1
|
Yu X, Faggion S, Liu Y, Wang B, Zeng Q, Lu C, Hu J, Bargelloni L, Fang L, Bao Z. Role of multi-omics in aquaculture genetics and breeding: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2828-8. [PMID: 40448907 DOI: 10.1007/s11427-024-2828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 06/02/2025]
Abstract
Aquaculture, a fast-growing sector, plays an important role in the supply of nutrient-rich food for humans. Selective breeding is a promising approach to ensure the development and sustainability of intensive aquaculture systems by achieving cumulative and permanent improvements in desirable traits. The advancement of omics technologies offers unprecedented opportunities for genetic improvement, especially in the prioritization of SNPs to be used in the genomic selection and editing of economically important traits. This review highlights novel breeding strategies in aquaculture, emphasizing how multi-omics data can be integrated into selective breeding programs. Specifically, we discuss the current achievements in integrating functional data into conventional genomic prediction models and highlight the potential of artificial intelligence to efficiently map genes and predict phenotypes or genetic merit using multi-omics data. Ultimately, we discuss genome editing methods for their potential to fix existing alleles, introduce alleles from wild populations or related species, and create de novo alleles, with the general goal of improving commercially important traits in aquaculture species.
Collapse
Affiliation(s)
- Xiaofei Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Yuxiang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chunzhe Lu
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jingjie Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8830, Denmark.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Liu F, Cai B, Lian S, Chang X, Chen D, Pu Z, Bao L, Wang J, Lv J, Zheng H, Bao Z, Zhang L, Wang S, Li Y. MolluscDB 2.0: a comprehensive functional and evolutionary genomics database for over 1400 molluscan species. Nucleic Acids Res 2025; 53:D1075-D1086. [PMID: 39530242 PMCID: PMC11701707 DOI: 10.1093/nar/gkae1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Mollusca represents the second-largest animal phylum but remains less explored genomically. The increase in high-quality genomes and diverse functional genomic data holds great promise for advancing our understanding of molluscan biology and evolution. To address the opportunities and challenges facing the molluscan research community in managing vast multi-omics resources, we developed MolluscDB 2.0 (http://mgbase.qnlm.ac), which integrates extensive functional genomic data and offers user-friendly tools for multilevel integrative and comparative analyses. MolluscDB 2.0 covers 1450 species across all eight molluscan classes and compiles ∼4200 datasets, making it the most comprehensive multi-omics resource for molluscs to date. MolluscDB 2.0 expands the layers of multi-omics data, including genomes, bulk transcriptomes, single-cell transcriptomes, proteomes, epigenomes and metagenomes. MolluscDB 2.0 also more than doubles the number of functional modules and analytical tools, updating 14 original modules and introducing 20 new, specialized modules. Overall, MolluscDB 2.0 provides highly valuable, open-access multi-omics platform for the molluscan research community, expediting scientific discoveries and deepening our understanding of molluscan biology and evolution.
Collapse
Affiliation(s)
- Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Bingcheng Cai
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shanshan Lian
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyao Chang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Dongsheng Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jing Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jia Lv
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
4
|
Song JA, Lee E, Choi YU, Park JJC, Han J. Influence of temperature changes on oxidative stress and antioxidant defense system in the bay scallop, Argopecten irradians. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111775. [PMID: 39537095 DOI: 10.1016/j.cbpa.2024.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, we aimed to understand the effects of changes in temperature on biochemical and molecular responses associated with the antioxidant defense system in the bay scallop, Argopecten irradians. We measured the contents of H2O2 and malondialdehyde (MDA), as well as the activities of antioxidant enzymes (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD], and catalase [CAT]), and the regulation of stress-related genes (e.g., GST, SOD, CAT, and heat shock protein 70 [HSP70]). In addition, total antioxidant capacity (TAC) was examined in scallops exposed to different temperatures. A. irradians showed high levels of H2O2 and MDA in response to acute thermal stress (48 and 72 h of exposure). Temperature changes also led to a significant increase in antioxidant enzyme activity and mRNA expression levels in A. irradians. Interestingly, the TAC increased in response to acute thermal stress (28 °C) for up to 12 h and decreased thereafter. The oxidative stress induced by high temperatures could not be alleviated by an increase in levels of antioxidant enzymes, such as GST, SOD, and CAT, resulting in high levels of H2O2 and MDA and low levels of TAC. In addition, significant changes (P < 0.05) in HSP70 levels were observed in response to changes in temperature, suggesting that HSP70 played an important role in the heat tolerance of A. irradians. In conclusion, A. irradians exhibits a greater degree of oxidative stress responses in high-temperature environments than that in low-temperature environments. Overall, these findings indicate that temperature changes lead to oxidative stress, resulting in cellular damage and activation of the antioxidant defense system in bay scallops. Further experiments are required to elucidate other antioxidants and fully understand the redox system in A. irradians.
Collapse
Affiliation(s)
- Jin Ah Song
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Eunseong Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Young-Ung Choi
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jeonghoon Han
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| |
Collapse
|
5
|
Li M, Cheng J, Wang H, Shi J, Xun X, Lu W, Wang X, Hu J, Bao Z, Hu X. The DnaJ-Hsp70-Hsp90 co-chaperon networks in scallops under toxic Alexandrium dinoflagellates exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117653. [PMID: 39756175 DOI: 10.1016/j.ecoenv.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms. Here, 37 CfDnaJ and 35 PyDnaJ genes were systematically characterized in Zhikong scallop (Chlamys farreri) and Yesso scallop (Patinopecten yessoensis), the important aquaculture bivalve species in China. After exposure to different PST-producing dinoflagellates, Alexandrium minutum and Alexandrium catenella, diverse DnaJ regulations were presented in scallop hepatopancreas, accumulating incoming PSTs, and kidneys, transforming PSTs into higher toxic analogs. CfDnaJs' up-regulation in kidneys was similar with that in hepatopancreas, while their down-regulation was stronger in kidneys than in hepatopancreas, with CFA.38965.19.DNAJC30 being continuously down-regulated in both tissues of the two algae exposure. Moreover, PyDnaJs' up-regulation was only found in kidneys after A. catenella exposure, and PYE.10799.6.DNAJB1 was down-regulated in both tissues through the experiment. Together with the expression trends and correlation of DnaJ-Hsp70-Hsp90 genes, the organ-, toxin-, and species-dependent Hsp70B2 expressions were coordinately co-expressed with diverse DnaJ members, suggesting the functional diversity of scallop DnaJs with conserved Hsp70B2s in response to stress by PST-producing algae. Our results confirmed the regulated coordination of DnaJ-Hsp70B2 co-chaperons in scallops, and provided vital insights into the function and adaptation of scallop Hsps in response to PST stress.
Collapse
Affiliation(s)
- Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China.
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Xubo Wang
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Ningbo 315832, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China.
| |
Collapse
|
6
|
He J, Hao H, Pan H, Yao S, Zhao Y, Guo S, Huang J, Feng D. Insights into the Molecular Mechanisms of Purine Compounds Synergistically Inducing Larval Settlement in Mytilopsis sallei Using Multi-Group Comparative Transcriptomic Analysis. BIOLOGY 2024; 13:1067. [PMID: 39765734 PMCID: PMC11672916 DOI: 10.3390/biology13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Most benthic marine invertebrates exhibit a characteristic biphasic life cycle, consisting of a planktonic larval stage followed by a benthic adult stage [...].
Collapse
Affiliation(s)
- Jian He
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Huanhuan Hao
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (H.H.); (H.P.); (S.Y.); (Y.Z.)
| | - Huakang Pan
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (H.H.); (H.P.); (S.Y.); (Y.Z.)
| | - Shanshan Yao
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (H.H.); (H.P.); (S.Y.); (Y.Z.)
| | - Yiran Zhao
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (H.H.); (H.P.); (S.Y.); (Y.Z.)
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Jianfang Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Danqing Feng
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (H.H.); (H.P.); (S.Y.); (Y.Z.)
| |
Collapse
|
7
|
Zhang J, Hu Y, Wang J, Hou X, Xiao Y, Wang X, Hu J, Bao Z, Xing Q, Huang X. Tissue-specific, temporal, and core gene-dependent expression patterns of Hsp70s reveal functional allocation in Chlamys farreri under heat stress. Int J Biol Macromol 2024; 283:137537. [PMID: 39537055 DOI: 10.1016/j.ijbiomac.2024.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Heat shock proteins 70 KDa (Hsp70s) engage in a broad spectrum of cellular functions in response to various stressors. Marine bivalves face substantial threats from the rising seawater temperature attributed to global warming. In the present study, expression patterns of Hsp70s in Zhikong scallop Chlamys farreri (CfHsp70s) were determined in embryos and larvae at all developmental stages, in healthy adult tissues, and across four various tissues exposed to high temperature for acute and chronic periods through in silico analysis. Spatiotemporal expressions suggested CfHsp70s performed specific functional differentiations in scallop's development and growth. Regulatory expression patterns of CfHsp70s, characterized by predominant down-regulation in the mantle, gill and hemocytes, as well as contrasting up-regulation in the heart, suggest differential functional allocation of CfHsp70s among tissues in response to heat stress. Particularly, a core set of 14 CfHsp70s, especially the nine members of the Hsp70B2s, characterized by gene expansion, intron-less structure, shorter gene length, preference for hydrophilic amino acids, and coordinated expression profiles, was predominantly responsible for the inducible up-regulations observed across all four tissue types. Collectively, the tissue-specific, temporal and core gene-dependent expression patterns of CfHsp70s illustrate the functional allocation and molecular evolution of Hsp70 family members in Zhikong scallops.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
8
|
Yuan KK, Li HY, Yang WD. Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors. Mar Drugs 2024; 22:510. [PMID: 39590790 PMCID: PMC11595774 DOI: 10.3390/md22110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms.
Collapse
Affiliation(s)
| | | | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (K.-K.Y.); (H.-Y.L.)
| |
Collapse
|
9
|
Zhang Y, Yuan Y, Zhang M, Yu X, Qiu B, Wu F, Tocher DR, Zhang J, Ye S, Cui W, Leung JYS, Ikhwanuddin M, Waqas W, Dildar T, Ma H. High-resolution chromosome-level genome of Scylla paramamosain provides molecular insights into adaptive evolution in crabs. BMC Biol 2024; 22:255. [PMID: 39511558 PMCID: PMC11545969 DOI: 10.1186/s12915-024-02054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Evolutionary adaptation drives organismal adjustments to environmental pressures, exemplified in the diverse morphological and ecological adaptations seen in Decapoda crustaceans, particularly brachyuran crabs. Crabs thrive in diverse ecosystems, from coral reefs to hydrothermal vents and terrestrial habitats. Despite their ecological importance, the genetic mechanisms underpinning their developmental processes, reproductive strategies, and nutrient acquisition remain poorly understood. RESULTS Here, we report a comprehensive genomic analysis of the green mud crab Scylla paramamosain using ultralong sequencing technologies, achieving a high-quality chromosome-level assembly. The refined 1.21 Gb genome, with an impressive contig N50 of 11.45 Mb, offers a valuable genomic resource. The genome exhibits 33,662 protein-coding genes, enriched in various pathways related to development and environmental adaptation. Gene family analysis shows expansion in development-related pathways and contraction in metabolic pathways, indicating niche adaptations. Notably, investigation into Hox gene regulation sheds light on their role in pleopod development, with the Abd-A gene identified as a linchpin. Post-transcriptional regulation involving novel-miR1317 negatively regulates Abd-A levels. Furthermore, the potential role of fru gene in ovarian development and the identification of novel-miR35 as a regulator of Spfru2 add complexity to gene regulatory networks. Comparative functional analysis across Decapoda species reveals neo-functionalization of the elovl6 gene in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting its importance in environmental adaptation. CONCLUSIONS Our findings shed light on various aspects of crab biology, including genome sequencing, assembly, and annotation, as well as gene family expansion, contraction, and regulatory mechanisms governing crucial developmental processes such as metamorphosis, reproductive strategies, and fatty acid metabolism.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ye Yuan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mengqian Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Xiaoyan Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Bixun Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Fangchun Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
| | - Jiajia Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mhd Ikhwanuddin
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Waqas Waqas
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Tariq Dildar
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, China.
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.
| |
Collapse
|
10
|
Chen J, Qu Y, Dong J, Xu W, Zhao Y, Cui J, Yu Z, Bao Z, Ma J, Han Y, Liu Y, Huang B, Wang X. A scallop IκB protein involved in innate immunity acts as a key regulator of NF-κB. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109897. [PMID: 39260530 DOI: 10.1016/j.fsi.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Chlamys farreri, a commercially important bivalve mollusk, is extensively cultivated in China. In recent years, the frequent occurrence of diseases has led to significant mortality in scallop farms. Despite this, our understanding of scallop's innate immune mechanisms remains limited. The NF-κB signaling pathway plays a crucial role in various biological processes, including cellular, developmental, and immune defense mechanisms. Inhibitors of NF-κB (IκB) proteins block the nuclear localization and DNA binding of NF-κB, thereby inhibiting its activity. However, the role of these proteins in invertebrates is not well understood. In this study, we identified a new homolog of the IκB gene in C. farreri, named CfIκB1. The open reading frame of CfIκB1 spans 1089 bp, encoding 362 amino acids. Through sequence comparison and phylogenetic analysis, CfIκB1 was classified as a member of the invertebrate IκB family. Quantitative real-time PCR revealed that CfIκB1 transcripts are present in all examined tissues, with the highest expression observed in hemocytes. Expression levels were significantly upregulated following exposure to lipopolysaccharide, peptidoglycan, and polyinosinic:polycytidylic acid. Co-immunoprecipitation studies confirmed that CfIκB1 interacts with NF-κB family proteins CfRel-1 and CfRel. Dual-luciferase reporter assays demonstrated that CfIκB1 inhibits CfRel-dependent activation of NF-κB, ISRE, IFNβ, and AP-1. These findings suggest that CfIκB1 plays a crucial role in regulating NF-κB activity, which is integral to the innate immunity of C. farreri. This research enhances our understanding of the innate immune system in invertebrates and provides a theoretical basis for developing disease-resistant scallops at the molecular level.
Collapse
Affiliation(s)
- Jiwen Chen
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yifan Qu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Juan Dong
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, Yantai, 264025, China; Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Yue Zhao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jie Cui
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zhengjie Yu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zihao Bao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
11
|
Sun X, Chen X, Wu B, Zhou L, Chen Y, Zheng S, Wang S, Liu Z. Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks. BIOLOGY 2024; 13:870. [PMID: 39596825 PMCID: PMC11592408 DOI: 10.3390/biology13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown. In the present study, we obtain the high-quality chromosome-level genome of Manila clam R. philippinarum, an economically important marine bivalve in many coastal areas. The genome is constructed by the Hi-C assisted assembly, which yields 19 chromosomes with a total of 1.17 Gb and BUSCO integrity of 92.23%. The de novo assembled genome has a contig N50 length of 307.7 kb and scaffold N50 of 59.5 Mb. Gene family expansion analysis reveals that a total of 24 single-copy gene families have undergone the significant expansion or contraction, including E3 ubiquitin ligase and dynein heavy chain. The significant expansion of transposable elements has been also identified, including long terminal repeats (LTR) and non-LTR retrotransposons. The comparative transcriptomics among different clam tissues reveals that extracellular matrix (ECM) receptors and neuroactive ligand receptors may play the important roles in tissue structural support and neurotransmission during their infaunal life. These findings of gene family expansion and tissue-specific expression may reflect the unique soft tissue structure of clams, suggesting the evolution of lineage-specific morphological novelties. The high-quality genome and transcriptome data of R. philippinarum will not only facilitate the genetic studies on clams but will also provide valuable information on morphological novelties in mollusks.
Collapse
Affiliation(s)
- Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Yancui Chen
- Zhangzhou Aquatic Technology Promotion Station, Zhangzhou 363000, China;
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
12
|
Xu W, Liu Y, Li M, Lu S, Chen S. Advances in biotechnology and breeding innovations in China's marine aquaculture. ADVANCED BIOTECHNOLOGY 2024; 2:38. [PMID: 39883290 PMCID: PMC11740861 DOI: 10.1007/s44307-024-00043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 01/31/2025]
Abstract
Biotechnology is the key driving force behind the sustainable development of aquaculture, as biological innovation would significantly improve the capabilities of aquatic breeding and achieve independent and controllable seeding sources to ensure food safety. In this article, we have analyzed the current status and existing problems of marine aquaculture in China. Based on these data, we have summarized the recent (especially the last 10 years) biotechnological innovation and breeding progress of marine aquaculture in China, including whole genome sequencing, sex-related marker screening, genomic selection, and genome editing, as well as progress of improved marine fish varieties in China. Finally, the perspectives in this field have been discussed, and three future countermeasures have been proposed.
Collapse
Affiliation(s)
- Wenteng Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China.
| |
Collapse
|
13
|
Wang X, Yang Z, Peng C, Yu H, Cui C, Xing Q, Hu J, Bao Z, Huang X. Comparative Analyses of Dynamic Transcriptome Profile of Heart Highlight the Key Response Genes for Heat Stress in Zhikong Scallop Chlamys farreri. Antioxidants (Basel) 2024; 13:1217. [PMID: 39456470 PMCID: PMC11505284 DOI: 10.3390/antiox13101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress resulting from global climate change has been demonstrated to adversely affect growth, development, and reproduction of marine organisms. The Zhikong scallop (Chlamys farreri), an important economical mollusk in China, faces increasing risks of summer mortality due to the prolonged heat waves. The heart, responsible for transporting gas and nutrients, is vital in maintaining homeostasis and physiological status in response to environmental changes. In this study, the effect of heat stress on the cardiac function of C. farreri was investigated during the continuous 30-day heat stress at 27 °C. The results showed the heart rate of scallops increased due to stress in the initial phase of high temperature exposure, peaking at 12 h, and then gradually recovered, indicating an acclimatization at the end of the experiment. In addition, the levels of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) exhibited an initial increase followed by recovery in response to heat stress. Furthermore, transcriptome analysis of the heart identified 3541 differentially expressed genes (DEGs) in response to heat stress. Subsequent GO and KEGG enrichment analysis showed that these genes were primarily related to signal transduction and oxidative stress, such as the phosphatidylinositol signaling system, regulation of actin cytoskeleton, MAPK signaling pathway, FoxO signaling pathway, etc. In addition, two modules were identified as significant responsive modules according to the weighted gene co-expression network analysis (WGCNA). The upregulation of key enzymes within the base excision repair and gap junction pathways indicated that the heart of C. farreri under heat stress enhanced DNA repair and maintained cellular integrity. In addition, the variable expression of essential signaling molecules and cytoskeletal regulators suggested that the heart of C. farreri modulated cardiomyocyte contraction, intracellular signaling, and heart rate through complex regulation of phosphorylation and calcium dynamics in response to heat stress. Collectively, this study enhances our understanding of cardiac function and provides novel evidence for unraveling the mechanism underlying the thermal response in mollusks.
Collapse
Affiliation(s)
- Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
14
|
Zeng Y, Jiang R, Deng J, Cheng D, Wang W, Ye J, He C, Zhang C, Zhang H, Zheng H. Characterization of MKK family genes and their responses to temperature stress and Vibrio parahaemolyticus infection in noble scallop Chlamys nobilis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106695. [PMID: 39205359 DOI: 10.1016/j.marenvres.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mitogen-activated protein kinase kinase (MKK), the key element of the Mitogen-activated protein kinase (MAPK) signaling pathway, is crucial for the immune response to adverse environments in aquatic animals. Nevertheless, there is limited information regarding the role of the MKK gene family in mollusks. In our study, genome data and transcriptome were used to identify four MKK genes (CnMKK4, CnMKK5, CnMKK6, and CnMKK7) in the noble scallop. The result of the gene structure, motif analysis, and phylogenetic tree revealed that MKK genes are relatively conserved in bivalves. Moreover, four CnMKK genes were significantly highly expressed in immune-related tissues, suggesting that CnMKKs may related to bivalve immunity. Furthermore, CnMKK6 and CgMKK4 were significantly differentially expressed (P < 0.05) under 24 h of temperature stress, and all CnMKKs were significantly differentially expressed (P < 0.05) under 24 h of Vibrio parahaemolyticus infection. These results showed that the CnMKKs may have a significant impact under biotic and abiotic stresses. In conclusion, the result of the CnMKKs provides valuable insights into comprehending the function of MKK genes in mollusks.
Collapse
Affiliation(s)
- Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Ruolin Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Beihai, 536009, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| |
Collapse
|
15
|
Grouzdev D, Pales Espinosa E, Tettelbach S, Farhat S, Tanguy A, Boutet I, Guiglielmoni N, Flot JF, Tobi H, Allam B. Chromosome-level genome assembly of the bay scallop Argopecten irradians. Sci Data 2024; 11:1057. [PMID: 39341805 PMCID: PMC11439060 DOI: 10.1038/s41597-024-03904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The bay scallop, Argopecten irradians, is a species of major commercial, cultural, and ecological importance. It is endemic to the eastern coast of the United States, but has also been introduced to China, where it supports a significant aquaculture industry. Here, we provide an annotated chromosome-level reference genome assembly for the bay scallop, assembled using PacBio and Hi-C data. The total genome size is 845.9 Mb, distributed over 1,503 scaffolds with a scaffold N50 of 44.3 Mb. The majority (92.9%) of the assembled genome is contained within the 16 largest scaffolds, corresponding to the 16 chromosomes confirmed by Hi-C analysis. The assembly also includes the complete mitochondrial genome. Approximately 36.2% of the genome consists of repetitive elements. The BUSCO analysis showed a completeness of 96.2%. We identified 33,772 protein-coding genes. This genome assembly will be a valuable resource for future research on evolutionary dynamics, adaptive mechanisms, and will support genome-assisted breeding, contributing to the conservation and management of this iconic species in the face of environmental and pathogenic challenges.
Collapse
Affiliation(s)
- Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | | | - Stephen Tettelbach
- Cornell Cooperative Extension of Suffolk County, Southold, NY, 11971, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB)², Brussels, Belgium
| | - Harrison Tobi
- Cornell Cooperative Extension of Suffolk County, Southold, NY, 11971, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
16
|
Chen Y, Chen H, Han C, Ou H, Zhan X. The structure and proteomic analysis of byssus in Pteria penguin: Insights into byssus evolution and formation. J Proteomics 2024; 307:105267. [PMID: 39089615 DOI: 10.1016/j.jprot.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
McElroy KE, Masonbrink R, Chudalayandi S, Severin AJ, Serb JM. A chromosome-level genome assembly of the disco clam, Ctenoides ales. G3 (BETHESDA, MD.) 2024; 14:jkae115. [PMID: 38805695 PMCID: PMC11373642 DOI: 10.1093/g3journal/jkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The bivalve subclass Pteriomorphia, which includes the economically important scallops, oysters, mussels, and ark clams, exhibits extreme ecological, morphological, and behavioral diversity. Among this diversity are five morphologically distinct eye types, making Pteriomorphia an excellent setting to explore the molecular basis for the evolution of novel traits. Of pteriomorphian bivalves, Limida is the only order lacking genomic resources, greatly limiting the potential phylogenomic analyses related to eyes and phototransduction. Here, we present a limid genome assembly, the disco clam, Ctenoides ales (C. ales), which is characterized by invaginated eyes, exceptionally long tentacles, and a flashing light display. This genome assembly was constructed with PacBio long reads and Dovetail Omni-CTM proximity-ligation sequencing. The final assembly is ∼2.3Gb and over 99% of the total length is contained in 18 pseudomolecule scaffolds. We annotated 41,064 protein coding genes and reported a BUSCO completeness of 91.9% for metazoa_obd10. Additionally, we report a complete and annotated mitochondrial genome, which also had been lacking from Limida. The ∼20Kb mitogenome has 12 protein coding genes, 22 tRNAs, 2 rRNA genes, and a 1,589 bp duplicated sequence containing the origin of replication. The C. ales nuclear genome size is substantially larger than other pteriomorphian genomes, mainly accounted for by transposable element sequences. We inventoried the genome for opsins, the signaling proteins that initiate phototransduction, and found that, unlike its closest eyed-relatives, the scallops, C. ales lacks duplication of the rhabdomeric Gq-protein-coupled opsin that is typically used for invertebrate vision. In fact, C. ales has uncharacteristically few opsins relative to the other pteriomorphian families, all of which have unique expansions of xenopsins, a recently discovered opsin subfamily. This chromosome-level assembly, along with the mitogenome, is a valuable resource for comparative genomics and phylogenetics in bivalves and particularly for the understudied but charismatic limids.
Collapse
Affiliation(s)
- Kyle E McElroy
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rick Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | | | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Jeanne M Serb
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Cui J, Qu Y, Ma J, Chen J, Zhao Y, Yu Z, Bao Z, Han Y, Liu Y, Huang B, Wang X. Molluscan pleiotropic FADD involved in innate immune signaling and induces apoptosis. Int J Biol Macromol 2024; 275:133645. [PMID: 38964686 DOI: 10.1016/j.ijbiomac.2024.133645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Fas-associated protein with death domain (FADD) was initially identified as a crucial adaptor protein in the apoptotic pathway mediated by death receptor (DR). Subsequently, many studies have confirmed that FADD plays a vital role in innate immunity and inflammatory responses in animals. However, the function of this pleiotropic molecule in mollusk species has not been well explored. In this study, we successfully verified the gene sequence of FADD in the Zhikong scallop (Chlamys farreri) and designated it as CfFADD. The CfFADD protein contains a conserved death effector and death domains. Phylogenetic analysis showed that CfFADD is a novel addition to the molluscan FADD family with a close evolutionary relationship with molluscan FADD subfamily proteins. CfFADD mRNA expression in various scallop tissues was significantly induced by challenge with pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, and poly(I:C)), suggesting its role in innate immunity in scallops. Co-immunoprecipitation showed that CfFADD interacted with the scallop DR (tumor necrosis factor receptor) and a signaling molecule involved in the Toll-like receptor pathway (interleukin-1 receptor-associated kinase), confirming that CfFADD may be involved in DR-mediated apoptosis and innate immune signaling pathways. Further studies showed that CfFADD interacted with CfCaspase-8 and activated caspase-3. HEK293T cells exhibited distinct apoptotic features after transfection with a CfFADD-expression plasmid, suggesting a functional DR-FADD-caspase apoptotic pathway in scallops. Overexpression of CfFADD led to a significant dose-dependent activation of interferon β and nuclear factor-κB reporter genes, demonstrating the key role of CfFADD in innate immunity. In summary, our research has confirmed the critical roles of CfFADD in innate immunity and apoptosis and provides valuable information for developing comparative immunology theories.
Collapse
Affiliation(s)
- Jie Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yue Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhengjie Yu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zihao Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
19
|
Huang B, Ma J, Xu W, Cui J, Chen J, Qu Y, Zhao Y, Han Y, Liu Y, Wang W, Wang X. A newly identified scallop MyD88 interacts with TLR and functions in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109697. [PMID: 38871139 DOI: 10.1016/j.fsi.2024.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-β, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.
Collapse
Affiliation(s)
- Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wenwen Xu
- School of Agriculture, Ludong University, Yantai, 264025, China; Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Jie Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yue Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd., Yantai, 261413, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
20
|
Bortoletto E, Rosani U, Sakaguchi A, Yoon J, Nagasawa K, Venier P. Insights into ADAR gene complement, expression patterns, and RNA editing landscape in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109743. [PMID: 38964433 DOI: 10.1016/j.fsi.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Akari Sakaguchi
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Jeongwoong Yoon
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
21
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
22
|
Li X, Li S, Cheng J, Zhang Y, Zhan A. Deciphering protein-mediated underwater adhesion in an invasive biofouling ascidian: Discovery, validation, and functional mechanism of an interfacial protein. Acta Biomater 2024; 181:146-160. [PMID: 38679406 DOI: 10.1016/j.actbio.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
23
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
24
|
Bastolla CLV, Guerreiro FC, Saldaña-Serrano M, Gomes CHAM, Lima D, Rutkoski CF, Mattos JJ, Dias VHV, Righetti BPH, Ferreira CP, Martim J, Alves TC, Melo CMR, Marques MRF, Lüchmann KH, Almeida EA, Bainy ACD. Emerging and legacy contaminants on the Brazilian southern coast (Santa Catarina): A multi-biomarker approach in oysters Crassostrea gasar (Adanson, 1757). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171679. [PMID: 38494031 DOI: 10.1016/j.scitotenv.2024.171679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fernando C Guerreiro
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Marine Mollusc Laboratory (LMM), Department of Aquaculture, Center for Agricultural Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Camila F Rutkoski
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Vera Helena V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Julia Martim
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Claudio M R Melo
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Maria R F Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karim H Lüchmann
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
25
|
Bao L, Liu Z, Sui M, Yang Z, Wang H, Chen X, Xu Y, Niu Z, Liu N, Xing Q, Bao Z, Huang X. The Glucose-Succinate Pathway: A Crucial Anaerobic Metabolic Pathway in the Scallop Chlamys farreri Experiencing Heat Stress. Int J Mol Sci 2024; 25:4741. [PMID: 38731961 PMCID: PMC11084901 DOI: 10.3390/ijms25094741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.
Collapse
Affiliation(s)
- Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Xiaofei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Yue Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zehua Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
26
|
Wei Z, Zhao L, Wang S, Chang L, Shi J, Kong X, Li M, Lin J, Zhang W, Bao Z, Ding W, Hu X. Paralytic shellfish toxins producing dinoflagellates cause dysbacteriosis in scallop gut microbial biofilms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116146. [PMID: 38412634 DOI: 10.1016/j.ecoenv.2024.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.
Collapse
Affiliation(s)
- Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Liang Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Shuaitao Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lirong Chang
- Weihai Changqing Ocean Science & Technology Co. Ltd, Rongcheng, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yanan University, Yanan, China
| | - Weipeng Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
27
|
Bai Z, Lu Y, Hu H, Yuan Y, Li Y, Liu X, Wang G, Huang D, Wang Z, Mao Y, Wang H, Chen L, Li J. The First High-Quality Genome Assembly of Freshwater Pearl Mussel Sinohyriopsis cumingii: New Insights into Pearl Biomineralization. Int J Mol Sci 2024; 25:3146. [PMID: 38542120 PMCID: PMC10969987 DOI: 10.3390/ijms25063146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 11/11/2024] Open
Abstract
China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Lu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Honghui Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yongbin Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yalin Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Dandan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
28
|
Ma CY, Chen Y, Zhan X, Dong YW. Tracing the evolution of tissue inhibitor of metalloproteinases in Metazoa with the Pteria penguin genome. iScience 2024; 27:108579. [PMID: 38161420 PMCID: PMC10755359 DOI: 10.1016/j.isci.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Tissue inhibitors of metalloproteinase (TIMPs) play a pivotal role in regulating extracellular matrix (ECM) dynamics and have been extensively studied in vertebrates. However, understanding their evolution across invertebrate phyla is limited. Utilizing the high-quality Pteria penguin genome, we conducted phylogenomic orthology analyses across metazoans, revealing the emergence and distribution of the TIMP gene family. Our findings show that TIMP repertoires originated during eumetazoan radiation, experiencing independent duplication events in different clades, resulting in varied family sizes. Particularly, Pteriomorphia bivalves within Mollusca exhibited the most significant expansion and displayed the most diverse TIMP repertoires among metazoans. These expansions were attributed to multiple gene duplication events, potentially driven by the demands for functional diversification related to multiple adaptive traits, contributing to the adaptation of Pteriomorphia bivalves as stationary filter feeders. In this context, Pteriomorphia bivalves offer a promising model for studying invertebrate TIMP evolution.
Collapse
Affiliation(s)
- Chao-Yi Ma
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| | - Yi Chen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Xin Zhan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
29
|
Zhang Q, Chen J, Wang W, Lin J, Guo J. Genome-wide investigation of the TGF-β superfamily in scallops. BMC Genomics 2024; 25:24. [PMID: 38166626 PMCID: PMC10763453 DOI: 10.1186/s12864-023-09942-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Transforming growth factor β (TGF-β) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-β superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS Twelve members of the TGF-β superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-β superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-β members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-β superfamily. CONCLUSION Characteristics of the TGF-β superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Jingyu Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiabao Guo
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
30
|
Ma J, Chen J, Cui J, Liu W, Qu Y, Lu X, Wang A, Huang B, Wang X. A molluscan IRF interacts with IKKα/β family protein and modulates NF-κB and MAPK activity. Int J Biol Macromol 2024; 256:128319. [PMID: 38000607 DOI: 10.1016/j.ijbiomac.2023.128319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/β family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.
Collapse
Affiliation(s)
- Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Jie Cui
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiuqi Lu
- School of Agriculture, Ludong University, Yantai, China
| | - Anhao Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
31
|
Li M, Cheng J, Wang H, Shi J, Xun X, Wang Y, Lu W, Hu J, Bao Z, Hu X. Tissue-specific antioxidative response and metabolism of paralytic shellfish toxins in scallop (Chlamys farreri) mantle with Alexandrium dinoflagellate exposure. MARINE POLLUTION BULLETIN 2024; 198:115854. [PMID: 38043209 DOI: 10.1016/j.marpolbul.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Bivalves show remarkable capacity to acclimate paralytic shellfish toxins (PSTs) produced by dinoflagellates, severely affecting fishery industry and public health. Here, transcriptomic response to PSTs-producing dinoflagellate (Alexandrium minutum) was investigated in Zhikong scallop (Chlamys farreri) mantle. The PSTs accumulated in C. farreri mantle continually increased during the 15 days exposure, with "oxidation-reduction" genes induced compared to the control group at the 1st and 15th day. Through gene co-expression network analysis, 16 PSTs-responsive modules were enriched with up- or down-regulated genes. The concentration of GTXs, major PSTs in A. minutum and accumulated in scallops, was correlated with the up-regulated magenta module, enriching peroxisome genes as the potential mantle-specific PSTs biomarker. Moreover, Hsp70B2s were inhibited throughout the exposure, which together with the expanded neurotransmitter transporter SLC6As, may play essential roles on neurotransmitter homeostasis in scallop mantle. These results paved the way for a comprehensive understanding of defensive mechanism and homeostatic response in scallop mantle against PSTs.
Collapse
Affiliation(s)
- Moli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jiaoxia Shi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xiaogang Xun
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yangrui Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jingjie Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
32
|
Huang S, Yoshitake K, Kinoshita S, Asakawa S. Transcriptional landscape of small non-coding RNAs reveals diversity of categories and functions in molluscs. RNA Biol 2024; 21:1-13. [PMID: 38693614 PMCID: PMC11067994 DOI: 10.1080/15476286.2024.2348893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.
Collapse
Affiliation(s)
- Songqian Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Liu Y, Dong Z, Chen K, Yang M, Shi N, Liao X. microRNA-mRNA Analysis Reveals Tissue-Specific Regulation of microRNA in Mangrove Clam ( Geloina erosa). BIOLOGY 2023; 12:1510. [PMID: 38132336 PMCID: PMC10740791 DOI: 10.3390/biology12121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Geloina erosa is an important benthic animal in the mangrove, serving as an indicator organism for coastal environmental pollution. This study aimed to investigate the tissue-specific expression of miRNAs and their regulatory roles in predicted targets in G. erosa. Through miRNA sequencing and co-expression network analysis, we extensively studied the miRNA expression in three tissues: gills, hepatopancreas, and muscle. The results revealed a total of 1412 miRNAs, comprising 1047 known miRNAs, and 365 newly predicted miRNAs. These miRNAs exhibited distinct tissue-specific expression patterns. In the miRNA target gene prediction, a total of 7404 potential predicted targets were identified, representing approximately 33% of all unique transcripts associated with miRNAs. Further co-expression network analysis revealed nine modules, each showing a positive correlation with specific tissues (gills, hepatopancreas, or muscle). The blue module showed a significant correlation with gills (r = 0.83, p-value = 0.006), the black module was significantly related to the hepatopancreas (r = 0.78, p-value = 0.01), and the purple module was significantly correlated with muscle (r = 0.83, p-value = 0.006). Within these modules, related miRNAs tended to cluster together, while their correlations with other modules were relatively weak. Functional enrichment analysis was performed on miRNAs and their predicted targets in each tissue. In the gills, miRNAs primarily regulate immune-related genes, substance transport, and cytoskeletal organization. In the hepatopancreas, miRNAs suppressed genes involved in shell formation and played a role in cellular motor activity and metabolism. In muscle, miRNAs participate in metabolism and photoreceptive processes, as well as immune regulation. In summary, this study provides valuable insights into the tissue-specific regulation of miRNAs in G. erosa, highlighting their potential roles in immune response, metabolism, and environmental adaptation. These findings offer important clues for understanding the molecular mechanisms and biological processes in G. erosa, laying the foundation for further validation and elucidation of these regulatory relationships.
Collapse
Affiliation(s)
- Yunqing Liu
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Ziheng Dong
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Kun Chen
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| | - Mingliu Yang
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| | - Nianfeng Shi
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Xin Liao
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| |
Collapse
|
34
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
35
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
36
|
Xie X, Teng W, Yu Z, Li D, Yang M, Zhang H, Zheng J, Li H, Sun Y, Liu X, Zhou Z, Zhang X, Du S, Li Q, Chang Y, Zhang M, Wang Q. Chromosome-level genome assembly of sea scallop Placopecten magellanicus provides insights into the genetic characteristics and adaptive evolution of large scallops. Genomics 2023; 115:110747. [PMID: 37977331 DOI: 10.1016/j.ygeno.2023.110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.
Collapse
Affiliation(s)
- Xi Xie
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China; Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian, China
| | - Weiming Teng
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zuoan Yu
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Dacheng Li
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Miao Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Haijiao Zhang
- Dalian Changhai-Yide Aquatic Products Co., LTD, Dalian, China
| | - Jie Zheng
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Hualin Li
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Yongxin Sun
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Xiangfeng Liu
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Zunchun Zhou
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China; Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian, China
| | - Xiliang Zhang
- Dalian Changhai-Yide Aquatic Products Co., LTD, Dalian, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Ming Zhang
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China.
| | - Qingzhi Wang
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China; Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian, China.
| |
Collapse
|
37
|
Gong S, Suwannapoom C, Le M, Nguyen TQ, Ge Y, Wei Y, Gao Y. Genomic analyses reveal three phylogenetic species and their evolutionary histories in the big-headed turtle. iScience 2023; 26:107343. [PMID: 37539035 PMCID: PMC10393795 DOI: 10.1016/j.isci.2023.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
The critically endangered big-headed turtle (Platysternon megacephalum) is currently classified into three subspecies. However, the classification is still controversial and their evolutionary histories are still unclear. Here, multiple genetic analyses consistently revealed three phylogenetic groups with substantial genetic divergences and distinct demographic histories, suggesting three phylogenetic species (P. megacephalum, P. peguense, and Baise clade). Phylogeographical analyses revealed that the Red River plains and Guangxi basins are largely coincident with the boundaries between the three phylogenetic species, highlighting the key role of lowland areas in driving speciation in the big-headed turtle. The Baise clade is characterized by high-linkage disequilibrium but the lowest effective population size, indicating that the cryptic phylogenetic species is more vulnerable to human activities and environmental disturbance, and urgently needs more protection. Our findings provide fundamental insights into the taxonomy and scientific conservation of the family Platysternidae.
Collapse
Affiliation(s)
- Shiping Gong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | | | - Minh Le
- Faculty of Environmental Sciences, University of Science & Central Institute for Natural Resources and Environmental Studies (CRES), Vietnam National University, Hanoi, Vietnam
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Yan Ge
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | - Yufeng Wei
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang Road West, Guangzhou 510260, China
| |
Collapse
|
38
|
Zhao F, Guo X, Li X, Liu F, Fu Y, Sun X, Yang Z, Zhang Z, Qin Z. Identification and Expressional Analysis of Putative PRDI-BF1 and RIZ Homology Domain-Containing Transcription Factors in Mulinia lateralis. BIOLOGY 2023; 12:1059. [PMID: 37626944 PMCID: PMC10451705 DOI: 10.3390/biology12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.
Collapse
Affiliation(s)
- Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaolin Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Fang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Yifan Fu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaohan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| |
Collapse
|
39
|
Gong S, Ge Y, Wei Y, Gao Y. Genomic insights into the genetic basis of eagle-beak jaw, large head, and long tail in the big-headed turtle. Ecol Evol 2023; 13:e10361. [PMID: 37502307 PMCID: PMC10368965 DOI: 10.1002/ece3.10361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
The big-headed turtle (Platysternon megacephalum) is an endemic chelonian species in Asia. Unlike most other turtles in the world, P. megacephalum is characterized with eagle-beak jaw, large head, and long tail. Although these unique characteristics are well recognized, the underlying genetic basis remains largely elusive. Here, we performed comparative genomic analysis between P. megacephalum and other representative species, aiming to reveal the genetic basis of the unique morphological features. Our results revealed that the eagle-beak jaw is most likely enabled by combined effects of expansion of SFRP5, extraction of FGF11, and mutation of both ZFYVE16 and PAX6. Large head is supported by mutations of SETD2 and FGRF2 and copy number variations of six head circumference modulation-related genes (TGFBR2, Twist2, Rdh10, Gas1, Chst11, and SNAP25). The long tail is probably involved in a genetic network comprising Gdf11, Lin 28, and HoxC12, two of which showed a consistent expression pattern with a model organism (mice). These findings suggest that expansion, extraction, and mutation of those genes may have profound effects on unique phenotypes of P. megacephalum.
Collapse
Affiliation(s)
- Shiping Gong
- College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yan Ge
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Yufeng Wei
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
40
|
Martelossi J, Nicolini F, Subacchi S, Pasquale D, Ghiselli F, Luchetti A. Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution. BMC Biol 2023; 21:145. [PMID: 37365567 DOI: 10.1186/s12915-023-01632-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) can represent one of the major sources of genomic variation across eukaryotes, providing novel raw materials for species diversification and innovation. While considerable effort has been made to study their evolutionary dynamics across multiple animal clades, molluscs represent a substantially understudied phylum. Here, we take advantage of the recent increase in mollusc genomic resources and adopt an automated TE annotation pipeline combined with a phylogenetic tree-based classification, as well as extensive manual curation efforts, to characterize TE repertories across 27 bivalve genomes with a particular emphasis on DDE/D class II elements, long interspersed nuclear elements (LINEs), and their evolutionary dynamics. RESULTS We found class I elements as highly dominant in bivalve genomes, with LINE elements, despite less represented in terms of copy number per genome, being the most common retroposon group covering up to 10% of their genome. We mined 86,488 reverse transcriptases (RVT) containing LINE coming from 12 clades distributed across all known superfamilies and 14,275 class II DDE/D-containing transposons coming from 16 distinct superfamilies. We uncovered a previously underestimated rich and diverse bivalve ancestral transposon complement that could be traced back to their most recent common ancestor that lived ~ 500 Mya. Moreover, we identified multiple instances of lineage-specific emergence and loss of different LINEs and DDE/D lineages with the interesting cases of CR1- Zenon, Proto2, RTE-X, and Academ elements that underwent a bivalve-specific amplification likely associated with their diversification. Finally, we found that this LINE diversity is maintained in extant species by an equally diverse set of long-living and potentially active elements, as suggested by their evolutionary history and transcription profiles in both male and female gonads. CONCLUSIONS We found that bivalves host an exceptional diversity of transposons compared to other molluscs. Their LINE complement could mainly follow a "stealth drivers" model of evolution where multiple and diversified families are able to survive and co-exist for a long period of time in the host genome, potentially shaping both recent and early phases of bivalve genome evolution and diversification. Overall, we provide not only the first comparative study of TE evolutionary dynamics in a large but understudied phylum such as Mollusca, but also a reference library for ORF-containing class II DDE/D and LINE elements, which represents an important genomic resource for their identification and characterization in novel genomes.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Filippo Nicolini
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, Department of Biological, Geological and Environmental Sciences, University of Bologna, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Simone Subacchi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Daniela Pasquale
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
41
|
Qin K, Jiang S, Xu H, Yuan Z, Sun L. Pyroptotic gasdermin exists in Mollusca and is vital to eliminating bacterial infection. Cell Rep 2023; 42:112414. [PMID: 37074912 DOI: 10.1016/j.celrep.2023.112414] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Gasdermin (GSDM) is a family of proteins that execute pyroptosis in vertebrate. In invertebrate, pyroptotic GSDM was documented only in coral. Recent studies identified abundant GSDM structural homologs in Mollusca, but their functions are unclear. Herein, we report a functional GSDM from Pacific abalone Haliotis discus (HdGSDME). HdGSDME is specifically activated by abalone caspase 3 (HdCASP3) cleavage at two distinct sites, generating two active isoforms with pyroptotic and cytotoxic activities. HdGSDME possesses evolutionarily conserved residues that proved to be essential to the N-terminal pore-formation and C-terminal auto-inhibition capacities. Bacterial challenge activates the HdCASP3-HdGSDME pathway and induces pyroptosis and extracellular traps in abalone. Blockage of the HdCASP3-HdGSDME axis promotes bacterial invasion and host mortality. Collectively, this study reveals the existence of functionally conserved and yet distinct-featured GSDM in Mollusca and provides insights into the function and evolution of invertebrate GSDM.
Collapse
Affiliation(s)
- Kunpeng Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Zhang X, Xun X, Meng D, Li M, Chang L, Shi J, Ding W, Sun Y, Wang H, Bao Z, Hu X. Transcriptome Analysis Reveals the Genes Involved in Oxidative Stress Responses of Scallop to PST-Producing Algae and a Candidate Biomarker for PST Monitoring. Antioxidants (Basel) 2023; 12:1150. [PMID: 37371880 DOI: 10.3390/antiox12061150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Paralytic shellfish toxins (PST) could be accumulated in bivalves and cause safety problems. To protect public health, bivalves are examined for PST contamination before entering the market, usually by high-performance liquid chromatography (HPLC) or LC-tandem mass spectrometry (LC-MS/MS) in the lab, which needs PST standards not all available and is time-consuming for large sample sizes. To detect PST toxicity in bivalves rapidly and sensitively, a biomarker gene is highly demanded, but the related study is very limited. In this study, we fed a commercially important bivalve, Patinopecten yessoensis, with the PST-producing dinoflagellate Alexandrium catenella. After 1, 3, and 5 days of exposure, both PST concentrations and toxicity levels in the digestive gland continuously increased. Transcriptome analysis revealed that the differentially expressed genes were significantly enriched in oxidation-reduction process, which included the cytochrome P450 genes (CYPs), type I iodothyronine deiodinase (IOD1s), peroxidasin (PXDN), and acyl-Coenzyme A oxidase 1 (ACOX1) at day 1 and a superoxide dismutase (SOD) at day 5, highlighting the crucial roles of these genes in response to oxidative stress induced by PST. Among the 33 continuously upregulated genes, five showed a significant correlation between gene expression and PST concentration, with the highest correlation present in PyC1QL4-1, the gene encoding Complement C1Q-like protein 4, C1QL4. In addition, the correlation between PyC1QL4-1 expression and PST toxicity was also the highest. Further analysis in another aquaculture scallop (Chlamys farreri) indicated that the expression of CfC1QL4-1, the homolog of PyC1QL4-1, also exhibited significant correlations with both PST toxicity and concentration. Our results reveal the gene expression responses of scallop digestive glands to PST-producing algae and indicate that the C1QL4-1 gene might be a potential biomarker for PST monitoring in scallops, which may provide a convenient way for the early warning and sensitive detection of PST contamination in the bivalves.
Collapse
Affiliation(s)
- Xiangchao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Deting Meng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lirong Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yue Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
43
|
Li X, Bai Y, Dong Z, Xu C, Liu S, Yu H, Kong L, Li Q. Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101045. [PMID: 36470107 DOI: 10.1016/j.cbd.2022.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The European flat oyster (Ostrea edulis) is an endangered and economically important marine bivalve species that plays a critical role in the coastal ecosystem. Here, we report a high-quality chromosome-level genome assembly of O. edulis, generated using PacBio HiFi-CCS long reads and annotated with Nanopore full-length transcriptome. The O. edulis genome covers 946.06 Mb (scaffold N50 94.82 Mb) containing 34,495 protein-coding genes and a high proportion of repeat sequences (58.49 %). The reconstructed demographic histories show that O. edulis population might be shaped by breeding habit (embryo brooding) and historical climatic change. Comparative genomic analysis indicates that transposable elements may drive lineage-specific evolution in oysters. Notably, the O. edulis genome has a Hox gene cluster rearrangement that has never been reported in bivalves, making this species valuable for evolutionary studies of molluscan diversification. Moreover, genome expansion of O. edulis is probably central to its adaptation to filter-feeding and sessile lifestyles, as well as embryo brooding and pathogen resistance, in coastal ecosystems. This chromosome-level genome assembly provides new insights into the genome feature of oysters, and presents an important resource for genetic research, evolutionary studies, and biological conservation of O. edulis.
Collapse
Affiliation(s)
- Xinchun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yitian Bai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
44
|
Liu W, Ma J, Chen J, Huang B, Liu F, Li L, Fan N, Li F, Zheng Y, Zhang X, Wang X, Wang X, Wei L, Liu Y, Zhang M, Han Y, Wang X. A novel TBK1/IKKϵ is involved in immune response and interacts with MyD88 and MAVS in the scallop Chlamys farreri. Front Immunol 2023; 13:1091419. [PMID: 36713402 PMCID: PMC9879056 DOI: 10.3389/fimmu.2022.1091419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Inhibitor of κB kinase (IKK) family proteins are key signaling molecules in the animal innate immune system and are considered master regulators of inflammation and innate immunity that act by controlling the activation of transcription factors such as NF-κB. However, few functional studies on IKK in invertebrates have been conducted, especially in marine mollusks. In this study, we cloned the IKK gene in the Zhikong scallop Chlamys farreri and named it CfIKK3. CfIKK3 encodes a 773-amino acid-long protein, and phylogenetic analysis showed that CfIKK3 belongs to the invertebrate TBK1/IKKϵ protein family. Quantitative real-time PCR analysis showed that CfIKK3 mRNA is ubiquitously expressed in all tested scallop tissues. The expression of CfIKK3 transcripts was significantly induced after challenge with lipopolysaccharide, peptidoglycan, or poly(I:C). Co-immunoprecipitation (co-IP) assays confirmed the direct interaction of CfIKK3 with MyD88 (the key adaptor in the TLR pathway) and MAVS (the key adaptor in the RLR pathway), suggesting that this IKK protein plays a crucial role in scallop innate immune signal transduction. In addition, the CfIKK3 protein formed homodimers and bound to CfIKK2, which may be a key step in the activation of its own and downstream transcription factors. Finally, in HEK293T cells, dual-luciferase reporter gene experiments showed that overexpression of CfIKK3 protein activated the NF-κB reporter gene in a dose-dependent manner. In conclusion, our experimental results confirmed that CfIKK3 could respond to PAMPs challenge and participate in scallop TLR and RLR pathway signaling, ultimately activating NF-κB. Therefore, as a key signaling molecule and modulator of immune activity, CfIKK3 plays an important role in the innate immune system of scallops.
Collapse
Affiliation(s)
- Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China,*Correspondence: Baoyu Huang, ; Xiaotong Wang,
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China,Ocean School, Yantai University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China,*Correspondence: Baoyu Huang, ; Xiaotong Wang,
| |
Collapse
|
45
|
Li F, Liu W, Chen J, Huang B, Zheng Y, Ma J, Cai S, Li L, Liu F, Wang X, Wei L, Liu Y, Zhang M, Han Y, Zhang X, Wang X. CfIRF8-like interacts with the TBK1/IKKε family protein and regulates host antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108497. [PMID: 36539167 DOI: 10.1016/j.fsi.2022.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon β promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.
Collapse
Affiliation(s)
- Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
46
|
Wang Q, Miao J, Zhao A, Wu M, Pan L. Use of GAL4 factor-based yeast assay to quantify the effects of xenobiotics on RXR homodimer and RXR/PPAR heterodimer in scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158526. [PMID: 36063929 DOI: 10.1016/j.scitotenv.2022.158526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Retinoid X receptor (RXR) and peroxisome proliferators-activated receptors (PPAR) have been shown as important targets of endocrine disrupting effects caused by organotin compounds (OTCs). In vitro methods for non-model species are instrumental in revealing not only mechanism of toxicity but also basic biology. In the present study, we constructed the GAL4 factor-based recombinant yeast systems of RXRα/RXRα (RR), RXRα/PPARα (RPα) and RXRα/PPARγ (RPγ) of the scallop Chlamys farreri to investigate their transcriptional activity under the induction of OTCs (tributyltin chloride, triphenyltin chloride, tripropyltin chloride and bis(tributyltin)oxide), their spiked sediments and five other non‑tin compounds (Wy14643, rosiglitazone, benzyl butyl phthalate, dicyclohexyl phthalate and bis(2-ethylhexyl) phthalate). The results showed that the natural ligand of RXR, 9-cis-retinoic acid (9cRA), induces transcriptional activity in all three systems, while four OTCs induced the transcriptional activity of the RR and RPα systems. None of the five potential non‑tin endocrine disruptors induced effects on the RPα and RPγ systems. The spiked sediment experiment demonstrated the feasibility of the recombinant yeast systems constructed in this study for environmental sample detection. These results suggest that OTCs pose a threat to affect function of RXRα and PPARα of bivalve mollusks. The newly developed GAL4 factor-based yeast two-hybrid system can be used as a valuable tool for identification and quantification of compounds active in disturbing RXR and PPAR of bivalves.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Manni Wu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
47
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
48
|
Wang L, Zhao D, Han R, Wang Y, Hu J, Bao Z, Wang M. A preliminary report of exploration of the exosomal shuttle protein in marine invertebrate Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2022; 131:498-504. [PMID: 36280128 DOI: 10.1016/j.fsi.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are extracellular vesicles secreted by diverse cell under normal or abnormal physiological conditions, which could carry a range of bioactive molecules and play significant roles in biological processes, such as intercellular communication and immune response. In the current study, a preliminary study was performed to investigate the exosomal shuttle protein in Chlamys farreri (designated as CfesPro) and to predict the potential function of exosomes in scallop innate immunity. The serum derived exosomes (designated as CfEVs) were obtained from lipopolysaccharide (LPS)-stimulated C. farreri and untreated ones. After confirmation and characterization by transmission electron microscopy (TEM), nano-HPLC-MS/MS spectrometry was performed on CfEVs using a label-free quantitative method. Totally 2481 exosomal shuttle proteins were identified in CfEVs proteomic data, which included many innate immune related proteins. GO and KOG functional annotation showed that CfesPro participated in cellular processes, metabolism reactions, signaling transductions, immune responses and so on. Moreover, 1421 proteins in CfesPro were enriched to 324 pathways by KEGG analysis, including several immune-related pathways, such as autophagy, apoptosis and lysosome pathway. Meanwhile, eight autophagy-related proteins were initially identified in CfesPro, indicating that CfEVs had a potential role with autophagy. All these findings showed that CfEVs were involved in C. farreri innate immune defenses. This research would enrich the protein database of marine exosomes and provide a basis for the exploration of immune defense systems in marine invertebrates.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China.
| | - Dianli Zhao
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Renmin Han
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
49
|
Liu W, Li F, Ma J, Chen J, Huang B, Li L, Fan N, Wang X, Zheng Y, Wang X, Wei L, Liu Y, Zhang M, Liu F, Qi Y, Wang X. Scallop interferon regulatory factor 1 interacts with myeloid differentiation primary response protein 88 and is crucial for antiviral innate immunity. Int J Biol Macromol 2022; 222:1250-1263. [PMID: 36191792 DOI: 10.1016/j.ijbiomac.2022.09.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The interferon regulatory factor (IRF) family comprises transcription factors that are crucial in immune defense, stress response, reproduction, and development. However, the function of IRFs in invertebrates is unclear. Here, the full-length cDNA of an IRF-encoding gene (CfIRF1) in the Zhikong scallop (Chlamys farreri) comprising 2007 bp with an open reading frame of 1053 bp that encoded 350 amino acids was characterized, and its immune function was studied. The CfIRF1 protein contained a typical IRF domain at its N-terminus. CfIRF1 was clustered with other proteins of the IRF1 subfamily, implying that they were closely related. CfIRF1 mRNA transcripts could be detected in all tested scallop tissues, with the highest expression observed in the gills and hepatopancreas. CfIRF1 expression was significantly induced by the polyinosinic-polycytidylic acid and acute viral necrosis virus challenge. CfIRF1 could directly interact with myeloid differentiation primary response protein 88 (MyD88), the key adaptor molecule of the toll-like receptor signaling pathway. CfIRF1 did not interact with scallop IKK1 (IKKα/β family protein), IKK2, IKK3 (IKKε/TBK1 family protein), or with other IRF family proteins (IRF2 or IRF3). However, CfIRF1 interacted with itself to form a homodimer. CfIRF1 could specifically activate the interferon β promoter of mammals and the promoter containing the interferon-stimulated response element (ISRE) in a dose-dependent manner. The truncated form of CfIRF1 had a significantly reduced ISRE activation ability, indicating that structural integrity was crucial for CfIRF1 to function as a transcription factor. Our findings provide insights into the functions of mollusk IRFs in innate immunity. The research results also provide valuable information that enriches the theory of comparative immunology and that can help prevent diseases in scallop farming.
Collapse
Affiliation(s)
- Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
50
|
Mitochondrial genomes provide insight into interfamilial relationships within Pycnogonida. Polar Biol 2022. [DOI: 10.1007/s00300-022-03085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|