1
|
Bunu SJ, Cai H, Zhou Z, Zhang Y, Lai Y, Wang G, Song D, Wu C, Zheng H, Xu Z, Shi J, Zhu W. Discovery of novel antimyeloma agents targeting TRIP13 by molecular modeling and bioassay. RSC Med Chem 2025:d4md01008f. [PMID: 40337305 PMCID: PMC12053442 DOI: 10.1039/d4md01008f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Thyroid hormone receptor-interacting protein-13 (TRIP13) is an AAA+ ATPase that regulates protein complex assembly and disassembly and is known to be a chromosomal instability gene with the ability to repair DNA double-strand breaks. TRIP13 overexpression has been linked to the proliferation and development of many human malignancies, including multiple myeloma (MM). Accordingly, TRIP13 is recognized as a potential drug target for anticancer drug development. Although some TRIP13 inhibitors have been reported, none are under clinical trial or approved for clinical use. This study aimed to identify novel small molecules as potential TRIP13 inhibitors structurally different from previously reported compounds through molecular modeling and bioassays. As a result, five compounds were successfully identified as novel TRIP13 inhibitors. F368-0183 showed the best antiproliferative activity with IC50 = 5.25 μM (NCI-H929 cell line), comparable with the positive control DCZ0415 (IC50 = 9.64 μM). Also, the cellular thermal shift assay confirmed that this compound could interact with the TRIP13 protein in MM cells. In addition, the AAA+ ATPase inhibitory bioassay demonstrated that the five compounds had better inhibitory activity than DCZ0415, having strong correlations with the calculated free energy perturbation (FEP). Further molecular dynamics simulation studies revealed that the novel compounds could significantly interact with 12 residues of TRIP13, especially R386, L139, R389, L135, S138, Y141, and G385. We also assessed the F368-0183 inhibition on a kinase panel, no other targets were found, but the potential binding to other target proteins of these compounds cannot be totally excluded. Therefore, the new molecular scaffolds of these compounds, their efficacy in suppressing MM cell line proliferation, and the displayed TRIP13 AAA+ ATPase inhibitory properties provide important clues for developing novel TRIP13-based multi-target anti-MM drugs.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Niger Delta University Wilberforce Island Bayelsa State Nigeria
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yanlei Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Yue Lai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Dongliang Song
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Chengkun Wu
- National Key Laboratory of Parallel and Distributed Computing & Laboratory of Digitizing Software for Frontier Equipment, National University of Defense Technology Changsha 410073 Hunan China
| | | | - Zhijian Xu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine Shanghai 200120 China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
2
|
Lima I, Borges F, Pombinho A, Chavarria D. The spindle assembly checkpoint: Molecular mechanisms and kinase-targeted drug discovery. Drug Discov Today 2025; 30:104355. [PMID: 40216293 DOI: 10.1016/j.drudis.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism required for the fidelity of chromosome segregation, ensuring that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. In cancer cells, SAC inactivation leads to aneuploidy beyond the cell's adaptation, culminating in cell death. This review provides a concise overview of the SAC signaling process and properties. Recent drug discovery strategies to selectively target kinases, particularly Aurora B and monopolar spindle kinase (MPS1), aimed at developing innovative anticancer agents able to override SAC are also presented.
Collapse
Affiliation(s)
- Inês Lima
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António Pombinho
- i3S, Institute for Research and Innovation in Health, University of Porto 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, University of Porto 4200-135 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
3
|
Yu CWH, Fischer ES, Greener JG, Yang J, Zhang Z, Freund SMV, Barford D. Molecular mechanism of Mad2 conformational conversion promoted by the Mad2-interaction motif of Cdc20. Protein Sci 2025; 34:e70099. [PMID: 40143766 PMCID: PMC11947619 DOI: 10.1002/pro.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
During mitosis, unattached kinetochores trigger the spindle assembly checkpoint by promoting the assembly of the mitotic checkpoint complex, a heterotetramer comprising Mad2, Cdc20, BubR1, and Bub3. Critical to this process is the kinetochore-mediated catalysis of an intrinsically slow conformational conversion of Mad2 from an open (O-Mad2) inactive state to a closed (C-Mad2) active state bound to Cdc20. These Mad2 conformational changes involve substantial remodeling of the N-terminal β1 strand and C-terminal β7/β8 hairpin. In vitro, the Mad2-interaction motif (MIM) of Cdc20 (Cdc20MIM) triggers the rapid conversion of O-Mad2 to C-Mad2, effectively removing the kinetic barrier for MCC assembly. How Cdc20MIM directly induces Mad2 conversion remains unclear. In this study, we demonstrate that the Cdc20MIM-binding site is inaccessible in O-Mad2. Time-resolved NMR and molecular dynamics simulations show how Mad2 conversion involves sequential conformational changes of flexible structural elements in O-Mad2, orchestrated by Cdc20MIM. Conversion is initiated by the β7/β8 hairpin of O-Mad2 transiently unfolding to expose a nascent Cdc20MIM-binding site. Engagement of Cdc20MIM to this site promotes the release of the β1 strand. We propose that initial conformational changes of the β7/β8 hairpin allow binding of Cdc20MIM to a transient intermediate state of Mad2, thereby lowering the kinetic barrier to Mad2 conversion.
Collapse
Affiliation(s)
- Conny W. H. Yu
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
EMBL European Bioinformatics InstituteWellcome Genome CampusHinxtonCB10 1SDUK
| | | | - Joe G. Greener
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Monod BioSeattleWashingtonUS
| | - Jing Yang
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Ziguo Zhang
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | |
Collapse
|
4
|
Ibrahim B. Dynamics of spindle assembly and position checkpoints: Integrating molecular mechanisms with computational models. Comput Struct Biotechnol J 2025; 27:321-332. [PMID: 39897055 PMCID: PMC11782880 DOI: 10.1016/j.csbj.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. While experimental research has uncovered key aspects of checkpoint function, the complexity of protein interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. This review explores mathematical frameworks-from ordinary differential equations to stochastic simulations, which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein interactions to whole-system simulations with thousands of parameters. These approaches have elucidated fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to chemical organization theory, highlighting their successful application in predicting protein localization patterns and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, particularly deep learning for parameter optimization, present transformative opportunities for improving model accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell cycle control, with practical implications for cancer research and therapeutic development.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena, 07743, Germany
| |
Collapse
|
5
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
6
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
7
|
Li Q, Chen Q, Zheng T, Wang F, Teng J, Zhou H, Chen J. CCDC68 Maintains Mitotic Checkpoint Activation by Promoting CDC20 Integration into the MCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406009. [PMID: 39018254 PMCID: PMC11425217 DOI: 10.1002/advs.202406009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/19/2024]
Abstract
The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Qingzhou Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Tao Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Haining Zhou
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
- Center for Quantitative BiologyPeking UniversityBeijing100871China
| |
Collapse
|
8
|
Xue J, Wu H, Shi Y, Li Z. TRIP13 overexpression in hepatocellular carcinoma: implications for poor prognosis and immune cell infiltration. Discov Oncol 2023; 14:176. [PMID: 37740123 PMCID: PMC10516817 DOI: 10.1007/s12672-023-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE The overexpression of TRIP13 has been observed in many types of cancer and has been identified as an oncogene. However, its role in hepatocellular carcinoma (HCC) has not been extensively studied. This study aimed to investigate the expression of TRIP13 in HCC and its impact on immune cell infiltration and prognosis. METHODS We analyzed TCGA and GSE62232 datasets to assess TRIP13 expression in HCC. Kaplan-Meier and subgroup analysis were performed to examine the correlation between TRIP13 expression and HCC. Univariate and Cox regression analysis were conducted to determine the predictive value of TRIP13 in assessing patient outcomes. A nomogram was developed using TRIP13 mRNA expression to predict HCC prognosis. TRIP13 expression was validated using immunohistochemistry in our patient cohort. Survival and subgroup analyses were conducted to investigate the role of TRIP13 in HCC prognosis. RESULTS The results indicated that TRIP13 upregulation in HCC was a strong independent predictor of poor outcome, as determined by Kaplan-Meier and Cox regression analyses. A high AUC value of 0.982 from ROC curves suggested that TRIP13 upregulation could serve as a reliable diagnostic indicator for HCC. The immunohistochemical validation of TRIP13 expression in the patient cohort confirmed its prognostic significance, and high TRIP13 expression was found to be associated with increased infiltration of Th2 cells and decreased infiltration of neutrophils, Th17 cells, and dendritic cells. CONCLUSION These findings suggest that TRIP13 could be a potential prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jiapeng Xue
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongfen Wu
- Department of Gastroenterology, West China (Sanya) Hospital, Sichuan University, Sanya, China
| | - Yun Shi
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of General Surgery, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Huang L, Li W, Dai X, Zhao S, Xu B, Wang F, Jin RT, Luo L, Wu L, Jiang X, Cheng Y, Zou J, Xu C, Tong X, Fan HY, Zhao H, Bao J. Biallelic variants in MAD2L1BP ( p31comet) cause female infertility characterized by oocyte maturation arrest. eLife 2023; 12:e85649. [PMID: 37334967 PMCID: PMC10319434 DOI: 10.7554/elife.85649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds mitosis arrest deficient 2 (MAD2) and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell-cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient's oocytes carrying the mutated MAD2L1BP resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.
Collapse
Affiliation(s)
- Lingli Huang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Wenqing Li
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Xingxing Dai
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of MedicineYiwuChina
| | - Shuai Zhao
- Hospital for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Fengsong Wang
- School of Life Science, Anhui Medical UniversityHefeiChina
| | - Ren-Tao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Lihua Luo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xue Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Yu Cheng
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Caoling Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Han Zhao
- Hospital for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC)HefeiChina
| |
Collapse
|
10
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
12
|
CHAMP1 binds to REV7/FANCV and promotes homologous recombination repair. Cell Rep 2022; 40:111297. [PMID: 36044844 PMCID: PMC9472291 DOI: 10.1016/j.celrep.2022.111297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
A critical determinant of DNA repair pathway choice is REV7, an adaptor that binds to various DNA repair proteins through its C-terminal seatbelt domain. The REV7 seatbelt binds to either REV3, activating translesion synthesis, or to SHLD3, activating non-homologous end joining (NHEJ) repair. Recent studies have identified another REV7 seatbelt-binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), though its possible role in DNA repair is unknown. Here, we show that binding of CHAMP1 to REV7 activates homologous recombination (HR) repair. Mechanistically, CHAMP1 binds directly to REV7 and reduces the level of the Shieldin complex, causing an increase in double-strand break end resection. CHAMP1 also interacts with POGZ in a heterochromatin complex further promoting HR repair. Importantly, in human tumors, CHAMP1 overexpression promotes HR, confers poly (ADP-ribose) polymerase inhibitor resistance, and correlates with poor prognosis. Thus, by binding to either SHLD3 or CHAMP1 through its seatbelt, the REV7 protein can promote either NHEJ or HR repair, respectively. Feng et al. demonstrate that CHAMP1 promotes homologous recombination by binding to REV7 and reducing the level of the Shieldin complex, causing an increase in double-strand break end resection. CHAMP1 and POGZ form a complex to further promote HR. Upregulation of CHAMP1 expression is a mechanism of acquired PARP inhibitor resistance.
Collapse
|
13
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Bhuniya R, Yuan X, Bai L, Howie KL, Wang R, Li W, Park F, Yang CY. Design, Synthesis, and Biological Evaluation of Apcin-Based CDC20 Inhibitors. ACS Med Chem Lett 2022; 13:188-195. [PMID: 35178174 PMCID: PMC8842116 DOI: 10.1021/acsmedchemlett.1c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
CDC20 binds to anaphase-promoting complex/cyclosome E3 ubiquitin ligase to recruit substrates for ubiquitination to promote mitotic progression. In breast and other cancers, CDC20 overexpression causes cell cycle dysregulation and is associated with poor prognosis. Apcin was previously discovered as a CDC20 inhibitor exhibiting high micromolar activities. Here, we designed and developed new apcin-based inhibitors by eliminating a controlled substance, chloral hydrate, required for synthesis. We further improved the antitumor activities of the inhibitors by replacing the pyrimidine group with substituted thiazole-containing groups. When evaluated in MDA-MB-231 and MDA-MB-468 triple negative breast cancer cell lines, several analogs showed 5-10-fold improvement over apcin with IC50 values at ∼10 μM in cell viability assays. Tubulin polymerization assay showed our CDC20 inhibitors had no off-target effects against tubulin. Proapoptotic Bim accumulation was detected in our CDC20 inhibitor treated MDA-MB-468 cells. The most effective inhibitors, 22, warrant further development to target CDC20 in diseases.
Collapse
Affiliation(s)
- Rajib Bhuniya
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Longchuan Bai
- Department
of Internal Medicine, Hematology & Oncology Division, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kathryn L. Howie
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rui Wang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Frank Park
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States,E-mail: . Phone: (901) 448-6931
| |
Collapse
|
16
|
Hama T, Nagesh PK, Chowdhury P, Moore BM, Yallapu MM, Regner KR, Park F. DNA damage is overcome by TRIP13 overexpression during cisplatin nephrotoxicity. JCI Insight 2021; 6:139092. [PMID: 34806647 PMCID: PMC8663775 DOI: 10.1172/jci.insight.139092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent to treat a wide array of cancers that is frequently associated with toxic injury to the kidney due to oxidative DNA damage and perturbations in cell cycle progression leading to cell death. In this study, we investigated whether thyroid receptor interacting protein 13 (TRIP13) plays a central role in the protection of the tubular epithelia following cisplatin treatment by circumventing DNA damage. Following cisplatin treatment, double-stranded DNA repair pathways were inhibited using selective blockers to proteins involved in either homologous recombination or non-homologous end joining. This led to increased blood markers of acute kidney injury (AKI) (creatinine and neutrophil gelatinase–associated lipocalin), tubular damage, activation of DNA damage marker (γ-H2AX), elevated appearance of G2/M blockade (phosphorylated histone H3 Ser10 and cyclin B1), and apoptosis (cleaved caspase-3). Conditional proximal tubule–expressing Trip13 mice were observed to be virtually protected from the cisplatin nephrotoxicity by restoring most of the pathological phenotypes back toward normal conditions. Our findings suggest that TRIP13 could circumvent DNA damage in the proximal tubules during cisplatin injury and that TRIP13 may constitute a new therapeutic target in protecting the kidney from nephrotoxicants and reduce outcomes leading to AKI.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prashanth Kb Nagesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Herruzo E, Lago-Maciel A, Baztán S, Santos B, Carballo JA, San-Segundo PA. Pch2 orchestrates the meiotic recombination checkpoint from the cytoplasm. PLoS Genet 2021; 17:e1009560. [PMID: 34260586 PMCID: PMC8312941 DOI: 10.1371/journal.pgen.1009560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022] Open
Abstract
During meiosis, defects in critical events trigger checkpoint activation and restrict cell cycle progression. The budding yeast Pch2 AAA+ ATPase orchestrates the checkpoint response launched by synapsis deficiency; deletion of PCH2 or mutation of the ATPase catalytic sites suppress the meiotic block of the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 action enables adequate levels of phosphorylation of the Hop1 axial component at threonine 318, which in turn promotes activation of the Mek1 effector kinase and the ensuing checkpoint response. In zip1Δ chromosomes, Pch2 is exclusively associated to the rDNA region, but this nucleolar fraction is not required for checkpoint activation, implying that another yet uncharacterized Pch2 population must be responsible for this function. Here, we have artificially redirected Pch2 to different subcellular compartments by adding ectopic Nuclear Export (NES) or Nuclear Localization (NLS) sequences, or by trapping Pch2 in an immobile extranuclear domain, and we have evaluated the effect on Hop1 chromosomal distribution and checkpoint activity. We have also deciphered the spatial and functional impact of Pch2 regulators including Orc1, Dot1 and Nup2. We conclude that the cytoplasmic pool of Pch2 is sufficient to support the meiotic recombination checkpoint involving the subsequent Hop1-Mek1 activation on chromosomes, whereas the nuclear accumulation of Pch2 has pathological consequences. We propose that cytoplasmic Pch2 provokes a conformational change in Hop1 that poises it for its chromosomal incorporation and phosphorylation. Our discoveries shed light into the intricate regulatory network controlling the accurate balance of Pch2 distribution among different cellular compartments, which is essential for proper meiotic outcomes. During gametogenesis, the number of chromosomes is reduced by half and it returns to the normal ploidy when the two gametes fuse during fertilization. Meiosis lies at the heart of gametogenesis because it is the specialized cell division making possible the reduction in ploidy. The fidelity in this process is essential to maintain the chromosome complement characteristic of the species and to avoid aneuploidies. Meiotic cells possess an intricate surveillance network that monitors crucial meiotic events. In response to defects in synapsis and recombination, the meiotic recombination checkpoint blocks meiotic cell cycle progression, thus avoiding aberrant chromosome segregation and formation of defective gametes. The AAA+ ATPase Pch2 is an essential component of the checkpoint response triggered by the recombination defects occurring in the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 supports proper chromosomal localization and phosphorylation of the Hop1 axial component required for the ensuing checkpoint response. We reveal here the biological relevance of a cytoplasmic population of Pch2 that is necessary for meiotic events occurring on chromosomes. Using a variety of strategies, we demonstrate that the checkpoint activating function of Pch2 takes place outside the nucleus, whereas the nuclear accumulation of Pch2 has deleterious consequences. Our work highlights the importance of nucleocytoplasmic communication for a balanced distribution of Pch2 among different subcellular compartments and how it impinges on Hop1 dynamics, which is crucial for proper completion of the meiotic program.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Ana Lago-Maciel
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Sara Baztán
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, Salamanca, Spain
| | - Jesús A. Carballo
- Department of Cellular and Molecular Biology. Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
18
|
Henriques AC, Silva PMA, Sarmento B, Bousbaa H. The Mad2-Binding Protein p31 comet as a Potential Target for Human Cancer Therapy. Curr Cancer Drug Targets 2021; 21:401-415. [PMID: 33511944 DOI: 10.2174/1568009621666210129095726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents mitotic exit at the metaphase-to-anaphase transition until all chromosomes have established correct bipolar attachment to spindle microtubules. Activation of SAC relies on the assembly of the mitotic checkpoint complex (MCC), which requires conformational change from inactive open Mad2 (OMad2) to the active closed Mad2 (C-Mad2) at unattached kinetochores. The Mad2-binding protein p31comet plays a key role in controlling timely mitotic exit by promoting SAC silencing, through preventing Mad2 activation and promoting MCC disassembly. Besides, increasing evidences highlight the p31comet potential as target for cancer therapy. Here, we provide an updated overview of the functional significance of p31comet in mitotic progression, and discuss the potential of deregulated expression of p31comet in cancer and in therapeutic strategies.
Collapse
Affiliation(s)
- Ana C Henriques
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Patrícia M A Silva
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Bruno Sarmento
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| | - Hassan Bousbaa
- Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, CESPU, Gandra, Portugal
| |
Collapse
|
19
|
Balboni M, Yang C, Komaki S, Brun J, Schnittger A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Curr Biol 2020; 30:4113-4127.e6. [DOI: 10.1016/j.cub.2020.07.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
20
|
p31 comet promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc Natl Acad Sci U S A 2020; 117:26795-26803. [PMID: 33051298 PMCID: PMC7604461 DOI: 10.1073/pnas.2008830117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The repair of DNA double strand breaks (DSBs) that arise from external mutagenic agents and routine cellular processes is essential for life. DSBs are repaired by two major pathways, homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). DSB repair pathway choice is largely dictated at the step of 5'-3' DNA end resection, which is promoted during S phase, in part by BRCA1. Opposing end resection is the 53BP1 protein, which recruits the ssDNA-binding REV7-Shieldin complex to favor C-NHEJ repair. We recently identified TRIP13 as a proresection factor that remodels REV7, causing its dissociation from the Shieldin subunit SHLD3. Here, we identify p31comet, a negative regulator of MAD2 and the spindle assembly checkpoint, as an important mediator of the TRIP13-REV7 interaction. p31comet binds to the REV7-Shieldin complex in cells, promotes REV7 inactivation, and causes PARP inhibitor resistance. p31comet also participates in the extraction of REV7 from the chromatin. Furthermore, p31comet can counteract REV7 function in translesion synthesis (TLS) by releasing it from REV3 in the Pol ζ complex. Finally, p31comet, like TRIP13, is overexpressed in many cancers and this correlates with poor prognosis. Thus, we reveal a key player in the regulation of HR and TLS with significant clinical implications.
Collapse
|
21
|
Défachelles L, Russo AE, Nelson CR, Bhalla N. The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength. Mol Biol Cell 2020; 31:2219-2233. [PMID: 32697629 PMCID: PMC7550697 DOI: 10.1091/mbc.e20-05-0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells.
Collapse
Affiliation(s)
- Lénaïg Défachelles
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
22
|
Hu L, Shen D, Liang D, Shi J, Song C, Jiang K, Du S, Cheng W, Ma J, Li S, Bi X, Barr MP, Fang Z, Xu Q, Li W, Piao H, Meng S. Thyroid receptor-interacting protein 13 and EGFR form a feedforward loop promoting glioblastoma growth. Cancer Lett 2020; 493:156-166. [PMID: 32860853 DOI: 10.1016/j.canlet.2020.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) amplification and EGFRvIII mutation drive glioblastoma (GBM) pathogenesis, but their regulation remains elusive. Here we characterized the EGFR/EGFRvIII "interactome" in GBM and identified thyroid receptor-interacting protein 13 (TRIP13), an AAA + ATPase, as an EGFR/EGFRvIII-associated protein independent of its ATPase activity. Functionally, TRIP13 augmented EGFR pathway activation and contributed to EGFR/EGFRvIII-driven GBM growth in GBM spheroids and orthotopic GBM xenograft models. Mechanistically, TRIP13 enhanced EGFR protein abundance in part by preventing Cbl-mediated ubiquitination and proteasomal degradation. Reciprocally, TRIP13 was phosphorylated at tyrosine(Y) 56 by EGFRvIII and EGF-activated EGFR. Abrogating TRIP13 Y56 phosphorylation dramatically attenuated TRIP13 expression-enhanced EGFR signaling and GBM cell growth. Clinically, TRIP13 expression was upregulated in GBM specimens and associated with poor patient outcome. In GBM, TRIP13 localized to cell membrane and cytoplasma and exhibited oncogenic effects in vitro and in vivo, depending on EGFR signaling but not the TRIP13 ATPase activity. Collectively, our findings uncover that TRIP13 and EGFR form a feedforward loop to potentiate EGFR signaling in GBM growth and identify a previously unrecognized ATPase activity-independent mode of action of TRIP13 in GBM biology.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Chunyan Song
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China; Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Jianmei Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China.
| | - Wenbin Li
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
23
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
24
|
Zhang Z, Li B, Fu J, Li R, Diao F, Li C, Chen B, Du J, Zhou Z, Mu J, Yan Z, Wu L, Liu S, Wang W, Zhao L, Dong J, He L, Liang X, Kuang Y, Sun X, Sang Q, Wang L. Bi-allelic Missense Pathogenic Variants in TRIP13 Cause Female Infertility Characterized by Oocyte Maturation Arrest. Am J Hum Genet 2020; 107:15-23. [PMID: 32473092 DOI: 10.1016/j.ajhg.2020.05.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Normal oocyte meiosis is a prerequisite for successful human reproduction, and abnormalities in the process will result in infertility. In 2016, we identified mutations in TUBB8 as responsible for human oocyte meiotic arrest. However, the underlying genetic factors for most affected individuals remain unknown. TRIP13, encoding an AAA-ATPase, is a key component of the spindle assembly checkpoint, and recurrent homozygous nonsense variants and a splicing variant in TRIP13 are reported to cause Wilms tumors in children. In this study, we identified homozygous and compound heterozygous missense pathogenic variants in TRIP13 responsible for female infertility mainly characterized by oocyte meiotic arrest in five individuals from four independent families. Individuals from three families suffered from oocyte maturation arrest, whereas the individual from the fourth family had abnormal zygote cleavage. All displayed only the infertility phenotype without Wilms tumors or any other abnormalities. In vitro and in vivo studies showed that the identified variants reduced the protein abundance of TRIP13 and caused its downstream molecule, HORMAD2, to accumulate in HeLa cells and in proband-derived lymphoblastoid cells. The chromosome mis-segregation assay showed that variants did not have any effects on mitosis. Injecting TRIP13 cRNA into oocytes from one affected individual was able to rescue the phenotype, which has implications for future therapeutic treatments. This study reports pathogenic variants in TRIP13 responsible for oocyte meiotic arrest, and it highlights the pivotal but different roles of TRIP13 in meiosis and mitosis. These findings also indicate that different dosage effects of mutant TRIP13 might result in two distinct human diseases.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Rong Li
- Reproductive Medicine Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feiyang Diao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Caihong Li
- Assisted Reproductive Technology Laboratory, Shenyang Jinghua Hospitals, Shenyang, Liaoning 110005, China
| | - Biaobang Chen
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Shuai Liu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Shanghai Center for Women and Children's Health, Shanghai 200062, China.
| |
Collapse
|
25
|
Molecular basis for assembly of the shieldin complex and its implications for NHEJ. Nat Commun 2020; 11:1972. [PMID: 32332881 PMCID: PMC7181697 DOI: 10.1038/s41467-020-15879-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/27/2020] [Indexed: 02/01/2023] Open
Abstract
Shieldin, including SHLD1, SHLD2, SHLD3 and REV7, functions as a bridge linking 53BP1-RIF1 and single-strand DNA to suppress the DNA termini nucleolytic resection during non-homologous end joining (NHEJ). However, the mechanism of shieldin assembly remains unclear. Here we present the crystal structure of the SHLD3-REV7-SHLD2 ternary complex and reveal an unexpected C (closed)-REV7-O (open)-REV7 conformational dimer mediated by SHLD3. We show that SHLD2 interacts with O-REV7 and the N-terminus of SHLD3 by forming β sheet sandwich. Disruption of the REV7 conformational dimer abolishes the assembly of shieldin and impairs NHEJ efficiency. The conserved FXPWFP motif of SHLD3 binds to C-REV7 and blocks its binding to REV1, which excludes shieldin from the REV1/Pol ζ translesion synthesis (TLS) complex. Our study reveals the molecular architecture of shieldin assembly, elucidates the structural basis of the REV7 conformational dimer, and provides mechanistic insight into orchestration between TLS and NHEJ. Shieldin, including SHLD1, SHLD2, SHLD3 and REV7, functions to suppress the DNA termini nucleolytic resection during non-homologous end joining (NHEJ). Here the authors present the crystal structure of the SHLD3-REV7-SHLD2 ternary complex revealing insights into the mechanism of the complex.
Collapse
|
26
|
Barford D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Curr Opin Struct Biol 2020; 61:86-97. [PMID: 31864160 DOI: 10.1016/j.sbi.2019.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit complex that functions as a RING domain E3 ubiquitin ligase to regulate transitions through the cell cycle, achieved by controlling the defined ubiquitin-dependent degradation of specific cell cycle regulators. APC/C activity and substrate selection are controlled at various levels to ensure that specific cell cycle events occur in the correct order and time. Structural and mechanistic studies over the past two decades have complemented functional studies to provide comprehensive insights that explain APC/C molecular mechanisms. This review discusses how modifications of the core APC/C are responsible for the APC/C's interconversion between different structural and functional states that govern its capacity to control transitions between specific cell cycle phases. A unifying theme is that these structural interconversions involve competition between short linear sequence motifs (SLIMs), shared between substrates, coactivators, inhibitors and E2s, for their common binding sites on the APC/C.
Collapse
Affiliation(s)
- David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
27
|
Kardon JR, Moroco JA, Engen JR, Baker TA. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. eLife 2020; 9:54387. [PMID: 32091391 PMCID: PMC7077987 DOI: 10.7554/elife.54387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/19/2020] [Indexed: 01/28/2023] Open
Abstract
Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and provides insight into how substrate-chaperone interactions direct the outcome of remodeling.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
28
|
Dai Y, Zhang F, Wang L, Shan S, Gong Z, Zhou Z. Structural basis for shieldin complex subunit 3-mediated recruitment of the checkpoint protein REV7 during DNA double-strand break repair. J Biol Chem 2020; 295:250-262. [PMID: 31796627 PMCID: PMC6952594 DOI: 10.1074/jbc.ra119.011464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Shieldin complex subunit 3 (SHLD3) is the apical subunit of a recently-identified shieldin complex and plays a critical role in DNA double-strand break repair. To fulfill its function in DNA repair, SHLD3 interacts with the mitotic spindle assembly checkpoint protein REV7 homolog (REV7), but the details of this interaction remain obscure. Here, we present the crystal structures of REV7 in complex with SHLD3's REV7-binding domain (RBD) at 2.2-2.3 Å resolutions. The structures revealed that the ladle-shaped RBD in SHLD3 uses its N-terminal loop and C-terminal α-helix (αC-helix) in its interaction with REV7. The N-terminal loop exhibited a structure similar to those previously identified in other REV7-binding proteins, and the less-conserved αC-helix region adopted a distinct mode for binding REV7. In vitro and in vivo binding analyses revealed that the N-terminal loop and the αC-helix are both indispensable for high-affinity REV7 binding (with low-nanomolar affinity), underscoring the crucial role of SHLD3 αC-helix in protein binding. Moreover, binding kinetics analyses revealed that the REV7 "safety belt" region, which plays a role in binding other proteins, is essential for SHLD3-REV7 binding, as this region retards the dissociation of the RBD from the bound REV7. Together, the findings of our study reveal the molecular basis of the SHLD3-REV7 interaction and provide critical insights into how SHLD3 recognizes REV7.
Collapse
Affiliation(s)
- Yaxin Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Longge Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195.
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Lu S, Guo M, Fan Z, Chen Y, Shi X, Gu C, Yang Y. Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am J Transl Res 2019; 11:4397-4410. [PMID: 31396344 PMCID: PMC6684882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Dysregulation of mitotic processes can induce chromosome instability, which results in aneuploidy, tumorigenesis, and chemo-resistance. Thyroid hormone receptor interactor 13 (TRIP13) is a critical mitosis regulator, and recent studies suggest that it functions as an oncogene in multiple cancers. However, the role of TRIP13 in bladder cancer (BC) is still unknown. In this study, our analysis of RNA-sequencing data from the Cancer Genome Atlas and Gene expression profiling databases showed that TRIP13 expression was upregulated in BC tissues, and overexpression of TRIP13 was significantly associated with poor prognosis of BC patients. In addition, we found a remarkable elevation of TRIP13 in BC samples compared to normal controls by immunohistochemistry. Furthermore, our in vitro functional assays showed that overexpression of TRIP13 promoted the growth/viability, colony formation ability by inducing cell cycle arrest in G2/M phase, as well as enhancing drug resistance of BC cells to cisplatin and doxorubicin. Conversely, knockdown of TRIP13 inhibited cell growth and induced apoptosis of BC cells. Furthermore, TRIP13 acted as an oncogene in BC by inhibiting spindle assembly checkpoint signaling by targeting mitotic arrest deficient 2 (MAD2) protein. TRIP13 overexpression also alleviated cisplatin- and doxorubicin-induced DNA damage and enhanced DNA repair as evidenced by the reduced expression of γH2AX and enhanced expression of RAD50 in drug-treated BC cells. In conclusion, TRIP13 may be a novel target for the treatment of BC.
Collapse
Affiliation(s)
- Sicheng Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Zhimin Fan
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, Jiangsu, China
| | - Ying Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Xuqin Shi
- School of Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
- The Third Affiliated Hospital of Nanjing University of Chinese MedicineNanjing 210001, Jiangsu, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
- School of Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
30
|
Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a Crucial Role of TRIP13 in Human Cancer. Comput Struct Biotechnol J 2019; 17:854-861. [PMID: 31321001 PMCID: PMC6612527 DOI: 10.1016/j.csbj.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) plays a key role in regulating mitotic processes, including spindle assembly checkpoint and DNA repair pathways, which may account for Chromosome instability (CIN). As CIN is a predominant hallmark of cancer, TRIP13 may act as a tumor susceptibility locus. Amplification of TRIP13 has been observed in various human cancers and implicated in several aspects of malignant transformation, including cancer cell proliferation, drug resistance and tumor progression. Here, we discussed the functional significance of TRIP13 in cell progression, highlighted the recent findings on the aberrant expression in human cancers and emphasized its significance for the therapeutic potential.
Collapse
Affiliation(s)
- S Lu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - J Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - M Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - C Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Y Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 0Nanjing, China
| |
Collapse
|
31
|
Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A, Singal AG, Zhu H, Yu H. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun 2019; 10:1473. [PMID: 30931927 PMCID: PMC6443781 DOI: 10.1038/s41467-019-09318-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin controls glucose homeostasis and cell growth through bifurcated signaling pathways. Dysregulation of insulin signaling is linked to diabetes and cancer. The spindle checkpoint controls the fidelity of chromosome segregation during mitosis. Here, we show that insulin receptor substrate 1 and 2 (IRS1/2) cooperate with spindle checkpoint proteins to promote insulin receptor (IR) endocytosis through recruiting the clathrin adaptor complex AP2 to IR. A phosphorylation switch of IRS1/2 orchestrated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and Src homology phosphatase 2 (SHP2) ensures selective internalization of activated IR. SHP2 inhibition blocks this feedback regulation and growth-promoting IR signaling, prolongs insulin action on metabolism, and improves insulin sensitivity in mice. We propose that mitotic regulators and SHP2 promote feedback inhibition of IR, thereby limiting the duration of insulin signaling. Targeting this feedback inhibition can improve insulin sensitivity. The mechanisms promoting insulin resistance at the receptor level are poorly understood. Here, Choi et al. show that mitotic proteins and the SHP2-MAPK pathway regulate receptor endocytosis and insulin signaling feedback, identifying a potential role for SHP2 inhibitors to treat diabetes.
Collapse
Affiliation(s)
- Eunhee Choi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Sotaro Kikuchi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Haishan Gao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Karolina Brodzik
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Ibrahim Nassour
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Adam Yopp
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Amit G Singal
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| |
Collapse
|
32
|
Ruan W, Lim HH, Surana U. Mapping Mitotic Death: Functional Integration of Mitochondria, Spindle Assembly Checkpoint and Apoptosis. Front Cell Dev Biol 2019; 6:177. [PMID: 30687704 PMCID: PMC6335265 DOI: 10.3389/fcell.2018.00177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting the mitotic pathways of rapidly proliferating tumor cells has been an effective strategy in traditional cancer therapy. Chemotherapeutics such as taxanes and vinca alkaloids, which disrupt microtubule function, have enjoyed clinical success; however, the accompanying side effects, toxicity and multi drug resistance remain as serious concerns. The emerging classes of inhibitors targeting mitotic kinases and proteasome face their own set of challenges. It is hoped that elucidation of the regulatory interface between mitotic checkpoints, mitochondria and mitotic death will aid the development of more efficacious anti-mitotic agents and improved treatment protocols. The links between the spindle assembly checkpoint (SAC) and mitochondrial dynamics that control the progression of anti-mitotic agent-induced apoptosis have been under investigation for several years and the functional integration of these various signaling networks is now beginning to emerge. In this review, we highlight current research on the regulation of SAC, the death pathway and mitochondria with particular focus on their regulatory interconnections.
Collapse
Affiliation(s)
- Weimei Ruan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Choi E, Yu H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 2018; 6:161. [PMID: 30555826 PMCID: PMC6281718 DOI: 10.3389/fcell.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation during mitosis and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and cell growth, and its dysregulation leads to metabolic disorders, such as diabetes. These critical pathways have been extensively investigated, but a link between the two has not been established until recently. Our recent study reveals a critical role of spindle checkpoint regulators in insulin signaling and metabolic homeostasis through regulating endocytosis of the insulin receptor (IR). These findings have linked spindle checkpoint proteins to metabolic regulation, expanding the connection between cell division and metabolism. Here, we briefly review the unexpected roles of spindle checkpoint regulators in vesicle trafficking and insulin signaling.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Kim DH, Han JS, Ly P, Ye Q, McMahon MA, Myung K, Corbett KD, Cleveland DW. TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nat Commun 2018; 9:4354. [PMID: 30341343 PMCID: PMC6195577 DOI: 10.1038/s41467-018-06774-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Peter Ly
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.,Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.
Collapse
Affiliation(s)
- Christine C Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|