PR) in 1994. The honey bee population on the island acquired a mosaic of features from AHB or the European honey bee (EHB). AHB in Puerto Rico shows a major distinctive characteristic, docile behavior, and is called gentle Africanized honey bees (gAHB). We used 917 SNPs to examine the population structure, genetic differentiation, origin, and history of range expansion and colonization of gAHB in PR. We compared gAHB to populations that span the current distribution of A. mellifera worldwide. The gAHB population is shown to be a single population that differs genetically from the examined populations of AHB. Texas and PR groups are the closest genetically. Our results support the hypothesis that the Texas AHB population is the source of gAHB in Puerto Rico.
Collapse
Affiliation(s)
| | - Alberto Galindo‐Cardona
- National Scientific and Technical Research Council (CONICET)TucumanArgentina
- Miguel Lillo FoundationTucumánArgentina
| | - Arian Avalos
- USDA, Agricultural Research ServiceHoney Bee Breeding, Genetics and Physiology ResearchBaton RougeLouisiana
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Charles W. Whitfield
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | | | | | - Tugrul Giray
- Department of BiologyUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
30
|
Dogantzis KA, Zayed A. Recent advances in population and quantitative genomics of honey bees. CURRENT OPINION IN INSECT SCIENCE 2019; 31:93-98. [PMID: 31109680 DOI: 10.1016/j.cois.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The increase in the availability of individual Apis mellifera genomes has resulted in significant progress toward understanding the evolution and adaptation of the honey bee. These efforts have identified new subspecies, evolutionary lineages, and a significant number of genes involved with adaptations and colony-level quantitative traits. Many studies have also developed genetic assays that are being used to monitor the movement and admixture of honey bee populations. These resources are valuable for conservation and breeding programs that seek to improve the economic value of colonies or preserve locally adapted populations and subspecies. This review provides a brief discussion on how population and quantitative genomic studies has improved our understanding of the honey bee.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Blacquière T, Panziera D. A Plea for Use of Honey Bees’ Natural Resilience in Beekeeping. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/0005772x.2018.1430999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Delphine Panziera
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|