1
|
Zhou X, Du L, Li M. Recent Progress in Azobenzene-Based In Vivo Photopharmacology. Med Res Rev 2025. [PMID: 40420431 DOI: 10.1002/med.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
As the most extensively studied photoswitch in photopharmacology, the azobenzene photoswitch has precision instrumental in the photoregulation of physiological processes across various animal models. Currently, it exhibits the greatest clinical potential for photosensitive retinal restoration, capable of inducing long-term therapeutic effects following intravitreal injection, without the need for foreign gene expression or optical fiber implantation. A significant advancement in the application of azobenzene photoswitches is their integration with optical flow control technology, which facilitates the targeting of deep tissues within the mouse cerebral cortex, addressing long-standing challenges related to tissue penetration depth in photopharmacology. With exceptional spatial and temporal resolution, photopharmacology is particularly well-suited for precision medicine, holding substantial potential for further development. Consequently, a comprehensive summary and review of the design strategies of azobenzene photoswitches for In Vivo applications, along with their experimental outcomes, are essential for guiding future advancements in photopharmacology. This review provides an overview of the fundamental properties and design strategies of azobenzene photoswitch molecules. Additionally, we extensively summarize all azobenzene photoswitch molecules successfully applied In Vivo for photopharmacological purposes since 2006, covering species such as Caenorhabditis elegans, Xenopus tadpoles, zebrafish, mice, rats, rabbits, and canines. Finally, we discuss the challenges associated with the In Vivo implementation of azobenzene photoswitch molecules and propose potential solutions.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Tropical Biological Resources (MOE), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Simon CJ, Khabou H, Chaffiol A, Rucli M, Finzi M, Norberg N, Grimaud A, Mücher B, Desrosiers M, Sancho S, Bonilha VL, Grieve K, Duebel J, Paques M, Picaud S, Sahel JA, Audo I, Herlitze S, Dalkara D. Reactivating the phototransduction cascade with a mutation agnostic gene therapy preserves vision in rod-cone dystrophies. iScience 2025; 28:112106. [PMID: 40171489 PMCID: PMC11960651 DOI: 10.1016/j.isci.2025.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/01/2024] [Accepted: 01/21/2025] [Indexed: 04/03/2025] Open
Abstract
Rod-cone dystrophy (RCD) comprises genetic conditions where rod photoreceptor degeneration leads to cone loss, causing progressive vision loss. We investigated the phototransduction cascade in degenerating cones using two RCD mouse models and found that opsin and arrestin expression continues in the cell body during outer segment degeneration. Based on this observation, we explored reactivating cones through G-protein-coupled inwardly rectifying K (GIRK) channel expression. Using adeno-associated viral delivery of GIRK channels, we achieved improved visual function in both mouse models. Additionally, we examined human tissue from late-stage RCD patients and confirmed the presence of cone opsin and cone arrestin expression, supporting the potential therapeutic application of this approach. This GIRK-channel-based strategy offers a promising method to preserve high-quality vision in RCD patients, regardless of their specific genetic mutation.
Collapse
Affiliation(s)
- Cardillia-Joe Simon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Hanen Khabou
- Gamut Therapeutics, 4 rue Thénard, 75005 Paris, France
| | - Antoine Chaffiol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Marion Finzi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Nat Norberg
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Anaïs Grimaud
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
- Neuronal Circuits and Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Mélissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Serge Sancho
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Vera Lucia Bonilha
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Kate Grieve
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Jens Duebel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Michel Paques
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
3
|
Poboży K, Poboży T, Domański P, Derczyński M, Konarski W, Domańska-Poboża J. Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines 2025; 13:429. [PMID: 40002842 PMCID: PMC11853388 DOI: 10.3390/biomedicines13020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Retinal degenerations, such as age-related macular degeneration and retinitis pigmentosa, present significant challenges due to genetic heterogeneity, limited therapeutic options, and the progressive loss of photoreceptors in advanced stages. These challenges are compounded by difficulties in precisely targeting residual retinal neurons and ensuring the sustained efficacy of interventions. Optogenetics offers a novel approach to vision restoration by inducing light sensitivity in residual retinal neurons through gene delivery of light-sensitive opsins. This review traces the evolution of opsins in optogenetic therapies, highlighting advancements from early research on channelrhodopsin-2 (ChR2) to engineered variants addressing key limitations. Red-shifted opsins, including ReaChR and ChrimsonR, reduced phototoxicity by enabling activation under longer wavelengths, while Chronos introduced superior temporal kinetics for dynamic visual tracking. Further innovations, such as Multi-Characteristic Opsin 1 (MCO1), optimized opsin performance under ambient light, bridging the gap to real-world applications. Key milestones include the first partial vision restoration in a human patient using ChrimsonR with light-amplifying goggles and ongoing clinical trials exploring the efficacy of opsin-based therapies for advanced retinal degeneration. While significant progress has been made, challenges remain in achieving sufficient light sensitivity for functional vision under normal ambient lighting conditions in a manner that is both effective and safe, eliminating the need for external light-enhancing devices. As research progresses, optogenetic therapies are positioned to redefine the management of retinal degenerative diseases, offering new hope for millions affected by vision loss.
Collapse
Affiliation(s)
- Kamil Poboży
- Department of Neurosurgery, Brodnowski Masovian Hospital, 03-242 Warsaw, Poland;
| | - Tomasz Poboży
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | - Paweł Domański
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | | | | | - Julia Domańska-Poboża
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
4
|
Roh H, Kim S, Lee HM, Im M. Quantitative analyses of how optimally heterogeneous neural codes maximize neural information in jittery transmission environments. Sci Rep 2024; 14:29623. [PMID: 39609587 PMCID: PMC11604997 DOI: 10.1038/s41598-024-81029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Various spike patterns from sensory/motor neurons provide information about the dynamic sensory stimuli. Based on the information theory, neuroscientists have revealed the influence of spike variables on information transmission. Among diverse spike variables, inter-trial heterogeneity, known as jitter, has been observed in physiological neuron activity and responses to artificial stimuli, and it is recognized to contribute to information transmission. However, the relationship between inter-trial heterogeneity and information remains unexplored. Therefore, understanding how jitter impacts the heterogeneity of spiking activities and information encoding is crucial, as it offers insights into stimulus conditions and the efficiency of neural systems. Here, we systematically explored how neural information is altered by number of neurons as well as by each of three fundamental spiking characteristics: mean firing rate (MFR), duration, and cross-correlation (spike time tiling coefficient; STTC). First, we generated groups of spike trains to have specific average values for those characteristics. Second, we quantified the transmitted information rate as a function of each parameter. As population size, MFR, and duration increased, the information rate was enhanced but gradually saturated with further increments in number of cells and MFR. Regarding the cross-correlation level, homogeneous and heterogeneous spike trains (STTCAVG = 0.9 and 0.1) showed the lowest and highest information transmission, respectively. Interestingly however, when jitters were added to mimic physiological noisy environment, the information was reduced by ~ 46% for the spike trains with STTCAVG = 0.1 but rather substantially increased by ~ 63% for the spike trains with STTCAVG = 0.9. Our study suggests that optimizing various spiking characteristics may enhance the robustness and amount of neural information transmitted.
Collapse
Affiliation(s)
- Hyeonhee Roh
- School of Electrical Engineering, Korea University, Seoul, 02841, South Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Sein Kim
- School of Electrical Engineering, Korea University, Seoul, 02841, South Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, Korea University, Seoul, 02841, South Korea.
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, 02792, South Korea.
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
5
|
Parnami K, Surana A, Choudhary V, Bhattacharyya A. Deprivation of visual input alters specific subset of inhibitory neurons and affect thalamic afferent terminals in V1 of rd1 mouse. Front Cell Neurosci 2024; 18:1422613. [PMID: 39444393 PMCID: PMC11496165 DOI: 10.3389/fncel.2024.1422613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Retinitis Pigmentosa (RP) is a heterogenous group of inherited disorder, and its progression not only affects the retina but also the primary visual cortex. This manifests imbalances in the excitatory and inhibitory neurotransmission. Here, we investigated if changes in cortical functioning is linked to alterations in GABAergic population of neurons and its two important subsets, somatostatin (SST) and parvalbumin (PV) neuron in rd1 model of retinal degeneration (RD). We demonstrate marked decrease in the proportion of SST neurons in different layers of cortex whereas PV neurons were less affected. Moreover, we found reduced expression of glutamatergic thalamic afferents (VGLUT2) due to lack of visual activity. These results suggest PV neurons are likely recruited by the cortical circuitry to increase the inhibitory drive and compensate the disrupted inhibition-excitation balance. However, reduced SST expression perhaps results in weakening of stimulus selectivity. Delineating their functional role during RD will provide insights for acquisition of high-resolution vision thereby improving current state of vision restoration.
Collapse
Affiliation(s)
- Kashish Parnami
- Amity Institute of Neuropsychology and Neurosciences, Amity University Noida, Noida, India
| | - Anushka Surana
- Amity Institute of Neuropsychology and Neurosciences, Amity University Noida, Noida, India
| | - Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anwesha Bhattacharyya
- Amity Institute of Neuropsychology and Neurosciences, Amity University Noida, Noida, India
| |
Collapse
|
6
|
Camerin L, Maleeva G, Gomila AMJ, Suárez-Pereira I, Matera C, Prischich D, Opar E, Riefolo F, Berrocoso E, Gorostiza P. Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo. Angew Chem Int Ed Engl 2024; 63:e202403636. [PMID: 38887153 DOI: 10.1002/anie.202403636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
Collapse
Affiliation(s)
- Luisa Camerin
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Doctorate program in organic chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, 20133, Italy
| | - Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, SW120BZ, United Kingdom
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona, 08025, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
7
|
McClain SP, Ma X, Johnson DA, Johnson CA, Layden AE, Yung JC, Lubejko ST, Livrizzi G, He XJ, Zhou J, Chang-Weinberg J, Ventriglia E, Rizzo A, Levinstein M, Gomez JL, Bonaventura J, Michaelides M, Banghart MR. In vivo photopharmacology with light-activated opioid drugs. Neuron 2023; 111:3926-3940.e10. [PMID: 37848025 PMCID: PMC11188017 DOI: 10.1016/j.neuron.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo, we developed photoactivatable oxymorphone (PhOX) and photoactivatable naloxone (PhNX), photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry in response to chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action.
Collapse
Affiliation(s)
- Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Caroline A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan T Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - X Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jingjing Zhou
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Janie Chang-Weinberg
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilya Ventriglia
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Marjorie Levinstein
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Huang R, Fan Z, Xue B, Ma J, Shen Q. Near-Infrared Light-Responsive Hydrogels for Highly Flexible Bionic Photosensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094560. [PMID: 37177763 PMCID: PMC10181775 DOI: 10.3390/s23094560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Soft biological tissues perform various functions. Sensory nerves bring sensations of light, voice, touch, pain, or temperature variation to the central nervous system. Animal senses have inspired tremendous sensors for biomedical applications. Following the same principle as photosensitive nerves, we design flexible ionic hydrogels to achieve a biologic photosensor. The photosensor allows responding to near-infrared light, which is converted into a sensory electric signal that can communicate with nerve cells. Furthermore, with adjustable thermal and/or electrical signal outputs, it provides abundant tools for biological regulation. The tunable photosensitive performances, high flexibility, and low cost endow the photosensor with widespread applications ranging from neural prosthetics to human-machine interfacing systems.
Collapse
Affiliation(s)
- Rui Huang
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenhua Fan
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junpeng Ma
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qundong Shen
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
9
|
Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng 2023; 7:387-404. [PMID: 35102278 DOI: 10.1038/s41551-021-00836-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Wang C, Fang C, Zou Y, Yang J, Sawan M. Artificial intelligence techniques for retinal prostheses: a comprehensive review and future direction. J Neural Eng 2023; 20. [PMID: 36634357 DOI: 10.1088/1741-2552/acb295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective. Retinal prostheses are promising devices to restore vision for patients with severe age-related macular degeneration or retinitis pigmentosa disease. The visual processing mechanism embodied in retinal prostheses play an important role in the restoration effect. Its performance depends on our understanding of the retina's working mechanism and the evolvement of computer vision models. Recently, remarkable progress has been made in the field of processing algorithm for retinal prostheses where the new discovery of the retina's working principle and state-of-the-arts computer vision models are combined together.Approach. We investigated the related research on artificial intelligence techniques for retinal prostheses. The processing algorithm in these studies could be attributed to three types: computer vision-related methods, biophysical models, and deep learning models.Main results. In this review, we first illustrate the structure and function of the normal and degenerated retina, then demonstrate the vision rehabilitation mechanism of three representative retinal prostheses. It is necessary to summarize the computational frameworks abstracted from the normal retina. In addition, the development and feature of three types of different processing algorithms are summarized. Finally, we analyze the bottleneck in existing algorithms and propose our prospect about the future directions to improve the restoration effect.Significance. This review systematically summarizes existing processing models for predicting the response of the retina to external stimuli. What's more, the suggestions for future direction may inspire researchers in this field to design better algorithms for retinal prostheses.
Collapse
Affiliation(s)
- Chuanqing Wang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Chaoming Fang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jie Yang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Mohamad Sawan
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| |
Collapse
|
11
|
Characterization of Primary Cilia Formation in Human ESC-Derived Retinal Organoids. Stem Cells Int 2023; 2023:6494486. [PMID: 36684387 PMCID: PMC9859708 DOI: 10.1155/2023/6494486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Primary cilia are conserved organelles found in polarized mammalian cells that regulate neuronal growth, migration, and differentiation. Proper cilia formation is essential during eye development. Our previous reports found that both amacrine and retinal ganglion cells (RGCs) contain primary cilia in primate and rodent retinas. However, whether primary cilia are present in the inner retina of human retinal organoids remains unknown. The purpose of this study is to characterize the primary cilia distribution in human embryonic stem cell (hESC-derived retinal organoid development. Materials and Methods Retinal organoids were differentiated from a hESC line, harvested at various developmental timepoints (day 44-day 266), and immunostained with antibodies for primary cilia, including Arl13b (for the axoneme), AC3, and Centrin3 (for the basal body). AP2α, Prox1, GAD67, Calretinin, GFAP, PKCα, and Chx10 antibodies as well as Brn3b-promoted tdTomato expression were used to visualize retinal cell types. Results A group of ciliated cells were present in the inner aspects of retinal organoids from day 44 to day 266 in culture. Ciliated Chx10-positive retinal progenitor cells, GFAP-positive astrocytes, and PKCα-positive rod-bipolar cells were detected later during development (day 176 to day 266). Ciliation persisted during all stages of retinal developmental in AP2α-positive amacrine cells, but it was decreased in Brn3b-positive retinal ganglion cells (RGCs) at later time points. Additionally, AC3-positive astrocytes significantly decreased during the later stages of organoid formation. Conclusions Amacrine cells in retinal organoids retain cilia throughout development, whereas RGC ciliation gradually and progressively decreases with organoid maturation.
Collapse
|
12
|
De Silva SR, Moore AT. Optogenetic approaches to therapy for inherited retinal degenerations. J Physiol 2022; 600:4623-4632. [PMID: 35908243 DOI: 10.1113/jp282076] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Inherited retinal degenerations such as retinitis pigmentosa (RP) affect around one in 4000 people and are the leading cause of blindness in working age adults in several countries. In these typically monogenic conditions, there is progressive degeneration of photoreceptors; however, inner retinal neurons such as bipolar cells and ganglion cells remain largely structurally intact, even in end-stage disease. Therapeutic approaches aiming to stimulate these residual cells, independent of the underlying genetic cause, could potentially restore visual function in patients with advanced vision loss, and benefit many more patients than therapies directed at the specific gene implicated in each disorder. One approach investigated for this purpose is that of optogenetics, a method of neuromodulation that utilises light to activate neurons engineered to ectopically express a light-sensitive protein. Using gene therapy via adeno-associated viral vectors, a range of photosensitive proteins have been expressed in remaining retinal cells in advanced retinal degeneration with in vivo studies demonstrating restoration of visual function. Developing an effective optogenetic strategy requires consideration of multiple factors, including the light-sensitive protein that is used, the vector and method for gene delivery, and the target cell for expression because these in turn may affect the quality of vision that can be restored. Currently, at least four clinical trials are ongoing to investigate optogenetic therapies in patients, with the ultimate aim of reversing visual loss in end-stage disease.
Collapse
Affiliation(s)
- Samantha R De Silva
- Oxford Eye Hospital, Oxford, UK.,UCL Institute of Ophthalmology, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK.,Ophthalmology Department, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. Donor-Acceptor Stenhouse Adduct Displaying Reversible Photoswitching in Water and Neuronal Activity. J Am Chem Soc 2022; 144:15595-15602. [PMID: 35976640 DOI: 10.1021/jacs.2c04920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.
Collapse
Affiliation(s)
- Rossella Castagna
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Deborah Pirovano
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
14
|
Berry MH, Holt A, Broichhagen J, Donthamsetti P, Flannery JG, Isacoff EY. Photopharmacology for vision restoration. Curr Opin Pharmacol 2022; 65:102259. [PMID: 35749908 DOI: 10.1016/j.coph.2022.102259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Blinding diseases that are caused by degeneration of rod and cone photoreceptor cells often spare the rest of the retinal circuit, from bipolar cells, which are directly innervated by photoreceptor cells, to the output ganglion cells that project axons to the brain. A strategy for restoring vision is to introduce light sensitivity to the surviving cells of the retina. One approach is optogenetics, in which surviving cells are virally transfected with a gene encoding a signaling protein that becomes sensitive to light by binding to the biologically available chromophore retinal, the same chromophore that is used by the opsin photo-detectors of rods and cones. A second approach uses photopharmacology, in which a synthetic photoswitch associates with a native or engineered ion channel or receptor. We review these approaches and look ahead to the next generation of advances that could reconstitute core aspects of natural vision.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Amy Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Prashant Donthamsetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA; Vision Science, Herbert Wertheim School of Optometry, University of California, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
16
|
Kim S, Roh H, Im M. Artificial Visual Information Produced by Retinal Prostheses. Front Cell Neurosci 2022; 16:911754. [PMID: 35734216 PMCID: PMC9208577 DOI: 10.3389/fncel.2022.911754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Numerous retinal prosthetic systems have demonstrated somewhat useful vision can be restored to individuals who had lost their sight due to outer retinal degenerative diseases. Earlier prosthetic studies have mostly focused on the confinement of electrical stimulation for improved spatial resolution and/or the biased stimulation of specific retinal ganglion cell (RGC) types for selective activation of retinal ON/OFF pathway for enhanced visual percepts. To better replicate normal vision, it would be also crucial to consider information transmission by spiking activities arising in the RGC population since an incredible amount of visual information is transferred from the eye to the brain. In previous studies, however, it has not been well explored how much artificial visual information is created in response to electrical stimuli delivered by microelectrodes. In the present work, we discuss the importance of the neural information for high-quality artificial vision. First, we summarize the previous literatures which have computed information transmission rates from spiking activities of RGCs in response to visual stimuli. Second, we exemplify a couple of studies which computed the neural information from electrically evoked responses. Third, we briefly introduce how information rates can be computed in the representative two ways - direct method and reconstruction method. Fourth, we introduce in silico approaches modeling artificial retinal neural networks to explore the relationship between amount of information and the spiking patterns. Lastly, we conclude our review with clinical implications to emphasize the necessity of considering visual information transmission for further improvement of retinal prosthetics.
Collapse
Affiliation(s)
- Sein Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
| |
Collapse
|
17
|
Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Curr Opin Pharmacol 2022; 63:102192. [DOI: 10.1016/j.coph.2022.102192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022]
|
18
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
19
|
Advances in tethered photopharmacology for precise optical control of signaling proteins. Curr Opin Pharmacol 2022; 63:102196. [PMID: 35245800 DOI: 10.1016/j.coph.2022.102196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
Abstract
To overcome the limitations of traditional pharmacology, the field of photopharmacology has developed around the central concept of using light to endow drug action with spatiotemporal precision. Tethered photopharmacology, where a photoswitchable ligand is covalently attached to a target protein, offers a particularly high degree of spatiotemporal control, as well as the ability to genetically target drug action and limit effects to specific protein subtypes. In this review, we describe the core engineering concepts of tethered pharmacology and highlight recent advances in harnessing the power of tethered photopharmacology for an expanded palette of targets and conjugation modes using new, complementary strategies. We also discuss the various applications, including mechanistic studies from the molecular biophysical realm to in vivo studies in behaving animals, that demonstrate the power of tethered pharmacology.
Collapse
|
20
|
Provansal M, Marazova K, Sahel JA, Picaud S. Vision Restoration by Optogenetic Therapy and Developments Toward Sonogenetic Therapy. Transl Vis Sci Technol 2022; 11:18. [PMID: 35024784 PMCID: PMC8762673 DOI: 10.1167/tvst.11.1.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
After revolutionizing neuroscience, optogenetic therapy has entered successfully in clinical trials for restoring vision to blind people with degenerative eye diseases, such as retinitis pigmentosa. These clinical trials still have to evaluate the visual acuity achieved by patients and to determine if it reaches its theoretical limit extrapolated from ex vivo experiments. Different strategies are developed in parallel to reduce required light levels and improve information processing by targeting various cell types. For patients with vision loss due to optic atrophy, as in the case of glaucoma, optogenetic cortical stimulation is hampered by light absorption and scattering by the brain tissue. By contrast, ultrasound waves can diffuse widely through the dura mater and the brain tissue as indicated by ultrasound imaging. Based on our recent results in rodents, we propose the sonogenetic therapy relying on activation of the mechanosensitive channel as a very promising vision restoration strategy with a suitable spatiotemporal resolution. Genomic approaches may thus provide efficient brain machine interfaces for sight restoration.
Collapse
Affiliation(s)
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Centre Hospitalier National d'Ophtalmologie des XV-XX, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
21
|
Esquenazi RB, Meier K, Beyeler M, Boynton GM, Fine I. Learning to see again: Perceptual learning of simulated abnormal on- off-cell population responses in sighted individuals. J Vis 2021; 21:10. [PMID: 34935878 PMCID: PMC8727313 DOI: 10.1167/jov.21.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many forms of artificial sight recovery, such as electronic implants and optogenetic proteins, generally cause simultaneous, rather than complementary firing of on- and off-center retinal cells. Here, using virtual patients—sighted individuals viewing distorted input—we examine whether plasticity might compensate for abnormal neuronal population responses. Five participants were dichoptically presented with a combination of original and contrast-reversed images. Each image (I) and its contrast-reverse (Iʹ) was filtered using a radial checkerboard (F) in Fourier space and its inverse (Fʹ). [I * F′] + [Iʹ * F] was presented to one eye, and [I * F] + [Iʹ * F′] was presented to the other, such that regions of the image that produced on-center responses in one eye produced off-center responses in the other eye, and vice versa. Participants continuously improved in a naturalistic object discrimination task over 20 one-hour sessions. Pre-training and post-training tests suggest that performance improvements were due to two learning processes: learning to recognize objects with reduced visual information and learning to suppress contrast-reversed image information in a non–eye-selective manner. These results suggest that, with training, it may be possible to adapt to the unnatural on- and off-cell population responses produced by electronic and optogenetic sight recovery technologies.
Collapse
Affiliation(s)
| | - Kimberly Meier
- Department of Psychology, University of Washington, USA.,
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, USA.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA.,
| | | | - Ione Fine
- Department of Psychology, University of Washington, USA.,
| |
Collapse
|
22
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
23
|
|
24
|
Van Gelder RN. Gene Therapy Approaches to Slow or Reverse Blindness From Inherited Retinal Degeneration: Growth Factors and Optogenetics. Int Ophthalmol Clin 2021; 61:209-228. [PMID: 34584058 PMCID: PMC8486303 DOI: 10.1097/iio.0000000000000386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To date, clinical gene therapy efforts for inherited retinal degeneration (IRD) have focused largely on gene replacement. The large number of genes and alleles causing IRD, however, makes this approach practical only for the most common causes. Additionally, gene replacement therapy cannot reverse existing retinal degeneration. Viral-mediated gene therapy can be used for two other approaches to slow or reverse IRD. First, by driving intraocular expression of growth factors or neuroprotective proteins, retinal degeneration can be slowed. Second, by expressing light-sensitive proteins (either microbial channelopsins or mammalian G-protein coupled opsins) in preserved inner retinal neurons, light sensitivity can be restored to the blind retina. Both approaches have advanced substantially in the past decade, and both are nearing clinical tests. This review surveys recent progress in these approaches.
Collapse
|
25
|
Tsai YH, Doura T, Kiyonaka S. Tethering-based chemogenetic approaches for the modulation of protein function in live cells. Chem Soc Rev 2021; 50:7909-7923. [PMID: 34114579 DOI: 10.1039/d1cs00059d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteins are the workhorse molecules performing various tasks to sustain life. To investigate the roles of a protein under physiological conditions, the rapid modulation of the protein with high specificity in a living system would be ideal, but achieving this is often challenging. To address this challenge, researchers have developed chemogenetic strategies for the rapid and selective modulation of protein function in live cells. Here, the target protein is modified genetically to become sensitive to a designer molecule that otherwise has no effect on other cellular biomolecules. One powerful chemogenetic strategy is to introduce a tethering point into the target protein, allowing covalent or non-covalent attachment of the designer molecule. In this tutorial review, we focus on tethering-based chemogenetic approaches for modulating protein function in live cells. We first describe genetic, optogenetic and chemical means to study protein function. These means lay the basis for the chemogenetic concept, which is explained in detail. The next section gives an overview, including advantages and limitations, of tethering tactics that have been employed for modulating cellular protein function. The third section provides examples of the modulation of cell-surface proteins using tethering-based chemogenetics through non-covalent tethering and covalent tethering for irreversible modulation or functional switching. The fourth section presents intracellular examples. The last section summarizes key considerations in implementing tethering-based chemogenetics and shows perspectives highlighting future directions and other applications of this burgeoning research field.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | | | | |
Collapse
|
26
|
Ciulli A, Hamann L, Jahnke W, Kalgutkar AS, Magauer T, Ritter T, Steadman V, Williams SD, Winter G, Hoegenauer K, Krawinkler KH, Stepan AF. The 2 nd Alpine Winter Conference on Medicinal and Synthetic Chemistry. ChemMedChem 2021; 16:2417-2423. [PMID: 34114371 DOI: 10.1002/cmdc.202100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The second biannual Alpine Winter Conference on Medicinal and Synthetic Chemistry (short: Alpine Winter Conference) took place January 19-23, 2020, in St. Anton in western Austria. There were roughly 180 attendees from around the globe, making this mid-sized conference particularly conducive to networking and exchanging ideas over the course of four and a half days. This report summarizes the key events and presentations given by researchers working in both industry and academia.
Collapse
Affiliation(s)
- Alessio Ciulli
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lawrence Hamann
- Drug Discovery Sciences, Takeda Pharmaceuticals, 30 Landsdowne Street, Cambridge, MA 02139, USA
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Amit S Kalgutkar
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - Thomas Magauer
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, L02.012, 6020, Innsbruck, Austria
| | - Tobias Ritter
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim an der Ruhr, Germany
| | | | | | - Georg Winter
- Research Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090, Vienna, Austria
| | | | | | - Antonia F Stepan
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
27
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Gutzeit VA, Acosta-Ruiz A, Munguba H, Häfner S, Landra-Willm A, Mathes B, Mony J, Yarotski D, Börjesson K, Liston C, Sandoz G, Levitz J, Broichhagen J. A fine-tuned azobenzene for enhanced photopharmacology in vivo. Cell Chem Biol 2021; 28:1648-1663.e16. [PMID: 33735619 DOI: 10.1016/j.chembiol.2021.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.
Collapse
Affiliation(s)
- Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Häfner
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Arnaud Landra-Willm
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Bettina Mathes
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jürgen Mony
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Dzianis Yarotski
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Guillaume Sandoz
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Joshua Levitz
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany; Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| |
Collapse
|
29
|
Kang JH, Jang YJ, Kim T, Lee BC, Lee SH, Im M. Electric Stimulation Elicits Heterogeneous Responses in ON but Not OFF Retinal Ganglion Cells to Transmit Rich Neural Information. IEEE Trans Neural Syst Rehabil Eng 2021; 29:300-309. [PMID: 33395394 DOI: 10.1109/tnsre.2020.3048973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinal implants electrically stimulate surviving retinal neurons to restore vision in people blinded by outer retinal degeneration. Although the healthy retina is known to transmit a vast amount of visual information to the brain, it has not been studied whether prosthetic vision contains a similar amount of information. Here, we assessed the neural information transmitted by population responses arising in brisk transient (BT) and brisk sustained (BS) subtypes of ON and OFF retinal ganglion cells (RGCs) in the rabbit retina. To correlate the response heterogeneity and the information transmission, we first quantified the cell-to-cell heterogeneity by calculating the spike time tiling coefficient (STTC) across spiking patterns of RGCs in each type. Then, we computed the neural information encoded by the RGC population in a given type. In responses to light stimulation, spiking activities were more heterogeneous in OFF than ON RGCs (STTCAVG = 0.36, 0.45, 0.77 and 0.55 for OFF BT, OFF BS, ON BT, and ON BS, respectively). Interestingly, however, in responses to electric stimulation, both BT and BS subtypes of OFF RGCs showed remarkably homogeneous spiking patterns across cells (STTCAVG = 0.93 and 0.82 for BT and BS, respectively), whereas the two subtypes of ON RGCs showed slightly increased populational heterogeneity compared to light-evoked responses (STTCAVG = 0.71 and 0.63 for BT and BS, respectively). Consequently, the neural information encoded by the electrically-evoked responses of a population of 15 RGCs was substantially lower in the OFF than the ON pathway: OFF BT and BS cells transmit only ~23% and ~53% of the neural information transmitted by their ON counterparts. Together with previously-reported natural spiking activities in ON RGCs, the higher neural information may make ON responses more recognizable, eliciting the biased percepts of bright phosphenes.
Collapse
|
30
|
Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020; 108:270-285. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
The development of new tools to interface with the nervous system, empowered by advances in electronics and materials science, has transformed neuroscience and is informing therapies for neurological and mental conditions. Although the vast majority of neural engineering research has focused on advancing tools to study the brain, understanding the peripheral nervous system and other organs can similarly benefit from these technologies. To realize this vision, the neural interface technologies need to address the biophysical, mechanical, and chemical challenges posed by the peripheral nerves and organs. In this Perspective, we discuss design considerations and recent technological advances to modulate electrical signaling outside the central nervous system. The innovations in bioelectronics borne out of interdisciplinary collaborations between biologists and physical scientists may not only advance fundamental study of peripheral (neuro)physiology but also empower clinical interventions for conditions including neurological, gastrointestinal, and immune dysfunction.
Collapse
Affiliation(s)
- Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
32
|
Ferrari U, Deny S, Sengupta A, Caplette R, Trapani F, Sahel JA, Dalkara D, Picaud S, Duebel J, Marre O. Towards optogenetic vision restoration with high resolution. PLoS Comput Biol 2020; 16:e1007857. [PMID: 32667921 PMCID: PMC7416966 DOI: 10.1371/journal.pcbi.1007857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/10/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
In many cases of inherited retinal degenerations, ganglion cells are spared despite photoreceptor cell death, making it possible to stimulate them to restore visual function. Several studies have shown that it is possible to express an optogenetic protein in ganglion cells and make them light sensitive, a promising strategy to restore vision. However the spatial resolution of optogenetically-reactivated retinas has rarely been measured, especially in the primate. Since the optogenetic protein is also expressed in axons, it is unclear if these neurons will only be sensitive to the stimulation of a small region covering their somas and dendrites, or if they will also respond to any stimulation overlapping with their axon, dramatically impairing spatial resolution. Here we recorded responses of mouse and macaque retinas to random checkerboard patterns following an in vivo optogenetic therapy. We show that optogenetically activated ganglion cells are each sensitive to a small region of visual space. A simple model based on this small receptive field predicted accurately their responses to complex stimuli. From this model, we simulated how the entire population of light sensitive ganglion cells would respond to letters of different sizes. We then estimated the maximal acuity expected by a patient, assuming it could make an optimal use of the information delivered by this reactivated retina. The obtained acuity is above the limit of legal blindness. Our model also makes interesting predictions on how acuity might vary upon changing the therapeutic strategy, assuming an optimal use of the information present in the retinal activity. Optogenetic therapy could thus potentially lead to high resolution vision, under conditions that our model helps to determinine. In many cases of blindness, ganglion cells, the retinal output, remain functional. A promising strategy to restore vision is to express optogenetic proteins in ganglion cells. However, it is not clear what is the resolution of this new light sensor. A major concern is that axons might become light sensitive, and a focal stimulation would activate a very broad area of the retina, dramatically impairing spatial resolution. Here we show that this is not the case. Ganglion cells are activated only by stimulations close to their soma. Using a combination of data analysis and modeling based on mouse and non-human primate retina recordings, we show that the acuity expected with this therapy could be above the level of legal blindness.
Collapse
Affiliation(s)
- Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Stéphane Deny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Abhishek Sengupta
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Romain Caplette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Jens Duebel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- * E-mail:
| |
Collapse
|
33
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
34
|
Shim S, Eom K, Jeong J, Kim SJ. Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients. MICROMACHINES 2020; 11:E535. [PMID: 32456341 PMCID: PMC7281011 DOI: 10.3390/mi11050535] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Retinal prostheses are implantable devices that aim to restore the vision of blind patients suffering from retinal degeneration, mainly by artificially stimulating the remaining retinal neurons. Some retinal prostheses have successfully reached the stage of clinical trials; however, these devices can only restore vision partially and remain insufficient to enable patients to conduct everyday life independently. The visual acuity of the artificial vision is limited by various factors from both engineering and physiological perspectives. To overcome those issues and further enhance the visual resolution of retinal prostheses, a variety of retinal prosthetic approaches have been proposed, based on optimization of the geometries of electrode arrays and stimulation pulse parameters. Other retinal stimulation modalities such as optics, ultrasound, and magnetics have also been utilized to address the limitations in conventional electrical stimulation. Although none of these approaches have been clinically proven to fully restore the function of a degenerated retina, the extensive efforts made in this field have demonstrated a series of encouraging findings for the next generation of retinal prostheses, and these could potentially enhance the visual acuity of retinal prostheses. In this article, a comprehensive and up-to-date overview of retinal prosthetic strategies is provided, with a specific focus on a quantitative assessment of visual acuity results from various retinal stimulation technologies. The aim is to highlight future directions toward high-resolution retinal prostheses.
Collapse
Affiliation(s)
- Shinyong Shim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Joonsoo Jeong
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan 50612, Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
35
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
36
|
McGregor JE, Godat T, Dhakal KR, Parkins K, Strazzeri JM, Bateman BA, Fischer WS, Williams DR, Merigan WH. Optogenetic restoration of retinal ganglion cell activity in the living primate. Nat Commun 2020; 11:1703. [PMID: 32245977 PMCID: PMC7125151 DOI: 10.1038/s41467-020-15317-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Optogenetic therapies for vision restoration aim to confer intrinsic light sensitivity to retinal ganglion cells when photoreceptors have degenerated and light sensitivity has been irreversibly lost. We combine adaptive optics ophthalmoscopy with calcium imaging to optically record optogenetically restored retinal ganglion cell activity in the fovea of the living primate. Recording from the intact eye of a living animal, we compare the patterns of activity evoked by the optogenetic actuator ChrimsonR with natural photoreceptor mediated stimulation in the same retinal ganglion cells. Optogenetic responses are recorded more than one year following administration of the therapy and two weeks after acute loss of photoreceptor input in the living animal. This in vivo imaging approach could be paired with any therapy to minimize the number of primates required to evaluate restored activity on the retinal level, while maximizing translational benefit by using an appropriate pre-clinical model of the human visual system. Non-human primate models are important for the development of high quality vision restoration therapies for blindness. Here, the authors demonstrate restoration of light responses in foveal retinal ganglion cells of the living macaque following optogenetic gene therapy.
Collapse
Affiliation(s)
- Juliette E McGregor
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA.
| | - Tyler Godat
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA.,Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Road, Box 270186, Rochester, NY, 14627-0186, USA
| | - Kamal R Dhakal
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA
| | - Keith Parkins
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA
| | - Jennifer M Strazzeri
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA.,David & Ilene Flaum Eye Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 659, Rochester, NY, 14642, USA
| | - Brittany A Bateman
- David & Ilene Flaum Eye Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 659, Rochester, NY, 14642, USA
| | - William S Fischer
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA
| | - David R Williams
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA.,Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Road, Box 270186, Rochester, NY, 14627-0186, USA
| | - William H Merigan
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Box 319, Rochester, NY, 14642, USA. .,David & Ilene Flaum Eye Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 659, Rochester, NY, 14642, USA.
| |
Collapse
|
37
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020; 59:6720-6723. [DOI: 10.1002/anie.201915352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
38
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
39
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
40
|
|
41
|
Montazeri L, El Zarif N, Trenholm S, Sawan M. Optogenetic Stimulation for Restoring Vision to Patients Suffering From Retinal Degenerative Diseases: Current Strategies and Future Directions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1792-1807. [PMID: 31689206 DOI: 10.1109/tbcas.2019.2951298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optogenetic strategies for vision restoration involve photosensitizing surviving retinal neurons following retinal degeneration, using emerging optogenetic techniques. This approach opens the door to a minimally-invasive retinal vision restoration approach. Moreover, light stimulation has the potential to offer better spatial and temporal resolution than conventional retinal electrical prosthetics. Although proof-of-concept studies in animal models have demonstrated the possibility of restoring vision using optogenetic techniques, and initial clinical trials are underway, there are still hurdles to pass before such an approach restores naturalistic vision in humans. One limitation is the development of light stimulation devices to activate optogenetic channels in the retina. Here we review recent progress in the design and implementation of optogenetic stimulation devices and outline the corresponding technological challenges. Finally, while most work to date has focused on providing therapy to patients suffering from retinitis pigmentosa, we provide additional insights into strategies for applying optogenetic vision restoration to patients suffering from age-related macular degeneration.
Collapse
|
42
|
Abstract
In humans high quality, high acuity visual experience is mediated by the fovea, a tiny, specialized patch of retina containing the locus of fixation. Despite this, vision restoration strategies are typically developed in animal models without a fovea. While electrical prostheses have been approved by regulators, as yet they have failed to restore high quality, high acuity vision in patients. Approaches under pre-clinical development include regenerative cell therapies, optogenetics and chemical photosensitizers. All retinal vision restoration therapies require reactivation of inner retina that has lost photoreceptor input and that the restored signals can be interpreted at a behavioural level. A greater emphasis on tackling these challenges at the fovea may accelerate progress toward high quality vision restoration.
Collapse
Affiliation(s)
- Juliette E McGregor
- Center for Visual Science, University of Rochester, 601 Crittenden Blvd, Rochester, New York, USA
| |
Collapse
|
43
|
Branched Photoswitchable Tethered Ligands Enable Ultra-efficient Optical Control and Detection of G Protein-Coupled Receptors In Vivo. Neuron 2019; 105:446-463.e13. [PMID: 31784287 DOI: 10.1016/j.neuron.2019.10.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/26/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
The limitations of classical drugs have spurred the development of covalently tethered photoswitchable ligands to control neuromodulatory receptors. However, a major shortcoming of tethered photopharmacology is the inability to obtain optical control with an efficacy comparable with that of the native ligand. To overcome this, we developed a family of branched photoswitchable compounds to target metabotropic glutamate receptors (mGluRs). These compounds permit photo-agonism of Gi/o-coupled group II mGluRs with near-complete efficiency relative to glutamate when attached to receptors via a range of orthogonal, multiplexable modalities. Through a chimeric approach, branched ligands also allow efficient optical control of Gq-coupled mGluR5, which we use to probe the spatiotemporal properties of receptor-induced calcium oscillations. In addition, we report branched, photoswitch-fluorophore compounds for simultaneous receptor imaging and manipulation. Finally, we demonstrate this approach in vivo in mice, where photoactivation of SNAP-mGluR2 in the medial prefrontal cortex reversibly modulates working memory in normal and disease-associated states.
Collapse
|
44
|
Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol 2019; 37:1013-1023. [PMID: 31406326 PMCID: PMC7243676 DOI: 10.1038/s41587-019-0198-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Ricart-Ortega M, Font J, Llebaria A. GPCR photopharmacology. Mol Cell Endocrinol 2019; 488:36-51. [PMID: 30862498 DOI: 10.1016/j.mce.2019.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
New technologies for spatial and temporal remote control of G protein-coupled receptors (GPCRs) are necessary to unravel the complexity of GPCR signalling in cells, tissues and living organisms. An effective approach, recently developed, consists on the design of light-operated ligands whereby light-dependent GPCR activity regulation can be achieved. In this context, the use of light provides an advantage as it combines safety, easy delivery, high resolution and it does not interfere with most cellular processes. In this review we summarize the most relevant successful achievements in GPCR photopharmacology. These recent findings constitute a significant advance in research studies on the molecular dynamics of receptor activation and their physiological roles in vivo. Moreover, these molecules hold potential toward clinical uses as light-operated drugs, which can overcome some of the problems of conventional pharmacology.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Joan Font
- IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
47
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, Aghi K, Gaub BM, Sivyer B, Flannery JG, Isacoff EY. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun 2019; 10:1221. [PMID: 30874546 PMCID: PMC6420663 DOI: 10.1038/s41467-019-09124-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light. MW-opsin enables an otherwise blind retinitis pigmenotosa mouse to discriminate temporal and spatial light patterns displayed on a standard LCD computer tablet, displays adaption to changes in ambient light, and restores open-field novel object exploration under incidental room light. By contrast, rhodopsin, which is similar in sensitivity but slower in light response and has greater rundown, fails these tests. Thus, MW-opsin provides the speed, sensitivity and adaptation needed to restore patterned vision.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Amy Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Autoosa Salari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10024, USA
| | - Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Benjamin M Gaub
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Biosystems Science Engineering, ETH Zürich, Mattenstrasse 26, Basel, 8092, Switzerland
| | - Benjamin Sivyer
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR, 97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- School of Optometry, University of California, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
49
|
Leippe P, Frank JA. Designing azobenzene-based tools for controlling neurotransmission. Curr Opin Struct Biol 2019; 57:23-30. [PMID: 30825844 DOI: 10.1016/j.sbi.2019.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Chemical and electrical signaling at the synapse is a dynamic process that is crucial to neurotransmission and pathology. Traditional pharmacotherapy has found countless applications in both academic labs and the clinic; however, diffusible drugs lack spatial and temporal precision when employed in heterogeneous tissues such as the brain. In the field of photopharmacology, chemical attachment of a synthetic photoswitch to a bioactive ligand allows cellular signaling to be controlled with light. Azobenzenes have remained the go-to photoswitch for biological applications due to their tunable photophysical properties, and can be leveraged to achieve reversible optical control of numerous receptors and ion channels. Here, we discuss the most recent advances in photopharmacology which will improve the use of azobenzene-based probes for neuroscience applications.
Collapse
Affiliation(s)
- Philipp Leippe
- Max Planck Institute for Medical Research, Department of Chemical Biology, Jahnstr. 29, 69120 Heidelberg, Germany
| | - James Allen Frank
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
50
|
A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision. Future Med Chem 2019; 11:463-487. [DOI: 10.4155/fmc-2018-0315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last decade, innovative therapeutic strategies against inherited retinal degenerations (IRDs) have emerged. In particular, chemical- and opto-genetics approaches or a combination of them have been identified for modulating neuronal/optical activity in order to restore vision in blinding diseases. The ‘chemical-genetics approach’ (optopharmacology) uses small molecules (exogenous photoswitches) for restoring light sensitivity by activating ion channels. The ‘opto-genetics approach’ employs light-activated photosensitive proteins (exogenous opsins), introduced by viral vectors in injured tissues, to restore light response. These approaches offer control of neuronal activities with spatial precision and limited invasiveness, although with some drawbacks. Currently, a combined therapeutic strategy (optogenetic pharmacology) is emerging. This review describes the state of the art and provides an overview of the future perspectives in vision restoration.
Collapse
|