1
|
Huber DE. A memory model of rodent spatial navigation in which place cells are memories arranged in a grid and grid cells are non-spatial. eLife 2025; 13:RP95733. [PMID: 40388324 PMCID: PMC12088679 DOI: 10.7554/elife.95733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
A theory and neurocomputational model are presented that explain grid cell responses as the byproduct of equally dissimilar hippocampal memories. On this account, place and grid cells are best understood as the natural consequence of memory encoding and retrieval; a precise hexagonal grid is the exception rather than the rule, emerging when the animal explores a large surface that is devoid of landmarks and objects. In the proposed memory model, place cells represent memories that are conjunctions of both spatial and non-spatial attributes, and grid cells primarily represent the non-spatial attributes (e.g. sounds, surface texture, etc.) found throughout the two-dimensional recording enclosure. Place cells support memories of the locations where non-spatial attributes can be found (e.g. positions with a particular sound), which are arranged in a hexagonal lattice owing to memory encoding and consolidation processes (pattern separation) as applied to situations in which the non-spatial attributes are found at all locations of a two-dimensional surface. Grid cells exhibit their spatial firing pattern owing to feedback from hippocampal place cells (i.e. a hexagonal pattern of remembered locations for the non-spatial attribute represented by a grid cell). Model simulations explain a wide variety of results in the rodent spatial navigation literature.
Collapse
Affiliation(s)
- David E Huber
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
2
|
Jiang S, Hijazi S, Sarkany B, Gautsch VG, LaChance PA, Hasselmo ME, Bannerman D, Viney TJ. Pathological tau alters head direction signaling and induces spatial disorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622548. [PMID: 39574637 PMCID: PMC11581017 DOI: 10.1101/2024.11.07.622548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Spatial disorientation, an early symptom of dementia, is emerging as an early and reliable cognitive biomarker predicting future memory problems associated with Alzheimer's disease, but the underlying neural mechanisms have yet to be fully defined. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau, a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells, which contribute to spatial navigation and orientation. Hence, their disruption may contribute to spatial disorientation. To test this, we virally expressed human mutant tau (htau) in the ADn of adult mice. HD-tau mice were defined by phosphorylated and oligomeric forms of htau in ADn somata and in axon terminals in postsynaptic target regions. Compared to controls, HD-tau mice exhibited increased looping behavior during spatial learning, and made a greater number of head turns during memory recall, indicative of spatial disorientation. Using in vivo extracellular recordings, we identified htau-expressing ADn cells and found a lower proportion of HD cells in the ADn from HD-tau mice, along with reduced directionality and altered burst firing. These findings provide evidence that expression of pathological human tau can alter HD signaling, leading to impairments in spatial orientation.
Collapse
|
3
|
Zhou YQ, Puliyadi V, Chen X, Lee JL, Zhang LY, Knierim JJ. Vector coding and place coding in hippocampus share a common directional signal. Nat Commun 2024; 15:10630. [PMID: 39638805 PMCID: PMC11621709 DOI: 10.1038/s41467-024-54935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Vector coding is a major mechanism by which neural systems represent an animal's location in both global and local, item-based reference frames. Landmark vector cells (LVCs) in the hippocampus complement classic place cells by encoding vector relationships between the organism and specific landmarks. How these place- and vector-coding properties interact is not known. We recorded place cells and LVCs using calcium imaging of the CA1 region of freely moving rats during cue-card rotation studies. Place fields rotated around the center of the platform to follow the cue rotation, whereas the fields of simultaneously recorded LVCs rotated by the same amount around the nearby landmarks. Some neurons demonstrated conjunctive coding of both classic place field properties and LVC properties. These results demonstrate that CA1 neurons employ a common directional input, presumably provided by the head direction cell system, to encode animals' locations in both world-centered and landmark-centered reference frames.
Collapse
Affiliation(s)
- Yue-Qing Zhou
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Vyash Puliyadi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaojing Chen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Joonhee Leo Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Lian Y, LaChance PA, Malmberg S, Hasselmo ME, Burkitt AN. Distinct cortical spatial representations learned along disparate visual pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617687. [PMID: 39416183 PMCID: PMC11482955 DOI: 10.1101/2024.10.10.617687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representation is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have motion processing within the visual input. Our designed SC-POR model demonstrates that diverse spatial properties of POR neurons can emerge from a learning process based on visual input that incorporates motion processing. Moreover, combining SC-POR model with our previously proposed V1-RSC model, we show that distinct cortical spatial representations in POR and RSC can be learnt along disparate visual pathways (originating in SC and V1), suggesting that the varying features encoded in different visual pathways contribute to the distinct spatial properties in downstream cortical areas.
Collapse
Affiliation(s)
- Yanbo Lian
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Patrick A. LaChance
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Samantha Malmberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Carpenter J, Blackstad JS, Tingley D, Normand VA, Moser EI, Moser MB, Dunn BA. Investigating Egocentric Tuning in Hippocampal CA1 Neurons. J Neurosci 2024; 44:e0040242024. [PMID: 39137997 PMCID: PMC11411587 DOI: 10.1523/jneurosci.0040-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 08/15/2024] Open
Abstract
Navigation requires integrating sensory information with a stable schema to create a dynamic map of an animal's position using egocentric and allocentric coordinate systems. In the hippocampus, place cells encode allocentric space, but their firing rates may also exhibit directional tuning within egocentric or allocentric reference frames. We compared experimental and simulated data to assess the prevalence of tuning to egocentric bearing (EB) among hippocampal cells in rats foraging in an open field. Using established procedures, we confirmed egocentric modulation of place cell activity in recorded data; however, simulated data revealed a high false-positive rate (FPR). When we accounted for false positives by comparing with shuffled data that retain correlations between the animal's direction and position, only a very low number of hippocampal neurons appeared modulated by EB. Our study highlights biases affecting FPRs and provides insights into the challenges of identifying egocentric modulation in hippocampal neurons.
Collapse
Affiliation(s)
- Jordan Carpenter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jan Sigurd Blackstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David Tingley
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Valentin A Normand
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Benjamin A Dunn
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
6
|
Li L, Flesch T, Ma C, Li J, Chen Y, Chen HT, Erlich JC. Encoding of 2D Self-Centered Plans and World-Centered Positions in the Rat Frontal Orienting Field. J Neurosci 2024; 44:e0018242024. [PMID: 39134418 PMCID: PMC11391499 DOI: 10.1523/jneurosci.0018-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
The neural mechanisms of motor planning have been extensively studied in rodents. Preparatory activity in the frontal cortex predicts upcoming choice, but limitations of typical tasks have made it challenging to determine whether the spatial information is in a self-centered direction reference frame or a world-centered position reference frame. Here, we trained male rats to make delayed visually guided orienting movements to six different directions, with four different target positions for each direction, which allowed us to disentangle direction versus position tuning in neural activity. We recorded single unit activity from the rat frontal orienting field (FOF) in the secondary motor cortex, a region involved in planning orienting movements. Population analyses revealed that the FOF encodes two separate 2D maps of space. First, a 2D map of the planned and ongoing movement in a self-centered direction reference frame. Second, a 2D map of the animal's current position on the port wall in a world-centered reference frame. Thus, preparatory activity in the FOF represents self-centered upcoming movement directions, but FOF neurons multiplex both self- and world-reference frame variables at the level of single neurons. Neural network model comparison supports the view that despite the presence of world-centered representations, the FOF receives the target information as self-centered input and generates self-centered planning signals.
Collapse
Affiliation(s)
- Liujunli Li
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Timo Flesch
- Oxford University, Oxford OX1 2JD, United Kingdom
| | - Ce Ma
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Jingjie Li
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, United Kingdom
| | - Yizhou Chen
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Hung-Tu Chen
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Jeffrey C Erlich
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
7
|
Mehrotra D, Levenstein D, Duszkiewicz AJ, Carrasco SS, Booker SA, Kwiatkowska A, Peyrache A. Hyperpolarization-activated currents drive neuronal activation sequences in sleep. Curr Biol 2024; 34:3043-3054.e8. [PMID: 38901427 DOI: 10.1016/j.cub.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Sequential neuronal patterns are believed to support information processing in the cortex, yet their origin is still a matter of debate. We report that neuronal activity in the mouse postsubiculum (PoSub), where a majority of neurons are modulated by the animal's head direction, was sequentially activated along the dorsoventral axis during sleep at the transition from hyperpolarized "DOWN" to activated "UP" states, while representing a stable direction. Computational modeling suggested that these dynamics could be attributed to a spatial gradient of hyperpolarization-activated currents (Ih), which we confirmed in ex vivo slice experiments and corroborated in other cortical structures. These findings open up the possibility that varying amounts of Ih across cortical neurons could result in sequential neuronal patterns and that traveling activity upstream of the entorhinal-hippocampal circuit organizes large-scale neuronal activity supporting learning and memory during sleep.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Daniel Levenstein
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; MILA, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Adrian J Duszkiewicz
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sofia Skromne Carrasco
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Angelika Kwiatkowska
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Adrien Peyrache
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
8
|
Shirdhankar RN, Malkemper EP. Cognitive maps and the magnetic sense in vertebrates. Curr Opin Neurobiol 2024; 86:102880. [PMID: 38657284 DOI: 10.1016/j.conb.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Navigation requires a network of neurons processing inputs from internally generated cues and external landmarks. Most studies on the neuronal basis of navigation in vertebrates have focused on rats and mice and the canonical senses vision, hearing, olfaction, and somatosensation. Some animals have evolved the ability to sense the Earth's magnetic field and use it for orientation. It can be expected that in these animals magnetic cues are integrated with other sensory cues in the cognitive map. We provide an overview of the behavioral evidence and brain regions involved in magnetic sensing in support of this idea, hoping that this will guide future experiments.
Collapse
Affiliation(s)
- Runita N Shirdhankar
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany; International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - E Pascal Malkemper
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
9
|
Clark BJ, LaChance PA, Winter SS, Mehlman ML, Butler W, LaCour A, Taube JS. Comparison of head direction cell firing characteristics across thalamo-parahippocampal circuitry. Hippocampus 2024; 34:168-196. [PMID: 38178693 PMCID: PMC10950528 DOI: 10.1002/hipo.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences. Here, we performed a comparative assessment of HD cell firing characteristics across the anterior dorsal thalamus (ADN), postsubiculum (PoS), parasubiculum (PaS), medial entorhinal (MEC), and postrhinal (POR) cortices. We report that HD cells with a high degree of directional specificity were observed in all five brain regions, but ADN HD cells display greater sharpness and stability in their preferred directions, and greater anticipation of future headings compared to parahippocampal regions. Additional analysis indicated that POR HD cells were more coarsely modulated by other spatial parameters compared to PoS, PaS, and MEC. Finally, our analyses indicated that the sharpness of HD tuning decreased as a function of laminar position and conjunctive coding within the PoS, PaS, and MEC, with cells in the superficial layers along with conjunctive firing properties showing less robust directional tuning. The results are discussed in relation to theories of functional organization of HD cell tuning in thalamo-parahippocampal circuitry.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Patrick A LaChance
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Shawn S Winter
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Max L Mehlman
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Will Butler
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Ariyana LaCour
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Duszkiewicz AJ, Orhan P, Skromne Carrasco S, Brown EH, Owczarek E, Vite GR, Wood ER, Peyrache A. Local origin of excitatory-inhibitory tuning equivalence in a cortical network. Nat Neurosci 2024; 27:782-792. [PMID: 38491324 PMCID: PMC11001581 DOI: 10.1038/s41593-024-01588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/18/2024]
Abstract
The interplay between excitation and inhibition determines the fidelity of cortical representations. The receptive fields of excitatory neurons are often finely tuned to encoded features, but the principles governing the tuning of inhibitory neurons remain elusive. In this study, we recorded populations of neurons in the mouse postsubiculum (PoSub), where the majority of excitatory neurons are head-direction (HD) cells. We show that the tuning of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was broad and frequently radially symmetrical. By decomposing tuning curves using the Fourier transform, we identified an equivalence in tuning between PoSub-FS and PoSub-HD cell populations. Furthermore, recordings, optogenetic manipulations of upstream thalamic populations and computational modeling provide evidence that the tuning of PoSub-FS cells has a local origin. These findings support the notion that the equivalence of neuronal tuning between excitatory and inhibitory cell populations is an intrinsic property of local cortical networks.
Collapse
Affiliation(s)
- Adrian J Duszkiewicz
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Psychology, University of Stirling, Stirling, UK.
| | - Pierre Orhan
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Ecole normale supérieure, PSL University, CNRS, Paris, France
| | - Sofia Skromne Carrasco
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Eleanor H Brown
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Eliott Owczarek
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Gilberto R Vite
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Emma R Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Adrien Peyrache
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
van der Goes MSH, Voigts J, Newman JP, Toloza EHS, Brown NJ, Murugan P, Harnett MT. Coordinated head direction representations in mouse anterodorsal thalamic nucleus and retrosplenial cortex. eLife 2024; 13:e82952. [PMID: 38470232 PMCID: PMC10932540 DOI: 10.7554/elife.82952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
The sense of direction is critical for survival in changing environments and relies on flexibly integrating self-motion signals with external sensory cues. While the anatomical substrates involved in head direction (HD) coding are well known, the mechanisms by which visual information updates HD representations remain poorly understood. Retrosplenial cortex (RSC) plays a key role in forming coherent representations of space in mammals and it encodes a variety of navigational variables, including HD. Here, we use simultaneous two-area tetrode recording to show that RSC HD representation is nearly synchronous with that of the anterodorsal nucleus of thalamus (ADn), the obligatory thalamic relay of HD to cortex, during rotation of a prominent visual cue. Moreover, coordination of HD representations in the two regions is maintained during darkness. We further show that anatomical and functional connectivity are consistent with a strong feedforward drive of HD information from ADn to RSC, with anatomically restricted corticothalamic feedback. Together, our results indicate a concerted global HD reference update across cortex and thalamus.
Collapse
Affiliation(s)
- Marie-Sophie H van der Goes
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jakob Voigts
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Open-Ephys IncAtlantaUnited States
- HHMI Janelia Research CampusAshburnUnited States
| | - Jonathan P Newman
- Open-Ephys IncAtlantaUnited States
- Department of Brain & Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Enrique HS Toloza
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Norma J Brown
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Pranav Murugan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mark T Harnett
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
12
|
LaChance PA, Taube JS. The Anterior Thalamus Preferentially Drives Allocentric But Not Egocentric Orientation Tuning in Postrhinal Cortex. J Neurosci 2024; 44:e0861232024. [PMID: 38286624 PMCID: PMC10919204 DOI: 10.1523/jneurosci.0861-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
13
|
Cheng N, Dong Q, Zhang Z, Wang L, Chen X, Wang C. Egocentric processing of items in spines, dendrites, and somas in the retrosplenial cortex. Neuron 2024; 112:646-660.e8. [PMID: 38101396 DOI: 10.1016/j.neuron.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Egocentric representations of external items are essential for spatial navigation and memory. Here, we explored the neural mechanisms underlying egocentric processing in the retrosplenial cortex (RSC), a pivotal area for memory and navigation. Using one-photon and two-photon calcium imaging, we identified egocentric tuning for environment boundaries in dendrites, spines, and somas of RSC neurons (egocentric boundary cells) in the open-field task. Dendrites with egocentric tuning tended to have similarly tuned spines. We further identified egocentric neurons representing landmarks in a virtual navigation task or remembered cue location in a goal-oriented task, respectively. These neurons formed an independent population with egocentric boundary cells, suggesting that dedicated neurons with microscopic clustering of functional inputs shaped egocentric boundary processing in RSC and that RSC adopted a labeled line code with distinct classes of egocentric neurons responsible for representing different items in specific behavioral contexts, which could lead to efficient and flexible computation.
Collapse
Affiliation(s)
- Ning Cheng
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiqi Dong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Wang
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojing Chen
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China.
| |
Collapse
|
14
|
Cano-Ferrer X, Tran-Van-Minh A, Rancz E. RPM: An open-source Rotation Platform for open- and closed-loop vestibular stimulation in head-fixed Mice. J Neurosci Methods 2024; 401:110002. [PMID: 37925080 DOI: 10.1016/j.jneumeth.2023.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Head fixation allows the recording and presentation of controlled stimuli and is used to study neural processes underlying spatial navigation. However, it disrupts the head direction system because of the lack of vestibular stimulation. To overcome this limitation, we developed a novel rotation platform which can be driven by the experimenter (open-loop) or by animal movement (closed-loop). The platform is modular, affordable, easy to build and open source. Additional modules presented here include cameras for monitoring eye movements, visual virtual reality, and a micro-manipulator for positioning various probes for recording or optical interference. We demonstrate the utility of the platform by recording eye movements and showing the robust activation of head-direction cells. This novel experimental apparatus combines the advantages of head fixation and intact vestibular activity in the horizontal plane. The open-loop mode can be used to study e.g., vestibular sensory representation and processing, while the closed-loop mode allows animals to navigate in rotational space, providing a better substrate for 2-D navigation in virtual environments. The full build documentation is maintained at https://ranczlab.github.io/RPM/.
Collapse
Affiliation(s)
- Xavier Cano-Ferrer
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; The Francis Crick Institute, Making Science and Technology Platform, London NW1 1AT, UK
| | | | - Ede Rancz
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; INMED, INSERM, Aix-Marseille Université, France.
| |
Collapse
|
15
|
Keshavarzi S, Velez-Fort M, Margrie TW. Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception. Annu Rev Neurosci 2023; 46:301-320. [PMID: 37428601 PMCID: PMC7616138 DOI: 10.1146/annurev-neuro-120722-100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation. Here, we summarize these recent findings with a focus on cortical circuits involved in visual perception and spatial navigation and highlight the major remaining knowledge gaps. We suggest that vestibulo-visual integration reflects a process of constant updating regarding the status of self-motion, and access to such information by the cortex is used for sensory perception and predictions that may be implemented for rapid, navigation-related decision-making.
Collapse
Affiliation(s)
- Sepiedeh Keshavarzi
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Mateo Velez-Fort
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Troy W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| |
Collapse
|
16
|
Kozhevnikov M, Puri J. Different Types of Survey-Based Environmental Representations: Egocentric vs. Allocentric Cognitive Maps. Brain Sci 2023; 13:brainsci13050834. [PMID: 37239306 DOI: 10.3390/brainsci13050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The goal of the current study was to show the existence of distinct types of survey-based environmental representations, egocentric and allocentric, and provide experimental evidence that they are formed by different types of navigational strategies, path integration and map-based navigation, respectively. After traversing an unfamiliar route, participants were either disoriented and asked to point to non-visible landmarks encountered on the route (Experiment 1) or presented with a secondary spatial working memory task while determining the spatial locations of objects on the route (Experiment 2). The results demonstrate a double dissociation between the navigational strategies underlying the formation of allocentric and egocentric survey-based representation. Specifically, only the individuals who generated egocentric survey-based representations of the route were affected by disorientation, suggesting they relied primarily on a path integration strategy combined with landmark/scene processing at each route segment. In contrast, only allocentric-survey mappers were affected by the secondary spatial working memory task, suggesting their use of map-based navigation. This research is the first to show that path integration, in conjunction with egocentric landmark processing, is a distinct standalone navigational strategy underpinning the formation of a unique type of environmental representation-the egocentric survey-based representation.
Collapse
Affiliation(s)
- Maria Kozhevnikov
- Department of Psychology, National University of Singapore, 9 Arts Link, Singapore 117572, Singapore
- Martinos Center for Biomedical Imaging, Harvard Medical School Department of Radiology, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Jyotika Puri
- Department of Psychology, National University of Singapore, 9 Arts Link, Singapore 117572, Singapore
| |
Collapse
|
17
|
Qin Y, Sheremet A, Cooper TL, Burke SN, Maurer AP. Nonlinear Theta-Gamma Coupling between the Anterior Thalamus and Hippocampus Increases as a Function of Running Speed. eNeuro 2023; 10:ENEURO.0470-21.2023. [PMID: 36858827 PMCID: PMC10027116 DOI: 10.1523/eneuro.0470-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The hippocampal theta rhythm strongly correlates to awake behavior leading to theories that it represents a cognitive state of the brain. As theta has been observed in other regions of the Papez circuit, it has been theorized that activity propagates in a reentrant manner. These observations complement the energy cascade hypothesis in which large-amplitude, slow-frequency oscillations reflect activity propagating across a large population of neurons. Higher frequency oscillations, such as gamma, are related to the speed with which inhibitory and excitatory neurons interact and distribute activity on the local level. The energy cascade hypothesis suggests that the larger anatomic loops, maintaining theta, drive the smaller loops. As hippocampal theta increases in power with running speed, so does the power and frequency of the gamma rhythm. If theta is propagated through the circuit, it stands to reason that the local field potential (LFP) recorded in other regions would be coupled to the hippocampal theta, with the coupling increasing with running speed. We explored this hypothesis using open-source simultaneous recorded data from the CA1 region of the hippocampus and the anterior dorsal and anterior ventral thalamus. Cross-regional theta coupling increased with running speed. Although the power of the gamma rhythm was lower in the anterior thalamus, there was an increase in the coupling of hippocampal theta to anterior thalamic gamma. Broadly, the data support models of how activity moves across the nervous system, suggesting that the brain uses large-scale volleys of activity to support higher cognitive processes.
Collapse
Affiliation(s)
- Yu Qin
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
| | - Alex Sheremet
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tara L Cooper
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
18
|
Makarov M, Sysoev YI, Agafonova O, Prikhodko VA, Korkotian E, Okovityi SV. Color-Coding Method Reveals Enhancement of Stereotypic Locomotion by Phenazepam in Rat Open Field Test. Brain Sci 2023; 13:brainsci13030408. [PMID: 36979218 PMCID: PMC10046075 DOI: 10.3390/brainsci13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.
Collapse
Affiliation(s)
- Mark Makarov
- Faculty of Biology, Perm State University, 614068 Perm, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | | | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
19
|
LaChance PA, Taube JS. A model for transforming egocentric views into goal-directed behavior. Hippocampus 2023; 33:488-504. [PMID: 36780179 DOI: 10.1002/hipo.23510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
Neurons in the rat postrhinal cortex (POR) respond to the egocentric (observer-centered) bearing and distance of the boundaries, or geometric center, of an enclosed space. Understanding of the precise geometric and sensory properties of the environment that generate these signals is limited. Here we model how this signal may relate to visual perception of motion parallax along environmental boundaries. A behavioral extension of this tuning is the known 'centering response', in which animals follow a spatial gradient function based on boundary parallax to guide behavior toward the center of a corridor or enclosure. Adding an allocentric head direction signal to this representation can translate the gradient across two-dimensional space and provide a new gradient for directing behavior to any location. We propose a model for how this signal may support goal-directed navigation via projections to the dorsomedial striatum. The result is a straightforward code for navigational variables derived from visual geometric properties of the surrounding environment, which may be used to map space and transform incoming sensory information into an appropriate motor output.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jeffrey S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
20
|
Morris G, Derdikman D. The chicken and egg problem of grid cells and place cells. Trends Cogn Sci 2023; 27:125-138. [PMID: 36437188 DOI: 10.1016/j.tics.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
Place cells and grid cells are major building blocks of the hippocampal cognitive map. The prominent forward model postulates that grid-cell modules are generated by a continuous attractor network; that a velocity signal evoked during locomotion moves entorhinal activity bumps; and that place-cell activity constitutes summation of entorhinal grid-cell modules. Experimental data support the first postulate, but not the latter two. Several families of solutions that depart from these postulates have been put forward. We suggest a modified model (spatial modulation continuous attractor network; SCAN), whereby place cells are generated from spatially selective nongrid cells. Locomotion causes these cells to move the hippocampal activity bump, leading to movement of the entorhinal manifolds. Such inversion accords with the shift of hippocampal thought from navigation to more abstract functions.
Collapse
Affiliation(s)
- Genela Morris
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
21
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Midzyanovskaya I, Strelkov V. Measuring locomotor strategies of freely moving previsual rat pups. Behav Processes 2022; 203:104780. [DOI: 10.1016/j.beproc.2022.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
|
23
|
Sharma A, Nair IR, Yoganarasimha D. Attractor-like Dynamics in the Subicular Complex. J Neurosci 2022; 42:7594-7614. [PMID: 36028315 PMCID: PMC9546466 DOI: 10.1523/jneurosci.2048-20.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 02/02/2023] Open
Abstract
Distinct computations are performed at multiple brain regions during the encoding of spatial environments. Neural representations in the hippocampal, entorhinal, and head direction (HD) networks during spatial navigation have been clearly documented, while the representational properties of the subicular complex (SC) are relatively underexplored, although it has extensive anatomic connections with various brain regions involved in spatial information processing. We simultaneously recorded single units from different subregions of the SC in male rats while they ran clockwise on a centrally placed textured circular track (four different textures, each covering a quadrant), surrounded by six distal cues. The neural activity was monitored in standard sessions by maintaining the same configuration between the cues, while in cue manipulation sessions, the distal and local cues were either rotated in opposite directions to create a mismatch between them or the distal cues were removed. We report a highly coherent neural representation of the environment and a robust coupling between the HD cells and the spatial cells in the SC, strikingly different from previous reports of coupling between cells from co-recorded sites. Neural representations were (1) originally governed by the distal cues under local-distal cue-conflict conditions, (2) controlled by the local cues in the absence of distal cues, and (3) governed by the cues that are perceived to be stable. We propose that such attractor-like dynamics in the SC might play a critical role in the orientation of spatial representations, thus providing a "reference map" of the environment for further processing by other networks.SIGNIFICANCE STATEMENT The subicular complex (SC) receives major inputs from the entorhinal cortex and the hippocampus, and head direction (HD) information directly from the HD system. Using cue-conflict experiments, we studied the hierarchical representation of the local and distal cues in the SC to understand its role in the cognitive map, and report a highly coherent neural representation with robust coupling between the HD cells and the spatial cells in different subregions of the SC exhibiting attractor-like dynamics unaffected by the cue manipulations, strikingly different from previous reports of coupling between cells from co-recorded sites. This unique feature may allow the SC to function as a single computational unit during the representation of space, which may serve as a reference map of the environment.
Collapse
Affiliation(s)
- Apoorv Sharma
- Division of Systems Neuroscience, National Brain Research Centre, Manesar, Haryana 122051, India
| | - Indrajith R Nair
- Division of Systems Neuroscience, National Brain Research Centre, Manesar, Haryana 122051, India
| | - Doreswamy Yoganarasimha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka 560029, India
| |
Collapse
|
24
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Functional network topography of the medial entorhinal cortex. Proc Natl Acad Sci U S A 2022; 119:2121655119. [PMID: 35135885 PMCID: PMC8851479 DOI: 10.1073/pnas.2121655119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
The investigation of the topographic organization of spatially coding cell types in the medial entorhinal cortex (MEC) has so far been held back by the lack of appropriate tools that enable the precise recording of both the anatomical location and activity of large populations of cells while animals forage in open environments. In this study, we use the newest generation of head-mounted, miniaturized two-photon microscopes to image grid, head-direction, border, as well as object-vector cells in MEC and neighboring parasubiculum within the same animals. The majority of cell types were intermingled, but grid and object-vector cells exhibited little overlap. The results have implications for network models of spatial coding. The medial entorhinal cortex (MEC) creates a map of local space, based on the firing patterns of grid, head-direction (HD), border, and object-vector (OV) cells. How these cell types are organized anatomically is debated. In-depth analysis of this question requires collection of precise anatomical and activity data across large populations of neurons during unrestrained behavior, which neither electrophysiological nor previous imaging methods fully afford. Here, we examined the topographic arrangement of spatially modulated neurons in the superficial layers of MEC and adjacent parasubiculum using miniaturized, portable two-photon microscopes, which allow mice to roam freely in open fields. Grid cells exhibited low levels of co-occurrence with OV cells and clustered anatomically, while border, HD, and OV cells tended to intermingle. These data suggest that grid cell networks might be largely distinct from those of border, HD, and OV cells and that grid cells exhibit strong coupling among themselves but weaker links to other cell types.
Collapse
|
26
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
27
|
Peng Y, Barreda Tomas FJ, Pfeiffer P, Drangmeister M, Schreiber S, Vida I, Geiger JRP. Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning. SCIENCE ADVANCES 2021; 7:7/25/eabg4693. [PMID: 34134979 PMCID: PMC8208710 DOI: 10.1126/sciadv.abg4693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Federico J Barreda Tomas
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Paul Pfeiffer
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Moritz Drangmeister
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Jörg R P Geiger
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
28
|
A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation. Cell Rep 2021; 31:107747. [PMID: 32521272 DOI: 10.1016/j.celrep.2020.107747] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.
Collapse
|
29
|
Abstract
Several types of neurons involved in spatial navigation and memory encode the distance and direction (that is, the vector) between an agent and items in its environment. Such vectorial information provides a powerful basis for spatial cognition by representing the geometric relationships between the self and the external world. Here, we review the explicit encoding of vectorial information by neurons in and around the hippocampal formation, far from the sensory periphery. The parahippocampal, retrosplenial and parietal cortices, as well as the hippocampal formation and striatum, provide a plethora of examples of vector coding at the single neuron level. We provide a functional taxonomy of cells with vectorial receptive fields as reported in experiments and proposed in theoretical work. The responses of these neurons may provide the fundamental neural basis for the (bottom-up) representation of environmental layout and (top-down) memory-guided generation of visuospatial imagery and navigational planning.
Collapse
|
30
|
Olson JM, Li JK, Montgomery SE, Nitz DA. Secondary Motor Cortex Transforms Spatial Information into Planned Action during Navigation. Curr Biol 2020; 30:1845-1854.e4. [DOI: 10.1016/j.cub.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
|
31
|
Angelaki DE, Ng J, Abrego AM, Cham HX, Asprodini EK, Dickman JD, Laurens J. A gravity-based three-dimensional compass in the mouse brain. Nat Commun 2020; 11:1855. [PMID: 32296057 PMCID: PMC7160108 DOI: 10.1038/s41467-020-15566-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Gravity sensing provides a robust verticality signal for three-dimensional navigation. Head direction cells in the mammalian limbic system implement an allocentric neuronal compass. Here we show that head-direction cells in the rodent thalamus, retrosplenial cortex and cingulum fiber bundle are tuned to conjunctive combinations of azimuth and tilt, i.e. pitch or roll. Pitch and roll orientation tuning is anchored to gravity and independent of visual landmarks. When the head tilts, azimuth tuning is affixed to the head-horizontal plane, but also uses gravity to remain anchored to the allocentric bearings in the earth-horizontal plane. Collectively, these results demonstrate that a three-dimensional, gravity-based, neural compass is likely a ubiquitous property of mammalian species, including ground-dwelling animals. Head direction neurons constitute the brain’s compass, and are classically known to indicate head orientation in the horizontal plane. Here, the authors show that head direction neurons form a three-dimensional compass that can also indicate head tilt, and anchors to gravity.
Collapse
Affiliation(s)
- Dora E Angelaki
- Center for Neural Science and Tandon School of Engineering, New York University, New York, NY, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Julia Ng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Amada M Abrego
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Henry X Cham
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Eftihia K Asprodini
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
LaChance PA, Todd TP, Taube JS. A sense of space in postrhinal cortex. Science 2020; 365:365/6449/eaax4192. [PMID: 31296737 DOI: 10.1126/science.aax4192] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/30/2019] [Indexed: 11/02/2022]
Abstract
A topographic representation of local space is critical for navigation and spatial memory. In humans, topographic spatial learning relies upon the parahippocampal cortex, damage to which renders patients unable to navigate their surroundings or develop new spatial representations. Stable spatial signals have not yet been observed in its rat homolog, the postrhinal cortex. We recorded from single neurons in the rat postrhinal cortex whose firing reflects an animal's egocentric relationship to the geometric center of the local environment, as well as the animal's head direction in an allocentric reference frame. Combining these firing correlates revealed a population code for a stable topographic map of local space. This may form the basis for higher-order spatial maps such as those seen in the hippocampus and entorhinal cortex.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Travis P Todd
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
33
|
Ryan JD, Shen K, Kacollja A, Tian H, Griffiths J, Bezgin G, McIntosh AR. Modeling the influence of the hippocampal memory system on the oculomotor system. Netw Neurosci 2020; 4:217-233. [PMID: 32166209 PMCID: PMC7055646 DOI: 10.1162/netn_a_00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Visual exploration is related to activity in the hippocampus (HC) and/or extended medial temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic cases. An extensive set of polysynaptic connections exists both within and between the HC and oculomotor systems such that investigating how HC responses ultimately influence neural activity in the oculomotor system, and the timing by which such neural modulation could occur, is not trivial. We leveraged TheVirtualBrain, a software platform for large-scale network simulations, to model the functional dynamics that govern the interactions between the two systems in the macaque cortex. Evoked responses following the stimulation of the MTL and some, but not all, subfields of the HC resulted in observable responses in oculomotor regions, including the frontal eye fields, within the time of a gaze fixation. Modeled lesions to some MTL regions slowed the dissipation of HC signal to oculomotor regions, whereas HC lesions generally did not affect the rapid MTL activity propagation to oculomotor regions. These findings provide a framework for investigating how information represented by the HC/MTL may influence the oculomotor system during a fixation and predict how HC lesions may affect visual exploration.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Arber Kacollja
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Heather Tian
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - John Griffiths
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
34
|
Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME. Egocentric boundary vector tuning of the retrosplenial cortex. SCIENCE ADVANCES 2020; 6:eaaz2322. [PMID: 32128423 PMCID: PMC7035004 DOI: 10.1126/sciadv.aaz2322] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 05/17/2023]
Abstract
The retrosplenial cortex is reciprocally connected with multiple structures implicated in spatial cognition, and damage to the region itself produces numerous spatial impairments. Here, we sought to characterize spatial correlates of neurons within the region during free exploration in two-dimensional environments. We report that a large percentage of retrosplenial cortex neurons have spatial receptive fields that are active when environmental boundaries are positioned at a specific orientation and distance relative to the animal itself. We demonstrate that this vector-based location signal is encoded in egocentric coordinates, is localized to the dysgranular retrosplenial subregion, is independent of self-motion, and is context invariant. Further, we identify a subpopulation of neurons with this response property that are synchronized with the hippocampal theta oscillation. Accordingly, the current work identifies a robust egocentric spatial code in retrosplenial cortex that can facilitate spatial coordinate system transformations and support the anchoring, generation, and utilization of allocentric representations.
Collapse
Affiliation(s)
- Andrew S. Alexander
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Corresponding author.
| | - Lucas C. Carstensen
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - James R. Hinman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - Florian Raudies
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - G. William Chapman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
35
|
Angelaki DE, Laurens J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Curr Opin Neurobiol 2020; 60:136-144. [PMID: 31877492 PMCID: PMC7002189 DOI: 10.1016/j.conb.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
Abstract
Knowledge of head direction cell function has progressed remarkably in recent years. The predominant theory that they form an attractor has been confirmed by several experiments. Candidate pathways that may convey visual input have been identified. The pre-subicular circuitry that conveys head direction signals to the medial entorhinal cortex, potentially sustaining path integration by grid cells, has been resolved. Although the neuronal substrate of the attractor remains unknown in mammals, a simple head direction network, whose structure is astoundingly similar to neuronal models theorized decades earlier, has been identified in insects. Finally, recent experiments have revealed that these cells do not encode head direction in the horizontal plane only, but also in vertical planes, thus providing a 3D orientation signal.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Center for Neural Science and Tandon School of Engineering, New York University, NY, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany.
| |
Collapse
|
36
|
Cubero RJ, Marsili M, Roudi Y. Multiscale relevance and informative encoding in neuronal spike trains. J Comput Neurosci 2020; 48:85-102. [PMID: 31993923 PMCID: PMC7035307 DOI: 10.1007/s10827-020-00740-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric - which we call multiscale relevance (MSR) - to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate.
Collapse
Affiliation(s)
- Ryan John Cubero
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- The Abdus Salam International Center for Theoretical Physics, Trieste, Italy.
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
- IST Austria, Klosterneuburg, Austria.
| | - Matteo Marsili
- The Abdus Salam International Center for Theoretical Physics, Trieste, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Italy
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
37
|
Xu Z, Wu W, Winter SS, Mehlman ML, Butler WN, Simmons CM, Harvey RE, Berkowitz LE, Chen Y, Taube JS, Wilber AA, Clark BJ. A Comparison of Neural Decoding Methods and Population Coding Across Thalamo-Cortical Head Direction Cells. Front Neural Circuits 2019; 13:75. [PMID: 31920565 PMCID: PMC6914739 DOI: 10.3389/fncir.2019.00075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Head direction (HD) cells, which fire action potentials whenever an animal points its head in a particular direction, are thought to subserve the animal's sense of spatial orientation. HD cells are found prominently in several thalamo-cortical regions including anterior thalamic nuclei, postsubiculum, medial entorhinal cortex, parasubiculum, and the parietal cortex. While a number of methods in neural decoding have been developed to assess the dynamics of spatial signals within thalamo-cortical regions, studies conducting a quantitative comparison of machine learning and statistical model-based decoding methods on HD cell activity are currently lacking. Here, we compare statistical model-based and machine learning approaches by assessing decoding accuracy and evaluate variables that contribute to population coding across thalamo-cortical HD cells.
Collapse
Affiliation(s)
- Zishen Xu
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Wei Wu
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Shawn S. Winter
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - Max L. Mehlman
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - William N. Butler
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - Christine M. Simmons
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ryan E. Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E. Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Yang Chen
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - Aaron A. Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
38
|
Thalamocortical processing of the head-direction sense. Prog Neurobiol 2019; 183:101693. [DOI: 10.1016/j.pneurobio.2019.101693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
|
39
|
Wang C, Chen X, Knierim JJ. Egocentric and allocentric representations of space in the rodent brain. Curr Opin Neurobiol 2019; 60:12-20. [PMID: 31794917 DOI: 10.1016/j.conb.2019.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Spatial signals are prevalent within the hippocampus and its neighboring regions. It is generally accepted that these signals are defined with respect to the external world (i.e., a world-centered, or allocentric, frame of reference). Recently, evidence of egocentric processing (i.e., self-centered, defined relative to the subject) in the extended hippocampal system has accumulated. These results support the idea that egocentric sensory information, derived from primary sensory cortical areas, may be transformed to allocentric representations that interact with the allocentric hippocampal system. We propose a framework to explain the implications of the egocentric-allocentric transformations to the functions of the medial temporal lobe memory system.
Collapse
Affiliation(s)
- Cheng Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Xiaojing Chen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Dillingham CM, Vann SD. Why Isn't the Head Direction System Necessary for Direction? Lessons From the Lateral Mammillary Nuclei. Front Neural Circuits 2019; 13:60. [PMID: 31619970 PMCID: PMC6759954 DOI: 10.3389/fncir.2019.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022] Open
Abstract
Complex spatial representations in the hippocampal formation and related cortical areas require input from the head direction system. However, a recurrent finding is that behavior apparently supported by these spatial representations does not appear to require input from generative head direction regions, i.e., lateral mammillary nuclei (LMN). Spatial tasks that tax direction discrimination should be particularly sensitive to the loss of head direction information, however, this has been repeatedly shown not to be the case. A further dissociation between electrophysiological properties of the head direction system and behavior comes in the form of geometric-based navigation which is impaired following lesions to the head direction system, yet head direction cells are not normally guided by geometric cues. We explore this apparent mismatch between behavioral and electrophysiological studies and highlight future experiments that are needed to generate models that encompass both neurophysiological and behavioral findings.
Collapse
Affiliation(s)
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
41
|
Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum. Nat Commun 2019; 10:4004. [PMID: 31488828 PMCID: PMC6728372 DOI: 10.1038/s41467-019-11802-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
In rodents, cells in the medial entorhinal cortex (EC) and subiculum code for the allocentric direction to environment boundaries, which is an important prerequisite for accurate positional coding. Although in humans boundary-related signals have been reported, there is no evidence that they contain allocentric direction information. Furthermore, it has not been possible to separate boundary versus goal direction signals in the EC/subiculum. Here, to address these questions, we had participants learn a virtual environment containing four unique boundaries. Participants then underwent fMRI scanning where they made judgements about the allocentric direction of a cue object. Using multivariate decoding, we found information regarding allocentric boundary direction in posterior EC and subiculum, whereas allocentric goal direction was decodable from anterior EC and subiculum. These data provide the first evidence of allocentric boundary coding in humans, and are consistent with recent conceptualisations of a division of labour within the EC.
Collapse
|
42
|
Gofman X, Tocker G, Weiss S, Boccara CN, Lu L, Moser MB, Moser EI, Morris G, Derdikman D. Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries. Curr Biol 2019; 29:2751-2757.e4. [DOI: 10.1016/j.cub.2019.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/23/2023]
|
43
|
Neuronal representation of environmental boundaries in egocentric coordinates. Nat Commun 2019; 10:2772. [PMID: 31235693 PMCID: PMC6591168 DOI: 10.1038/s41467-019-10722-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/26/2019] [Indexed: 11/08/2022] Open
Abstract
Movement through space is a fundamental behavior for all animals. Cognitive maps of environments are encoded in the hippocampal formation in an allocentric reference frame, but motor movements that comprise physical navigation are represented within an egocentric reference frame. Allocentric navigational plans must be converted to an egocentric reference frame prior to implementation as overt behavior. Here we describe an egocentric spatial representation of environmental boundaries in the dorsomedial striatum. The hippocampus represents an allocentric map of space, however, motor movements used for navigation are defined in an egocentric framework. Here, the authors report that dorsomedial striatal neurons exhibit an egocentric representation of the boundaries in the environment.
Collapse
|
44
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
45
|
Wang C, Chen X, Lee H, Deshmukh SS, Yoganarasimha D, Savelli F, Knierim JJ. Egocentric coding of external items in the lateral entorhinal cortex. Science 2019; 362:945-949. [PMID: 30467169 DOI: 10.1126/science.aau4940] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Episodic memory, the conscious recollection of past events, is typically experienced from a first-person (egocentric) perspective. The hippocampus plays an essential role in episodic memory and spatial cognition. Although the allocentric nature of hippocampal spatial coding is well understood, little is known about whether the hippocampus receives egocentric information about external items. We recorded in rats the activity of single neurons from the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC), the two major inputs to the hippocampus. Many LEC neurons showed tuning for egocentric bearing of external items, whereas MEC cells tended to represent allocentric bearing. These results demonstrate a fundamental dissociation between the reference frames of LEC and MEC neural representations.
Collapse
Affiliation(s)
- Cheng Wang
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaojing Chen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sachin S Deshmukh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | | - Francesco Savelli
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Fotowat H, Lee C, Jun JJ, Maler L. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife 2019; 8:44119. [PMID: 30942169 PMCID: PMC6469930 DOI: 10.7554/elife.44119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Candice Lee
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - James Jaeyoon Jun
- Center for Computational Biology, Flatiron Institute, New York, United States
| | - Len Maler
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
47
|
Savelli F, Knierim JJ. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. J Exp Biol 2019; 222:jeb188912. [PMID: 30728236 PMCID: PMC7375830 DOI: 10.1242/jeb.188912] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Path integration is a straightforward concept with varied connotations that are important to different disciplines concerned with navigation, such as ethology, cognitive science, robotics and neuroscience. In studying the hippocampal formation, it is fruitful to think of path integration as a computation that transforms a sense of motion into a sense of location, continuously integrated with landmark perception. Here, we review experimental evidence that path integration is intimately involved in fundamental properties of place cells and other spatial cells that are thought to support a cognitive abstraction of space in this brain system. We discuss hypotheses about the anatomical and computational origin of path integration in the well-characterized circuits of the rodent limbic system. We highlight how computational frameworks for map-building in robotics and cognitive science alike suggest an essential role for path integration in the creation of a new map in unfamiliar territory, and how this very role can help us make sense of differences in neurophysiological data from novel versus familiar and small versus large environments. Similar computational principles could be at work when the hippocampus builds certain non-spatial representations, such as time intervals or trajectories defined in a sensory stimulus space.
Collapse
Affiliation(s)
- Francesco Savelli
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James J Knierim
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Stimmell AC, Baglietto-Vargas D, Moseley SC, Lapointe V, Thompson LM, LaFerla FM, McNaughton BL, Wilber AA. Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Sci Rep 2019; 9:1311. [PMID: 30718609 PMCID: PMC6361963 DOI: 10.1038/s41598-018-37151-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
In early Alzheimer's disease (AD) spatial navigation is impaired; however, the precise cause of this impairment is unclear. Recent evidence suggests that getting lost is one of the first impairments to emerge in AD. It is possible that getting lost represents a failure to use distal cues to get oriented in space. Therefore, we set out to look for impaired use of distal cues for spatial orientation in a mouse model of amyloidosis (3xTg-AD). To do this, we trained mice to shuttle to the end of a track and back to an enclosed start box to receive a water reward. Then, mice were trained to stop in an unmarked reward zone to receive a brain stimulation reward. The time required to remain in the zone for a reward was increased across training, and the track was positioned in a random start location for each trial. We found that 6-month female, but not 3-month female, 6-month male, or 12-month male, 3xTg-AD mice were impaired. 6-month male and female mice had only intracellular pathology and male mice had less pathology, particularly in the dorsal hippocampus. Thus, AD may cause spatial disorientation as a result of impaired use of landmarks.
Collapse
Affiliation(s)
- Alina C Stimmell
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.
| | | | - Shawn C Moseley
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Valérie Lapointe
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren M Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Frank M LaFerla
- Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Bruce L McNaughton
- Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Aaron A Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
49
|
Anticipatory Neural Activity Improves the Decoding Accuracy for Dynamic Head-Direction Signals. J Neurosci 2019; 39:2847-2859. [PMID: 30692223 DOI: 10.1523/jneurosci.2605-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 11/21/2022] Open
Abstract
Insects and vertebrates harbor specific neurons that encode the animal's head direction (HD) and provide an internal compass for spatial navigation. Each HD cell fires most strongly in one preferred direction. As the animal turns its head, however, HD cells in rat anterodorsal thalamic nucleus (ADN) and other brain areas fire already before their preferred direction is reached, as if the neurons anticipated the future HD. This phenomenon has been explained at a mechanistic level, but a functional interpretation is still missing. To close this gap, we use a computational approach based on the movement statistics of male rats and a simple model for the neural responses within the ADN HD network. Network activity is read out using population vectors in a biologically plausible manner, so that only past spikes are taken into account. We find that anticipatory firing improves the representation of the present HD by reducing the motion-induced temporal bias inherent in causal decoding. The amount of anticipation observed in ADN enhances the precision of the HD compass read-out by up to 40%. More generally, our theoretical framework predicts that neural integration times not only reflect biophysical constraints, but also the statistics of behaviorally relevant stimuli; in particular, anticipatory tuning should be found wherever neurons encode sensory signals that change gradually in time.SIGNIFICANCE STATEMENT Across different brain regions, populations of noisy neurons encode dynamically changing stimuli. Decoding a time-varying stimulus from the population response involves a trade-off: For short read-out times, stimulus estimates are unreliable as the number of stochastic spikes is small; for long read-outs, estimates are biased because they lag behind the true stimulus. We show that optimal decoding of temporally correlated stimuli not only relies on finding the right read-out time window but requires neurons to anticipate future stimulus values. We apply this general framework to the rodent head-direction system and show that the experimentally observed anticipation of future head directions can be explained at a quantitative level from the neuronal tuning properties, network size, and the animal's head-movement statistics.
Collapse
|
50
|
Wallach A, Harvey-Girard E, Jun JJ, Longtin A, Maler L. A time-stamp mechanism may provide temporal information necessary for egocentric to allocentric spatial transformations. eLife 2018; 7:36769. [PMID: 30465523 PMCID: PMC6264071 DOI: 10.7554/elife.36769] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Learning the spatial organization of the environment is essential for most animals’ survival. This requires the animal to derive allocentric spatial information from egocentric sensory and motor experience. The neural mechanisms underlying this transformation are mostly unknown. We addressed this problem in electric fish, which can precisely navigate in complete darkness and whose brain circuitry is relatively simple. We conducted the first neural recordings in the preglomerular complex, the thalamic region exclusively connecting the optic tectum with the spatial learning circuits in the dorsolateral pallium. While tectal topographic information was mostly eliminated in preglomerular neurons, the time-intervals between object encounters were precisely encoded. We show that this reliable temporal information, combined with a speed signal, can permit accurate estimation of the distance between encounters, a necessary component of path-integration that enables computing allocentric spatial relations. Our results suggest that similar mechanisms are involved in sequential spatial learning in all vertebrates. Finding their way around is an essential part of survival for many animals and helps them to locate food, mates and shelter. Animals have evolved the ability to form a 'map' or representation of their surroundings. For example, the electric fish Apteronotus leptorhynchus, is able to precisely learn the location of food and navigate there. It can do this in complete darkness by generating a weak electric field. As it swims, every object it encounters generates an ‘electric image’ that is detected on the skin and processed in the brain. However, all the cues the fish comes across are from its own point of view – the information about its environment is processed with respect to its location. And yet, the map that it generates needs to be independent of the fish’s position – it has to work regardless of where the animal is. The way animals translate ‘self-centered’ experiences to form a general representation of their surroundings is not yet fully understood. Now, Wallach et al. studied how internal brain maps are generated in A. leptorhynchus. Information about the fish's environment passes through a structure in the brain called the preglomerular complex. Measuring the activity of this region revealed that the preglomerular complex does not process much self-centered information. Instead, whenever the fish passed any object – regardless of where it was in relation to the fish – the event triggered a brief burst of preglomerular activity. The intensity of the activity depended on how recently the fish had encountered another object. This information, combined with the dynamics of the fish's movement, could be what allows the fish to convert a sequence of encounters into a general spatial map. These findings could help to inform research on learning and navigation. Further research could also reveal whether other species, including humans, generate their mental maps in a similar way. This may be relevant for people suffering from diseases such as Alzheimer’s, in which a sense of orientation has become impaired.
Collapse
Affiliation(s)
- Avner Wallach
- Department of Physics, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Center for Neural Dynamics, Mind and Brain Research Institute, University of Ottawa, Ottawa, Canada
| | - Len Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Center for Neural Dynamics, Mind and Brain Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|