1
|
Wu C. Motif-Directed Oxidative Folding to Design and Discover Multicyclic Peptides for Protein Recognition. Acc Chem Res 2025; 58:1620-1631. [PMID: 40083048 DOI: 10.1021/acs.accounts.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
ConspectusMulticyclic peptides that are constrained through covalent cross-linkers can usually maintain stable three-dimensional (3D) structures without the necessity of incorporating noncovalently interacting cores. This configuration allows for a greater utilization of residues for functional purposes compared to larger proteins, rendering multicyclic peptides attractive molecular modalities for the development of chemical tools and therapeutic agents. Even smaller multicyclic peptides, which may lack stable 3D structures due to limited sequence-driven folding capabilities, can still benefit from the specific conformations stabilized by covalent cross-linkers to facilitate target binding. Disulfide-rich peptides (DRPs) are a class of particularly significant multicyclic peptides that are primarily composed of disulfide bonds in their interior. However, the structural diversity of DRPs is limited to a few naturally occurring and designer scaffolds, which significantly impedes the development of multicyclic peptide ligands and therapeutics. To address this issue, we developed a novel method that utilizes disulfide-directing motifs to design and discover DRPs with new structures and functions in random sequence space. Compared with traditional DRPs, these new DRPs that incorporate disulfide-directing motifs exhibit more precise oxidative folding regarding disulfide pairing and demonstrate greater tolerance to sequence manipulations. Thus, we designated these peptides as disulfide-directed multicyclic peptides (DDMPs).Over the past decade, we have developed a new class of multicyclic peptides by leveraging disulfide-directing motifs, including biscysteine motifs such as CPXXC, CPPC, and CXC (C: cysteine; P: proline; X: any amino acid), as well as triscysteine motifs that rationally combine two biscysteine motifs (e.g., CPPCXC and CPXXCXC) to direct the oxidative folding of peptides. This leads to the introduction of a novel concept known as motif-directed oxidative folding, which is valuable for the construction of peptides with multiple disulfide bonds. A large diversity of DDMPs have been designed by simply altering the disulfide-directing motifs, the arrangement of cysteine residues (i.e., cysteine patterns), and the number of random residues separating them. As the oxidative folding of DDMPs is primarily determined by disulfide-directing motifs, these peptides are intrinsically more tolerant of extensive sequence manipulations compared to traditional DRPs. Consequently, multicyclic peptide libraries with an unprecedented high degree of sequence randomization have been developed by utilizing commonly used biological display systems such as phage display. We have validated the applicability of these libraries by successfully discovering DDMPs with unique protein-like 3D structures and high affinity and specificity to various cell-surface receptors, including tumor-associated antigens, immune costimulatory receptors, and G protein-coupled receptors (GPCRs). Currently, multicyclic peptides used in clinical settings are of natural origin or derived from natural DRPs. Our studies have opened up the possibility of developing multicyclic peptides without relying on natural scaffolds, representing a pivotal breakthrough in the field of peptide ligand and drug discovery. Further investigations will facilitate the application of our DDMPs in broader fields such as bioanalysis, chemical biology, and biomedicine.
Collapse
Affiliation(s)
- Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Sueda S, Tsuruga R, Hirakawa T, Fujii S. Cell surface display of a protein based on a tail-anchored membrane protein. Biochem Biophys Res Commun 2025; 761:151738. [PMID: 40184792 DOI: 10.1016/j.bbrc.2025.151738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Methods for displaying proteins on the cell surface are widely used in protein-based biotechnology and bioengineering, where target proteins are expressed as fusion constructs with membrane proteins through recombinant DNA technology. In this study, we developed a system for displaying a protein on the cell surface using the transmembrane domain (TMD) of a tail-anchored membrane protein (TA protein). TA proteins have an orientation in the cell membrane such that their C-termini are displayed on the cell surface, which contrasts with that of type I transmembrane proteins that are commonly used as anchoring units. Therefore, by utilizing the TMD of a TA protein as an anchoring unit, desired proteins can be attached to the TMD via their N-termini. This approach is advantageous for displaying proteins whose C-terminal regions play important roles in their activity. In this study, we chose the inner nuclear membrane protein emerin as a TA protein and constructed expression systems in mammalian cells for a series of fusion proteins based on deleted forms of emerin. We found that utilizing emerin that lacks 210 residues from the N-terminus as a TMD allowed efficient translocation of the fusion protein to the plasma membrane, successfully displaying its target protein portion on the cell surface. Thus, our system serves as an effective method for protein display, enhancing the applicability of cell surface display technology based on transmembrane proteins.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan.
| | - Rima Tsuruga
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| | - Takumi Hirakawa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| |
Collapse
|
3
|
Nutsch K, Trujillo MN, Song L, Erb MA, Chen JJ, Galligan JJ, Bollong MJ. Augmented Acyl-CoA Biosynthesis Promotes Resistance to TEAD Palmitoylation Site Inhibition. ACS Chem Biol 2025; 20:967-975. [PMID: 40179049 DOI: 10.1021/acschembio.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Activation of the YAP-TEAD transcriptional complex drives the growth of several cancer types and is a key resistance mechanism to targeted therapies. Accordingly, a host of pharmacological inhibitors to TEAD family paralogs have been developed, yet little is known as to the resistance mechanisms that might arise against this emerging therapeutic class. Here, we report that genetic augmentation of de novo coenzyme A biosynthesis desensitizes YAP-dependent cancer cells to treatment with TEAD inhibitors, an effect driven by increased levels of palmitoyl-CoA that outcompete drug for engagement of the lipid-binding pocket. This work uncovers a potential therapeutic resistance mechanism to TEAD palmitoylation site inhibition with implications for future combinatorial treatments in the clinic.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Lirui Song
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Jian Jeffery Chen
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| |
Collapse
|
4
|
Alves PA, Camargo LC, de Souza GM, Mortari MR, Homem-de-Mello M. Computational Modeling of Pharmaceuticals with an Emphasis on Crossing the Blood-Brain Barrier. Pharmaceuticals (Basel) 2025; 18:217. [PMID: 40006031 PMCID: PMC11860133 DOI: 10.3390/ph18020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The discovery and development of new pharmaceutical drugs is a costly, time-consuming, and highly manual process, with significant challenges in ensuring drug bioavailability at target sites. Computational techniques are highly employed in drug design, particularly to predict the pharmacokinetic properties of molecules. One major kinetic challenge in central nervous system drug development is the permeation through the blood-brain barrier (BBB). Several different computational techniques are used to evaluate both BBB permeability and target delivery. Methods such as quantitative structure-activity relationships, machine learning models, molecular dynamics simulations, end-point free energy calculations, or transporter models have pros and cons for drug development, all contributing to a better understanding of a specific characteristic. Additionally, the design (assisted or not by computers) of prodrug and nanoparticle-based drug delivery systems can enhance BBB permeability by leveraging enzymatic activation and transporter-mediated uptake. Neuroactive peptide computational development is also a relevant field in drug design, since biopharmaceuticals are on the edge of drug discovery. By integrating these computational and formulation-based strategies, researchers can enhance the rational design of BBB-permeable drugs while minimizing off-target effects. This review is valuable for understanding BBB selectivity principles and the latest in silico and nanotechnological approaches for improving CNS drug delivery.
Collapse
Affiliation(s)
- Patrícia Alencar Alves
- In Silico Toxicology Laboratory (inSiliTox), Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia 71910-900, Brazil; (P.A.A.); (G.M.d.S.)
| | - Luana Cristina Camargo
- Psychobiology Laboratory, Department of Basic Psychological Processes, Institute of Psychology University of Brasilia, Brasilia 71910-900, Brazil;
| | - Gabriel Mendonça de Souza
- In Silico Toxicology Laboratory (inSiliTox), Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia 71910-900, Brazil; (P.A.A.); (G.M.d.S.)
| | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 71910-900, Brazil;
| | - Mauricio Homem-de-Mello
- In Silico Toxicology Laboratory (inSiliTox), Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia 71910-900, Brazil; (P.A.A.); (G.M.d.S.)
| |
Collapse
|
5
|
Popp NA, Powell RL, Wheelock MK, Holmes KJ, Zapp BD, Sheldon KM, Fletcher SN, Wu X, Fayer S, Rubin AF, Lannert KW, Chang AT, Sheehan JP, Johnsen JM, Fowler DM. Multiplex, multimodal mapping of variant effects in secreted proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.01.587474. [PMID: 39975210 PMCID: PMC11838247 DOI: 10.1101/2024.04.01.587474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite widespread advances in DNA sequencing, the functional consequences of most genetic variants remain poorly understood. Multiplexed Assays of Variant Effect (MAVEs) can measure the function of variants at scale, and are beginning to address this problem. However, MAVEs cannot readily be applied to the ~10% of human genes encoding secreted proteins. We developed a flexible, scalable human cell surface display method, Multiplexed Surface Tethering of Extracellular Proteins (MultiSTEP), to measure secreted protein variant effects. We used MultiSTEP to study the consequences of missense variation in coagulation factor IX (FIX), a serine protease where genetic variation can cause hemophilia B. We combined MultiSTEP with a panel of antibodies to detect FIX secretion and post-translational modification, measuring a total of 44,816 effects for 436 synonymous variants and 8,528 of the 8,759 possible missense variants. 49.6% of possible F9 missense variants impacted secretion, post-translational modification, or both. We also identified functional constraints on secretion within the signal peptide and for nearly all variants that caused gain or loss of cysteine. Secretion scores correlated strongly with FIX levels in hemophilia B and revealed that loss of secretion variants are particularly likely to cause severe disease. Integration of the secretion and post-translational modification scores enabled reclassification of 63.1% of F9 variants of uncertain significance in the My Life, Our Future hemophilia genotyping project. Lastly, we showed that MultiSTEP can be applied to a wide variety of secreted proteins. Thus, MultiSTEP is a multiplexed, multimodal, and generalizable method for systematically assessing variant effects in secreted proteins at scale.
Collapse
Affiliation(s)
- Nicholas A. Popp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Rachel L. Powell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Melinda K. Wheelock
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kristen J. Holmes
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Brendan D. Zapp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn M. Sheldon
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Xiaoping Wu
- Cell Marker Laboratory, Seattle Children’s Hospital, Seattle, WA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Alan F. Rubin
- Bioinformatics Division, WEHI, Parkville, VIC, AU
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, AU
| | - Kerry W. Lannert
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alexis T. Chang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - John P. Sheehan
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jill M. Johnsen
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Bloodworks Northwest, Seattle, WA, USA
- Washington Center for Bleeding Disorders, Seattle, WA
| | - Douglas M. Fowler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
6
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
8
|
Duan Z, Kong C, Fan S, Wu C. Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders. Nat Commun 2024; 15:7799. [PMID: 39242578 PMCID: PMC11379947 DOI: 10.1038/s41467-024-51723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Peptides are valuable for therapeutic development, with multicyclic peptides showing promise in mimicking antigen-binding potency of antibodies. However, our capability to engineer multicyclic peptide scaffolds, particularly for the construction of large combinatorial libraries, is still limited. Here, we study the interplay of disulfide pairing between three biscysteine motifs, and designed a range of triscysteine motifs with unique disulfide-directing capability for regulating the oxidative folding of multicyclic peptides. We demonstrate that incorporating these motifs into random sequences allows the design of disulfide-directed multicyclic peptide (DDMP) libraries with up to four disulfide bonds, which have been applied for the successful discovery of peptide binders with nanomolar affinity to several challenging targets. This study encourages the use of more diverse disulfide-directing motifs for creating multicyclic peptide libraries and opens an avenue for discovering functional peptides in sequence and structural space beyond existing peptide scaffolds, potentially advancing the field of peptide drug discovery.
Collapse
Affiliation(s)
- Zengping Duan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuilian Kong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China.
| |
Collapse
|
9
|
Cao Z, Hou Y, Zhao Z, Zhang H, Tian L, Zhang Y, Dong C, Guo F, Tan L, Han Y, Wang W, Jiao S, Tang Y, An L, Zhou Z. Reactivating Hippo by drug compounds to suppress gastric cancer and enhance chemotherapy sensitivity. J Biol Chem 2024; 300:107311. [PMID: 38657866 PMCID: PMC11126936 DOI: 10.1016/j.jbc.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Yu Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangting Zhao
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luyang Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
11
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard M, Price J, Olson JM, Nairn NW. CYpHER: Catalytic extracellular targeted protein degradation with high potency and durable effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581471. [PMID: 38712232 PMCID: PMC11071310 DOI: 10.1101/2024.02.21.581471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R. Crook
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gregory P. Sevilla
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Emily J. Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | | | | | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - Natalie W. Nairn
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
| |
Collapse
|
12
|
Li J, Liu H, Xiao S, Fan S, Cheng X, Wu C. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery. J Am Chem Soc 2023; 145:28264-28275. [PMID: 38092662 DOI: 10.1021/jacs.3c11856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.
Collapse
Affiliation(s)
- Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xueting Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
13
|
Glinkina KA, Teunisse AF, Gelmi MC, de Vries J, Jager MJ, Jochemsen AG. Combined Mcl-1 and YAP1/TAZ inhibition for treatment of metastatic uveal melanoma. Melanoma Res 2023; 33:345-356. [PMID: 37467061 PMCID: PMC10470438 DOI: 10.1097/cmr.0000000000000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.
Collapse
Affiliation(s)
| | | | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Wang Y, Zhang K, Zhao Y, Li Y, Su W, Li S. Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries. ACS Synth Biol 2023; 12:1874-1888. [PMID: 37315219 DOI: 10.1021/acssynbio.3c00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA-encoded peptide/protein libraries are the starting point for protein evolutionary modification and functional peptide/antibody selection. Different display technologies, protein directed evolution, and deep mutational scanning (DMS) experiments employ DNA-encoded libraries to provide sequence variations for downstream affinity- or function-based selections. Mammalian cells promise the inherent post-translational modification and near-to-natural conformation of exogenously expressed mammalian proteins and thus are the best platform for studying transmembrane proteins or human disease-related proteins. However, due to the current technical bottlenecks of constructing mammalian cell-based large size DNA-encoded libraries, the advantages of mammalian cells as screening platforms have not been fully exploited. In this review, we summarize the current efforts in constructing DNA-encoded libraries in mammalian cells and the existing applications of these libraries in different fields.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
15
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
16
|
Ouellet S, Ferguson L, Lau AZ, Lim TKY. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides. BMC Bioinformatics 2023; 24:200. [PMID: 37193950 PMCID: PMC10189939 DOI: 10.1186/s12859-023-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.
Collapse
Affiliation(s)
| | - Larissa Ferguson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Angus Z Lau
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tony K Y Lim
- , Vancouver, Canada.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Adams R, Joyce C, Kuravskiy M, Harrison K, Ahdash Z, Balmforth M, Chia K, Marceddu C, Coates M, Snowden J, Goursaud E, Ménochet K, van den Elsen J, Payne RJ, Lawson ADG, Scott-Tucker A, Macpherson A. Serum albumin binding knob domains engineered within a V H framework III bispecific antibody format and as chimeric peptides. Front Immunol 2023; 14:1170357. [PMID: 37251411 PMCID: PMC10213618 DOI: 10.3389/fimmu.2023.1170357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Background Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.
Collapse
Affiliation(s)
- Ralph Adams
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | - Callum Joyce
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | | | - Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Zainab Ahdash
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | | | - Kelda Chia
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | | | - Matthew Coates
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | - James Snowden
- Early Solutions, UCB Biopharma UK, Slough, United Kingdom
| | | | | | | | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
20
|
Lu S, Fan S, Xiao S, Li J, Zhang S, Wu Y, Kong C, Zhuang J, Liu H, Zhao Y, Wu C. Disulfide-Directed Multicyclic Peptide Libraries for the Discovery of Peptide Ligands and Drugs. J Am Chem Soc 2023; 145:1964-1972. [PMID: 36633218 DOI: 10.1021/jacs.2c12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multicyclic peptides with stable 3D structures are a kind of novel and promising peptide formats for drug design and discovery as they have the potential to combine the best characteristics of small molecules and proteins. However, the development of multicyclic peptides is largely limited to naturally occurring products. It remains a big challenge to develop multicyclic peptides with new structures and functions without recourse to the existing natural scaffolds. Here, we report a general and robust method relying on the utility of new disulfide-directing motifs for designing and discovering diverse multicyclic peptides with potent protein-binding capability. These peptides, referred to as disulfide-directed multicyclic peptides (DDMPs), are tolerant to extensive sequence manipulations and variations of disulfide-pairing frameworks, enabling the development of de novo DDMP libraries useful for ligand and drug discovery. This study opens a new avenue for creating a new generation of multicyclic peptides in sequence and structure space inaccessible by natural scaffolds, thus would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shilong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
21
|
Meng X, Xu C, Fan S, Dong M, Zhuang J, Duan Z, Zhao Y, Wu C. Selection and evolution of disulfide-rich peptides via cellular protein quality control. Chem Sci 2023; 14:3668-3675. [PMID: 37006698 PMCID: PMC10055976 DOI: 10.1039/d2sc05343h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A selection system leveraging cellular protein quality control (termed PQC-select) has been designed to select DRPs with robust foldability from random sequences, providing valuable scaffolds for developing peptide-based probes or therapeutics.
Collapse
Affiliation(s)
- Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoying Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
22
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
23
|
Miniproteins in medicinal chemistry. Bioorg Med Chem Lett 2022; 71:128806. [PMID: 35660515 DOI: 10.1016/j.bmcl.2022.128806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Miniproteins exhibit great potential as scaffolds for drug candidates because of their well-defined structure and good synthetic availability. Because of recently described methodologies for their de novo design, the field of miniproteins is emerging and can provide molecules that effectively bind to problematic targets, i.e., those that have been previously considered to be undruggable. This review describes methodologies for the development of miniprotein scaffolds and for the construction of biologically active miniproteins.
Collapse
|
24
|
Wang PY, Yang X, Guo L, Wang YW, Zhang WL, Sun YX, Li J, Gan CY, Long SY, Liu JJ, Fan SY, Huang AL, Hu JL. Establishment of a human cell line with a surface display system for screening and optimizing Na+-taurocholate cotransporting polypeptide-binding peptides. Front Microbiol 2022; 13:920280. [PMID: 36060770 PMCID: PMC9428559 DOI: 10.3389/fmicb.2022.920280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most desirable targets for HBV medications is the sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for the hepatitis B virus (HBV). N-myristoylated preS1 2–48 (Myrcludex B or Hepcludex), an NTCP-binding peptide from the large surface protein of HBV, has been developed as the first-in-class entry inhibitor. However, its relatively large molecular weight contributes to increased immunogenicity and antibody production. As a result, it is preferable to look for an NTCP-binding peptide with a smaller size. To do this, we developed a human cell surface display strategy and screened peptides based on preS1-21. PreS1-21 (genotype D) was extended by 7 random amino acids and fused with mCherry and FasL transmembrane domain. The pooled constructs were transfected into HEK293 cells by using the transposon/transposase system to create a library displaying various peptides on the cell surface with red fluorescence. On the other hand, we expressed NTCP protein fused with EGFP on HEK293 and used the membrane lysate containing NTCP-GFP as the bait protein to select peptides with increased NTCP affinity. After 7 cycles of selection, the deep sequencing results revealed that some polypeptides were more than 1,000 times enriched. Further screening of the mostly enriched 10 peptides yields the peptide preS1-21-pep3. Replacing the preS1-21 sequence of preS1-21-pep3 with those from different genotypes demonstrated that the consensus sequence of genotype A–F had the best performance. The peptide (Myr-preS1-21-pep3) was synthesized and tested on the HepG2-NTCP cell model. The results showed that Myr-preS1-21-pep3 is approximately 10 times more potent than the initial peptide Myr-preS1-21 in preventing HBV infection. In conclusion, we developed a new strategy for screening peptides binding to membrane proteins and identified a new NTCP-binding peptide with a much smaller size than Hepcludex.
Collapse
Affiliation(s)
- Pei-yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Laboratory for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wen-lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia-jun Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shu-ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Ai-long Huang,
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Jie-Li Hu,
| |
Collapse
|
25
|
Wu Y, Fan S, Dong M, Li J, Kong C, Zhuang J, Meng X, Lu S, Zhao Y, Wu C. Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery. Chem Sci 2022; 13:7780-7789. [PMID: 35865895 PMCID: PMC9258321 DOI: 10.1039/d2sc00924b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Peptides constrained through multiple disulfides (or disulfide-rich peptides, DRPs) have been an emerging frontier for ligand and drug discovery. Such peptides have the potential to combine the binding capability of biologics with the stability and bioavailability of smaller molecules. However, DRPs with stable three-dimensional (3D) structures are usually of natural origin or engineered from natural ones. Here, we report the discovery and identification of CPPC (cysteine-proline-proline-cysteine) motif-directed DRPs with stable 3D structures (i.e., CPPC-DRPs). A range of new CPPC-DRPs were designed or selected from either random or structure-convergent peptide libraries. Thus, for the first time we revealed that the CPPC-DRPs can maintain diverse 3D structures by taking advantage of constraints from unique dimeric CPPC mini-loops, including irregular structures and regular α-helix and β-sheet folds. New CPPC-DRPs that can specifically bind the receptors (CD28) on the cell surface were also successfully discovered and identified using our DRP-discovery platform. Overall, this study provides the basis for accessing an unconventional peptide structure space previously inaccessible by natural DRPs and computational designs, inspiring the development of new peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| |
Collapse
|
26
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Crook ZR, Girard EJ, Sevilla GP, Brusniak MY, Rupert PB, Friend DJ, Gewe MM, Clarke M, Lin I, Ruff R, Pakiam F, Phi TD, Bandaranayake A, Correnti CE, Mhyre AJ, Nairn NW, Strong RK, Olson JM. Ex silico engineering of cystine-dense peptides yielding a potent bispecific T cell engager. Sci Transl Med 2022; 14:eabn0402. [PMID: 35584229 PMCID: PMC10118748 DOI: 10.1126/scitranslmed.abn0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.
Collapse
Affiliation(s)
- Zachary R Crook
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gregory P Sevilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Rupert
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Della J Friend
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ida Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Ashok Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Roland K Strong
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
29
|
Che K, Pobbati AV, Seavey CN, Fedorov Y, Komar AA, Burtscher A, Ma S, Rubin BP. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. PLoS One 2022; 17:e0266143. [PMID: 35417479 PMCID: PMC9007350 DOI: 10.1371/journal.pone.0266143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds substantial therapeutic potential. However, the three protein interaction interfaces of this complex cannot be easily disrupted using small molecules. Here, we report that the pharmacologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD complex and to demonstrate that ATA binds to interface 3. We have previously shown that cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ. Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter, RNA-Seq, and qPCR assays and found that ATA inhibits TC/TEAD transcriptional activity. Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity. Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to disrupt the undruggable TAZ-TEAD interface.
Collapse
Affiliation(s)
- Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caleb N. Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
30
|
Dong H, Li J, Liu H, Lu S, Wu J, Zhang Y, Yin Y, Zhao Y, Wu C. Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries. J Am Chem Soc 2022; 144:5116-5125. [PMID: 35289603 DOI: 10.1021/jacs.2c00216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The engineering of naturally occurring disulfide-rich peptides (DRPs) has been significantly hampered by the difficulty of manipulating disulfide pairing. New DRPs that take advantage of fold-directing motifs and noncanonical thiol-bearing amino acids are easy-to-fold with expected disulfide connectivities, representing a new class of scaffolds for the development of peptide ligands and therapeutics. However, the limited diversity of the scaffolds and particularly the use of noncanonical amino acids [e.g., penicillamine (Pen)] that are difficult to be translated by ribosomes greatly hamper the further development and application of these DRPs. Here, we designed and synthesized noncanonical bisthiol motifs bearing sterically obstructed thiol groups analogous to the Pen thiol to direct the folding of peptides into specific bicyclic and tricyclic structures. These bisthiol motifs can be ribosomally incorporated into peptides through a commercially available PURE system integrated with genetic code reprograming, which enables, for the first time, the in vitro expression of bicyclic peptides with two noncanonical and orthogonal disulfide bonds. We further constructed a bicyclic peptide library encoded by mRNA, with which new bicyclic peptide ligands with nanomolar affinity to proteins were successfully selected. Therefore, this study provides a new, general, and robust method for discovering de novo DRPs with new structures and functions not derived from natural peptides, which would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Huilei Dong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shuaimin Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
31
|
Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library. Pharmaceutics 2022; 14:pharmaceutics14020391. [PMID: 35214125 PMCID: PMC8878929 DOI: 10.3390/pharmaceutics14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.
Collapse
|
32
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
33
|
Mechanistic principles of an ultra-long bovine CDR reveal strategies for antibody design. Nat Commun 2021; 12:6737. [PMID: 34795299 PMCID: PMC8602281 DOI: 10.1038/s41467-021-27103-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
Antibodies bind antigens via flexible loops called complementarity-determining regions (CDRs). These are usually 6-20 residues long. However, some bovine antibodies have ultra-long CDRs comprising more than 50 residues organized in a stalk and a disulfide-rich knob. The design features of this structural unit and its influence on antibody stability remained enigmatic. Here, we show that the stalk length is critical for the folding and stability of antibodies with an ultra-long CDR and that the disulfide bonds in the knob do not contribute to stability; they are important for organizing the antigen-binding knob structure. The bovine ultra-long CDR can be integrated into human antibody scaffolds. Furthermore, mini-domains from de novo design can be reformatted as ultra-long CDRs to create unique antibody-based proteins neutralizing SARS-CoV-2 and the Alpha variant of concern with high efficiency. Our findings reveal basic design principles of antibody structure and open new avenues for protein engineering.
Collapse
|
34
|
See K, Kadonosono T, Miyamoto K, Tsubaki T, Ota Y, Katsumi M, Ryo S, Aida K, Minegishi M, Isozaki T, Kuchimaru T, Kizaka-Kondoh S. Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display. Sci Rep 2021; 11:22098. [PMID: 34764369 PMCID: PMC8585965 DOI: 10.1038/s41598-021-01603-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Marina Katsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumoe Ryo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Aida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tatsuhiro Isozaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
35
|
Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021; 10:cells10102715. [PMID: 34685695 PMCID: PMC8534579 DOI: 10.3390/cells10102715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network that regulates essential processes such as organ size, cell proliferation, migration, stemness and apoptosis. Alterations in this pathway are commonly found in solid tumors and can lead to hyperproliferation, resistance to chemotherapy, compensation for mKRAS and tumor immune evasion. As the terminal effectors of the Hippo pathway, the transcriptional coactivators YAP1/TAZ and the transcription factors TEAD1–4 present exciting opportunities to pharmacologically modulate the Hippo biology in cancer settings, inflammation and regenerative medicine. This review will provide an overview of the progress and current strategies to directly and indirectly target the YAP1/TAZ protein–protein interaction (PPI) with TEAD1–4 across multiple modalities, with focus on recent small molecules able to selectively bind to TEAD, block its autopalmitoylation and inhibit YAP1/TAZ–TEAD-dependent transcription in cancer.
Collapse
|
36
|
Mélin L, Abdullayev S, Fnaiche A, Vu V, González Suárez N, Zeng H, Szewczyk MM, Li F, Senisterra G, Allali-Hassani A, Chau I, Dong A, Woo S, Annabi B, Halabelian L, LaPlante SR, Vedadi M, Barsyte-Lovejoy D, Santhakumar V, Gagnon A. Development of LM98, a Small-Molecule TEAD Inhibitor Derived from Flufenamic Acid. ChemMedChem 2021; 16:2982-3002. [PMID: 34164919 DOI: 10.1002/cmdc.202100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Shuay Abdullayev
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Vijayaratnam Santhakumar
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
37
|
Zha J, Li J, Fan S, Duan Z, Zhao Y, Wu C. An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation. Chem Sci 2021; 12:11464-11472. [PMID: 34567500 PMCID: PMC8409457 DOI: 10.1039/d1sc02952e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.
Collapse
Affiliation(s)
- Jun Zha
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China .,College of Continuing Education, Guizhou Minzu University Guiyang 550025 China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| |
Collapse
|
38
|
Kim J, Lim H, Moon S, Cho SY, Kim M, Park JH, Park HW, No KT. Hot Spot Analysis of YAP-TEAD Protein-Protein Interaction Using the Fragment Molecular Orbital Method and Its Application for Inhibitor Discovery. Cancers (Basel) 2021; 13:4246. [PMID: 34439400 PMCID: PMC8391968 DOI: 10.3390/cancers13164246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
The Hippo pathway is an important signaling pathway modulating growth control and cancer cell proliferation. Dysregulation of the Hippo pathway is a common feature of several types of cancer cells. The modulation of the interaction between yes-associated protein (YAP) and transcriptional enhancer associated domain (TEAD) in the Hippo pathway is considered an attractive target for cancer therapeutic development, although the inhibition of PPI is a challenging task. In order to investigate the hot spots of the YAP and TEAD1 interacting complex, an ab initio Fragment Molecular Orbital (FMO) method was introduced. With the hot spots, pharmacophores for the inhibitor design were constructed, then virtual screening was performed to an in-house library. Next, we performed molecular docking simulations and FMO calculations for screening results to study the binding modes and affinities between PPI inhibitors and TEAD1. As a result of the virtual screening, three compounds were selected as virtual hit compounds. In order to confirm their biological activities, cellular (luciferase activity, proximity ligation assay and wound healing assay in A375 cells, qRT-PCR in HEK 293T cells) and biophysical assays (surface plasmon resonance assays) were performed. Based on the findings of the study, we propose a novel PPI inhibitor BY03 and demonstrate a profitable strategy to analyze YAP-TEAD PPI and discover novel PPI inhibitors.
Collapse
Affiliation(s)
- Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
| | - Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Korea;
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Minhye Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (J.H.P.); (H.W.P.)
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (J.H.P.); (H.W.P.)
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea; (S.M.); (S.Y.C.); (M.K.)
- Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
39
|
Meinen BA, Bahl CD. Breakthroughs in computational design methods open up new frontiers for de novo protein engineering. Protein Eng Des Sel 2021; 34:6243354. [DOI: 10.1093/protein/gzab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Abstract
Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.
Collapse
Affiliation(s)
- Ben A Meinen
- Institute for Protein Innovation, Harvard Institutes of Medicine 4 Blackfan Circle, Room 941 Boston, MA 02115-5701 Boston, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher D Bahl
- Institute for Protein Innovation, Harvard Institutes of Medicine 4 Blackfan Circle, Room 941 Boston, MA 02115-5701 Boston, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Wang CK, Craik DJ. Linking molecular evolution to molecular grafting. J Biol Chem 2021; 296:100425. [PMID: 33600801 PMCID: PMC8005815 DOI: 10.1016/j.jbc.2021.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Molecular grafting is a strategy for the engineering of molecular scaffolds into new functional agents, such as next-generation therapeutics. Despite its wide use, studies so far have focused almost exclusively on demonstrating its utility rather than understanding the factors that lead to either poor or successful grafting outcomes. Here, we examine protein evolution and identify parallels between the natural process of protein functional diversification and the artificial process of molecular grafting. We discuss features of natural proteins that are correlated to innovability-the capacity to acquire new functions-and describe their implications to molecular grafting scaffolds. Disulfide-rich peptides are used as exemplars because they are particularly promising scaffolds onto which new functions can be grafted. This article provides a perspective on why some scaffolds are more suitable for grafting than others, identifying opportunities on how molecular grafting might be improved.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Targeting the YAP-TEAD interaction interface for therapeutic intervention in glioblastoma. J Neurooncol 2021; 152:217-231. [PMID: 33511508 DOI: 10.1007/s11060-021-03699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Recent studies have suggested that dysregulated Hippo pathway signaling may contribute to glioblastoma proliferation and invasive characteristics. The downstream effector of the pathway, the Yes-associated protein (YAP) oncoprotein, has emerged as a promising target in glioblastoma multiforme (GBM). METHODS Utilizing a high-throughput yeast two-hybrid based screen, a small molecule was identified which inhibits the association of the co-transcriptional activator YAP1 and the TEA domain family member 1 (TEAD1) transcription factor protein-protein interaction interface. This candidate inhibitor, NSC682769, a novel benzazepine compound, was evaluated for its ability to affect Hippo/YAP axis signaling and potential anti-glioblastoma properties. RESULTS NSC682769 potently blocked association of YAP and TEAD in vitro and in GBM cells treated with submicromolar concentrations. Moreover, inhibitor-coupled bead pull down and surface plasmon resonance analyses demonstrate that NSC682769 binds to YAP. NSC682769 treatment of GBM lines and patient derived cells resulted in downregulation of YAP expression levels resulting in curtailed YAP-TEAD transcriptional activity. In GBM cell models, NSC682769 inhibited proliferation, colony formation, migration, invasiveness and enhanced apoptosis. In tumor xenograft and genetically engineered mouse models, NSC682769 exhibited marked anti-tumor responses and resulted in increased overall survival and displayed significant blood-brain barrier penetration. CONCLUSIONS These results demonstrate that blockade of YAP-TEAD association is a viable therapeutic strategy for glioblastoma. On the basis of these favorable preclinical studies further clinical studies are warranted.
Collapse
|
42
|
In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli. Sci Rep 2021; 11:2151. [PMID: 33495505 PMCID: PMC7835343 DOI: 10.1038/s41598-021-81140-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.
Collapse
|
43
|
Pobbati AV, Rubin BP. Protein-Protein Interaction Disruptors of the YAP/TAZ-TEAD Transcriptional Complex. Molecules 2020; 25:molecules25246001. [PMID: 33352993 PMCID: PMC7766469 DOI: 10.3390/molecules25246001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of protein-protein interaction disruptors (PPIDs) that disrupt the YAP/TAZ-TEAD interaction has gained considerable momentum. Several studies have shown that YAP/TAZ are no longer oncogenic when their interaction with the TEAD family of transcription factors is disrupted. The transcriptional co-regulator YAP (its homolog TAZ) interact with the surface pockets of TEADs. Peptidomimetic modalities like cystine-dense peptides and YAP cyclic and linear peptides exploit surface pockets (interface 2 and interface 3) on TEADs and function as PPIDs. The TEAD surface might pose a challenge for generating an effective small molecule PPID. Interestingly, TEADs also have a central pocket that is distinct from the surface pockets, and which small molecules leverage exclusively to disrupt the YAP/TAZ-TEAD interaction (allosteric PPIDs). Although small molecules that occupy the central pocket belong to diverse classes, they display certain common features. They are flexible, which allows them to adopt a palmitate-like conformation, and they have a predominant hydrophobic portion that contacts several hydrophobic residues and a small hydrophilic portion that faces the central pocket opening. Despite such progress, more selective PPIDs that also display favorable pharmacokinetic properties and show tolerable toxicity profiles are required to evaluate the feasibility of using these PPIDs for cancer therapy.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| |
Collapse
|
44
|
Sevy AM, Gilchuk IM, Brown BP, Bozhanova NG, Nargi R, Jensen M, Meiler J, Crowe JE. Computationally Designed Cyclic Peptides Derived from an Antibody Loop Increase Breadth of Binding for Influenza Variants. Structure 2020; 28:1114-1123.e4. [PMID: 32610044 PMCID: PMC7544621 DOI: 10.1016/j.str.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
The influenza hemagglutinin (HA) glycoprotein is the target of many broadly neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by mutation of hypervariable regions of HA that overlap with the binding epitope. We hypothesized that by designing peptides to mimic antibody loops, we could enhance breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on HA that mediate escape. We designed cyclic peptides that mimic the heavy-chain complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing antibody C05 and show that these peptides bound to HA molecules with <100 nM affinity, comparable with that of the full-length parental C05 IgG. In addition, these peptides exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes between the hypervariable antigenic regions and the antibody CDRH1 loop. This approach can be used to generate antibody-derived peptides against a wide variety of targets.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Dogs
- Drug Design
- Epitopes/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/chemistry
- Madin Darby Canine Kidney Cells
- Molecular Dynamics Simulation
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/immunology
- Peptides, Cyclic/metabolism
- Proof of Concept Study
- Protein Conformation
- Protein Engineering/methods
- Workload
Collapse
Affiliation(s)
- Alexander M Sevy
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Iuliia M Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benjamin P Brown
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Nina G Bozhanova
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattie Jensen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jens Meiler
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - James E Crowe
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Lu S, Wu Y, Li J, Meng X, Hu C, Zhao Y, Wu C. Directed Disulfide Pairing and Folding of Peptides for the De Novo Development of Multicyclic Peptide Libraries. J Am Chem Soc 2020; 142:16285-16291. [PMID: 32914969 DOI: 10.1021/jacs.0c06044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disulfide-rich peptides (DRPs) have been an emerging frontier for drug discovery. There have been two DRPs approved as drugs (i.e., Ziconotide and Linaclotide), and many others are undergoing preclinical studies or in clinical trials. All of these DRPs are of nature origin or derived from natural peptides. It is still a challenge to design new DRPs without recourse to natural scaffolds due to the difficulty in handling the disulfide pairing. Here we developed a simple and robust strategy for directing the disulfide pairing and folding of peptides with up to six cysteine residues. Our strategy exploits the dimeric pairing of CPPC (cysteine-proline-proline-cysteine) motifs for directing disulfide formation, and DRPs with different multicyclic topologies were designed and synthesized by regulating the patterns of CPPC motifs and cysteine residues in peptides. As neither sequence manipulations nor unnatural amino acids are involved, the designed DRPs can be used as templates for the de novo development of biosynthetic multicyclic peptide libraries, enabling selection of DRPs with new functions directly from fully randomized sequences. We believe that this work represents as an important step toward the discovery and design of new multicyclic peptide ligands and therapeutics with structures not derived from natural scaffolds.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Chenliang Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
46
|
Gao S, Wang Y, Ji L. Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers. J Recept Signal Transduct Res 2020; 41:408-415. [PMID: 32912021 DOI: 10.1080/10799893.2020.1818093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human Hippo signaling pathway has been recognized as a new and promising therapeutic target of gastrointestinal cancers, which is regulated by the intermolecular recognition between the TEA domain (TEAD) transcription factor and its prime coactivators. The coactivator proteins adopt two hotspot sites, namely α-helix and Ω-loop, to interact with TEAD. Here, we demonstrate that both the α-helix and Ω-loop peptides cannot maintain in structured state when splitting from the full-length coactivator proteins; they exhibit a large intrinsic disorder in free state that prevents the coactivator peptide recognition by TEAD. Rational design is used to optimize the interfacial residues of coactivator α-helix peptides, which can effectively improve the favorable direct readout effect upon the peptide binding to TEAD. Chemical modification is employed to constrain the free α-helix peptide into native ordered conformation. The method introduces an all-hydrocarbon bridge across i and i + 4 residues to stabilize the helical structure of a free coactivator peptide, which can considerably reduce the unfavorable indirect readout effect upon the peptide binding to TEAD. The all-hydrocarbon bridge is designed to point out of the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling only improves peptide affinity, but does not alter peptide specificity, to TEAD. Affinity assay confirms that the binding potency of coactivator α-helix peptides is improved substantially by >5-fold upon the rational design and chemical modification. Structural analysis reveals that the optimized/stapled peptides can form diverse nonbonded interactions such as hydrogen bonds and hydrophobic contacts with TEAD, thus conferring stability and specificity to the TEAD-peptide complex systems.
Collapse
Affiliation(s)
- Shuxia Gao
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Yingchao Wang
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Lijuan Ji
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| |
Collapse
|
47
|
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. Int J Mol Sci 2020; 21:ijms21155262. [PMID: 32722222 PMCID: PMC7432558 DOI: 10.3390/ijms21155262] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. We also demonstrate that structural biology provides insights into the function of a target and identifies a druggable site for rational drug design.
Collapse
|
48
|
Crook ZR, Girard E, Sevilla GP, Merrill M, Friend D, Rupert PB, Pakiam F, Nguyen E, Yin C, Ruff RO, Hopping G, Strand AD, Finton KAK, Coxon M, Mhyre AJ, Strong RK, Olson JM. A TfR-Binding Cystine-Dense Peptide Promotes Blood-Brain Barrier Penetration of Bioactive Molecules. J Mol Biol 2020; 432:3989-4009. [PMID: 32304700 PMCID: PMC9569163 DOI: 10.1016/j.jmb.2020.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.
Collapse
Affiliation(s)
- Zachary R Crook
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Emily Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Gregory P Sevilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Morgan Merrill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Della Friend
- Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Peter B Rupert
- Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Elizabeth Nguyen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Chunfeng Yin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Raymond O Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Gene Hopping
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Andrew D Strand
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Kathryn A K Finton
- Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Margo Coxon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Roland K Strong
- Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Witherell KS, Price J, Bandaranayake AD, Olson J, Call DR. Circumventing colistin resistance by combining colistin and antimicrobial peptides to kill colistin-resistant and multidrug-resistant Gram-negative bacteria. J Glob Antimicrob Resist 2020; 22:706-712. [PMID: 32512236 PMCID: PMC7644326 DOI: 10.1016/j.jgar.2020.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: Colistin is a ‘last-line’ antibiotic used to treat multidrug-resistant Gram-negative bacteria, but colistin resistance has emerged. Colistin normally binds to the lipid A moiety on the bacterial outer membrane, where it then destroys the bacterial membrane. Mobilize colistin resistance (MCR, encoded by mcr-1 and others) is a phosphoethanolamine transferase that modifies lipid A, preventing colistin binding. We hypothesized that combining pore-forming AMPs and colistin will circumvent this mechanism and reduce the minimum inhibitory concentration (MIC) of colistin for both colistin- and multidrug-resistant Gram-negative bacteria. Methods: In vitro cultures were incubated for 18 h after combining bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) with serially diluted colistin and a fixed concentration of peptide MSI-78 or OTD-244. Results: When combined with either peptide, the colistin MIC decreased more than 4-fold for 88% of all tested isolates (n = 17; range, 4–64-fold reduction) and for 75% of colistin-resistant isolates (n = 8; range, 4–64-fold reduction). The concentrations used had no effect on red blood cells based on a conventional haemolysis assay. Conclusions: These findings are consistent with two membrane-damaging compounds having an additive effect on bacterial killing. Combining antimicrobial peptides with colistin is a promising strategy for bypassing MCR-mediated colistin resistance, but also for improving the susceptibility of other Gram-negative bacteria while potentially reducing the therapeutic concentration of colistin needed to treat infections.
Collapse
Affiliation(s)
| | - Jason Price
- The Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | | | - James Olson
- The Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Douglas R Call
- Allen School, Washington State University, Pullman, WA, USA.
| |
Collapse
|
50
|
Wu D, Luo L, Yang Z, Chen Y, Quan Y, Min Z. Targeting Human Hippo TEAD Binding Interface with YAP/TAZ-Derived, Flexibility-Reduced Peptides in Gastric Cancer. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|