1
|
Braden-Kuhle PN, Lacy VA, Brice KN, Bertrand ME, Uras HB, Shoffner C, Fischer BE, Rana A, Willis JL, Boehm GW, Chumley MJ. A Mediterranean-style diet protects against cognitive and behavioral deficits, adiposity, and Alzheimer's disease-related markers, compared to a macronutrient-matched typical American diet in C57BL/6J mice. J Alzheimers Dis 2025; 104:678-697. [PMID: 40007076 DOI: 10.1177/13872877251319467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BackgroundResearch suggests that modifying risk factors may prevent or delay up to 40% of dementia cases, including Alzheimer's disease (AD). Thus, understanding the potential of healthful dietary patterns, like the Mediterranean diet (MD), in AD prevention is crucial. While supplementation of individual Mediterranean foods has demonstrated efficacy in reducing AD biomarkers and cognitive impairment in rodents, the effects of a comprehensive MD warrant further investigation. Additionally, while rodent studies often use a "Western diet" as a model for the typical American diet (TAD), these diets generally exceed the macronutrient densities of typical American consumption, particularly in fats and carbohydrates.ObjectiveTo better reflect human diets, we developed two diets for mice that more closely mirrored the macronutrient composition of the traditional MD or the TAD, each with matched macronutrient profiles (50% kcal from carbohydrates, 35% kcal from fat, 15% kcal from protein), and distinct food sources from Mediterranean regions or the U.S., respectively.MethodsMale C57BL/6J mice were randomly assigned to one diet (MD or TAD) at weaning (21 days of age), which they consumed for six months.ResultsCompared to the TAD, MD animals had lower body weight, abdominal and hepatic fat, serum TNF-α, and central Aβ1-42, while also exhibiting enhanced exploratory behavior, reduced anxiety-like behavior, and preserved spatial memory. The MD also protected against LPS-induced central inflammation and BDNF loss.ConclusionsThese findings suggest that a comprehensive MD provides protection against metabolic and AD-related markers in wildtype mice, despite matched caloric availability to the TAD.
Collapse
Affiliation(s)
- Paige N Braden-Kuhle
- Department of Psychology, Vanguard University of Southern California, Costa Mesa, CA, USA
| | - Vivienne A Lacy
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Kelly N Brice
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Morgan E Bertrand
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Hatice Buse Uras
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA
| | - Catherine Shoffner
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA
| | | | - Ashish Rana
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA
| | - Jada L Willis
- Department of Nutritional Sciences, Texas Christian University, Fort Worth, TX, USA
| | - Gary W Boehm
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA
| | - Michael J Chumley
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
2
|
Chen Y, Yao X, Wang C, Zhuang H, Xie B, Sun C, Wang Z, Zhou X, Luo Y, Zhang Y, Zhou S, Liu L. Minocycline treatment attenuates neurobehavioural abnormalities and neurostructural aberrations in the medial prefrontal cortex in mice fed a high-fat diet during adolescence. Brain Behav Immun 2025; 128:83-98. [PMID: 40180016 DOI: 10.1016/j.bbi.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
A preference for and overconsumption of a high-fat diet (HFD) are common among adolescents and are recognized as risk factors for multiple mental disorders. The protracted maturation of the medial prefrontal cortex (mPFC), a key brain structure that plays a critical role in mental functions that are essential for both developing and mature individuals (including emotional processing, decision making, risk assessment, and creative thinking), during adolescence renders it more vulnerable to the environmental insults experienced during this critical developmental window. However, the effects of HFD consumption during adolescence on mPFC-related behaviours and the underlying mechanisms need to be further investigated. In this study, we observed that mice fed a HFD throughout adolescence developed depressive- and anxiety-like behaviours and distinctively increased risk-avoidance behaviour, accompanied by morphological aberrations of both pyramidal neuron and microglia in the mPFC. The systemic administration of minocycline, a well-known broad-spectrum antibiotic, effectively attenuated the adverse effects of HFD consumption during adolescence on neurobehaviours and the morphology of pyramidal neurons in the mPFC. This study provides new insights into the psychological effects of long-term HFD consumption during adolescence and indicates the existence of a window during which microglial stabilization may be a promising strategy to protect against the HFD consumption-induced increase in the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Zixuan Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinguo Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Luo
- Medical College, Southeast University, Nanjing 210009, China
| | - Yilin Zhang
- Medical College, Southeast University, Nanjing 210009, China
| | - Shihui Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Qian Y, Zhao Y, Zhang F. Protein palmitoylation: biological functions, disease, and therapeutic targets. MedComm (Beijing) 2025; 6:e70096. [PMID: 39991624 PMCID: PMC11843170 DOI: 10.1002/mco2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Protein palmitoylation, a reversible post-translational lipid modification, is catalyzed by the ZDHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases, regulating protein localization, accumulation, secretion, and function. Neurological disorders encompass a spectrum of diseases that affect both the central and peripheral nervous system. Recently, accumulating studies have revealed that pathological protein associated with neurological diseases, such as β-amyloid, α-synuclein, and Huntingtin, could undergo palmitoylation, highlighting the crucial roles of protein palmitoylation in the onset and development of neurological diseases. However, few preclinical studies and clinical trials focus on the interventional strategies that target protein palmitoylation. Here, we comprehensively reviewed the emerging evidence on the role of protein palmitoylation in various neurological diseases and summarized the classification, processes, and functions of protein palmitoylation, highlighting its impact on protein stability, membrane localization, protein-protein interaction, as well as signal transduction. Furthermore, we also discussed the potential interventional strategies targeting ZDHHC proteins and elucidated their underlying pathogenic mechanisms in neurological diseases. Overall, an in-depth understanding of the functions and significances of protein palmitoylation provide new avenues for investigating the mechanisms and therapeutic approaches for neurological disorders.
Collapse
Affiliation(s)
- Yan‐Ran Qian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
4
|
Uno H, Itokazu T, Yamashita T. Inhibition of repulsive guidance molecule A ameliorates diabetes-induced cognitive decline and hippocampal neurogenesis impairment in mice. Commun Biol 2025; 8:263. [PMID: 39972167 PMCID: PMC11840113 DOI: 10.1038/s42003-025-07696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Although diabetes mellitus is strongly associated with dementia, the mechanism underlying diabetes-induced cognitive dysfunction has not been clarified. Here, we demonstrate the vital role of repulsive guidance molecule A (RGMa) in the regulation of adult hippocampal neurogenesis and cognitive impairment under diabetic conditions. In type 2 diabetic db/db mice and streptozotocin-mediated type 1 diabetic mice, RGMa is upregulated in the granular cell layer of the dentate gyrus. Additionally, both neural stem cells (NSCs) and immature neurons express its receptor, neogenin. In vitro experiments revealed that high glucose-conditioned hippocampal neurons inhibited the differentiation of NSCs, and the application of an anti-RGMa antibody restored it. The treatment with an anti-RGMa antibody ameliorated diabetes-induced cognitive decline and impairment of hippocampal neurogenesis. These findings suggest that the RGMa negatively regulates hippocampal neurogenesis and is involved in diabetes mellitus-induced cognitive decline.
Collapse
Affiliation(s)
- Hiroki Uno
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Stogios N, Wu S, Hahn M, Emami Z, Navagnanavel J, Korann V, PrasannaKumar A, Remington G, Graff-Guerrero A, Agarwal SM. Exploring the effects of an insulin challenge on neuroimaging outcomes: A scoping review. Front Neuroendocrinol 2025; 77:101187. [PMID: 39971163 DOI: 10.1016/j.yfrne.2025.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Emerging evidence demonstrates that insulin has a modulating effect on metabolic and cognitive function in the brain, highlighting the potential role of aberrant brain insulin signaling in the pathogenesis of various neuropsychiatric illnesses. Neuroimaging paradigms using intranasal insulin (INI) as a pharmacological challenge have allowed us to study the effects of insulin in the human brain. In this scoping review, we conducted a systematic database search to identify relevant research studies that employed an INI-based neuroimaging assay of brain insulin signaling. Thirty-six studies met inclusion criteria for this review. INI was found to significantly modulate activity and cerebral blood flow in brain regions related to homeostatic/hedonic control of food intake, as well as cognition. This review highlights the putative role of insulin signaling in the brain and the potential therapeutic value of INI in patients with mental health, addiction, and co-morbid metabolic disorders.
Collapse
Affiliation(s)
- Nicolette Stogios
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Sally Wu
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda
| | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Cananda
| | - Janani Navagnanavel
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Cananda
| | - Vittal Korann
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | | | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Ariel Graff-Guerrero
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda.
| |
Collapse
|
6
|
Cao X, Peng H, Hu Z, Xu C, Ning M, Zhou M, Mi Y, Yu P, Fazekas-Pongor V, Major D, Ungvari Z, Fekete M, Lehoczki A, Guo Y. Exploring the global impact of obesity and diet on dementia burden: the role of national policies and sex differences. GeroScience 2025; 47:1345-1360. [PMID: 39612068 PMCID: PMC11872863 DOI: 10.1007/s11357-024-01457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Obesity is a significant modifiable risk factor for dementia. This study aims to quantify the global impact of obesity on dementia burden and examine how national strategies for managing overweight/obesity and dietary factors influence dementia prevalence and mortality, with a focus on sex-specific differences. We used data from the Global Burden of Disease (GBD) and World Health Organization (WHO) to evaluate the association between obesity age-standardized prevalence rate (ASPR) and dementia age-standardized mortality rate (ASMR) and ASPR across 161 countries. A two-step multivariate analysis adjusted for socioeconomic and lifestyle factors was performed. Temporal trends in dementia were analyzed based on the presence of national obesity management strategies and varying dietary scores. A 1% increase in national obesity prevalence was associated with a 0.36% increase in dementia mortality (OR: 1.0036; 95% CI: 1.0028-1.0045) in males and 0.12% in females (OR: 1.0012; 95% CI: 1.0007-1.0018). A 1% increase in national obesity ASPR was associated with an increase in ASPR of dementia by 0.26% for males (OR: 1.0026, 95% CI: 1.0024-1.0028) and 0.05% for females (OR: 1.0005, 95% CI: 1.0004-1.0006). Males exhibited a higher susceptibility to obesity-related dementia. Countries with national obesity management strategies showed a significantly greater reduction in dementia mortality, particularly among females (P = 0.025). Higher dietary scores were associated with a more significant decrease in dementia prevalence across both sexes. Rising obesity prevalence is linked to increased dementia burden globally, with males being more vulnerable to this relationship. National management of overweight/obesity and healthier dietary habits may help mitigate the dementia burden, emphasizing the need for integrated public health interventions.
Collapse
Affiliation(s)
- Xueshan Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyuan Peng
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyi Hu
- Mingde Innovation Class, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Xu
- Mingde Innovation Class, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Monan Ning
- Mingde Innovation Class, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mengge Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuanqi Mi
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Peixin Yu
- School of Arts and Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Vince Fazekas-Pongor
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Yang Guo
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Yang W, Si SC, Li J, Ma YX, Zhao H, Liu J. NLRP3 inhibitor alleviates glycemic variability-induced cognitive impairment in aged rats with type 2 diabetes mellitus. Mol Cell Endocrinol 2025; 595:112406. [PMID: 39489213 DOI: 10.1016/j.mce.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Glycemic variability (GV) markedly exacerbates cognitive impairment in elderly patients with type 2 diabetes mellitus (T2DM), in part through chronic inflammation. This study investigated the therapeutic efficacy of the NLRP3 inflammasome inhibitor MCC950 in mitigating GV-induced cognitive impairment in an aged rat model of T2DM. Aged Sprague-Dawley rats with induced T2DM were subjected to GV conditions, and the effects of MCC950 were evaluated through measurement of body weight, blood glucose, lipid profiles, insulin level, inflammatory markers, and cognitive function. Transcriptomic analysis was performed on the hippocampus and prefrontal cortex. Treatment with MCC950 significantly alleviated weight loss and hyperglycemia in the GV group compared with the control group. MCC950 also reduced the levels of cholesterol, triglycerides, and pro-inflammatory markers (interleukin-1β (IL-1β) and interleukin-18 (IL-18)). Most notably, MCC950 improved spatial learning and memory retention in the GV group. Immunohistochemical analysis indicated a reduction in inflammasome activation and an increase in the expression level of the neuronal marker NeuN in the hippocampus. Transcriptomic analysis revealed that MCC950 altered neuroactive ligand-receptor interaction pathways in the hippocampus and influenced receptor binding and cell adhesion processes in the prefrontal cortex. These findings validated the efficacy of NLRP3 inhibitor in mitigating GV-induced cognitive impairment in elderly rats with T2DM and provided the basis for subsequent clinical studies exploring the broader potential of NLRP3-targeted interventions in addressing diabetes-associated cognitive impairment.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Rats, Sprague-Dawley
- Male
- Indenes/pharmacology
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Blood Glucose/metabolism
- Hippocampus/metabolism
- Hippocampus/drug effects
- Hippocampus/pathology
- Inflammasomes/metabolism
- Furans/pharmacology
- Furans/therapeutic use
- Sulfones/pharmacology
- Sulfones/therapeutic use
- Aging
- Rats
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
Collapse
Affiliation(s)
- Wei Yang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Si-Cong Si
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jing Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yi-Xin Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Huan Zhao
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jia Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
8
|
Meng Q, Su S, Lei L, Zhang Y, Duan J, Ren X, Song Y, Hu X, Chen S, Zang W, Zhang Z, Cao J. CHOP-Mediated Disruption of Hippocampal Synaptic Plasticity and Neuronal Activity Contributes to Chronic Pain-Related Cognitive Deficits. CNS Neurosci Ther 2025; 31:e70160. [PMID: 39817595 PMCID: PMC11736631 DOI: 10.1111/cns.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVES Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI). METHODS The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT). Activation of the UPR was quantified by assessing levels of CHOP and key ER stress sensors. The terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay and the levels of cleaved caspase-3 were utilized to assess apoptosis level. Synaptic plasticity was assessed via a modified Golgi-Cox staining method, and long-term potentiation (LTP) measurements were taken. Neuronal activity was determined by immunofluorescence and fiber photometry. Knockdown of CHOP and alleviation of ER stress were selectively induced by LV-Ddit3-shRNAs and the chemical chaperone 4-phenylbutyric acid (4-PBA), respectively. RESULTS Mice subjected to CCI displayed enduring pain and cognitive impairments evident on Days 21-28 post-surgery. Following CCI, changes in the dorsal CA1 (dCA1) manifested as ER dilation, upregulation of CHOP and upstream signaling molecules, reduced dendritic spine density, and PSD95 levels, and impaired LTP. Additionally, the co-localization of CaMKIIα/c-Fos and CaMKIIαdCA1-mediated calcium signaling was significantly reduced, while the activation of CaMKIIα was found to mitigate cognitive impairments in CCI mice. Selective knockdown of CHOP enhanced synaptic plasticity and CaMKIIα neuron activity, while 4-PBA treatment alleviated ER stress, synergistically improving cognitive deficits associated with chronic pain. CONCLUSION CCI-induced CHOP upregulation impairs dCA1 synaptic plasticity and neuronal activity, leading to chronic pain-related cognitive deficits.
Collapse
Affiliation(s)
- Qingsheng Meng
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Songxue Su
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Lei Lei
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Yubing Zhang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Jiabin Duan
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiuhua Ren
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yihang Song
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoyu Hu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shiyue Chen
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Weidong Zang
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Zhen Zhang
- Department of AnesthesiologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouHenanChina
| | - Jing Cao
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| |
Collapse
|
9
|
Shen Q, Liu N, Jiang Y, Liu L, Hou X. Decreased neuronal excitability in hypertriglyceridemia hamsters with acute seizures. Front Neurol 2024; 15:1500737. [PMID: 39811454 PMCID: PMC11730077 DOI: 10.3389/fneur.2024.1500737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms. The ultimate goal is to identify novel therapeutic targets for the treatment of neonatal seizures. Methods Acute seizure models were established both in vivo and ex vivo using wild-type and Apolipoprotein C2 knockout (Apoc2 -/-) hamsters. The frequency of tonic-clonic seizures was recorded. Excitatory postsynaptic potentials (EPSPs) and evoked action potentials (eAPs) of pyramidal neurons in the frontal cortex were measured. Fatty acid metabolomic analysis was conducted on microdialysate from the frontal cortex tissue post-seizure, and mRNA expression changes were also assessed. Results Apoc2 -/- hamsters exhibited a reduced frequency of tonic-clonic seizures and diminished EPSP and eAP in comparison to wild-type hamsters. Following seizure induction, free palmitic acid levels in the frontal cortex dialysate significantly decreased, while the expression of palmitoyl acyltransferase 14 (ZDHHC14) in the frontal cortex tissue was higher in Apoc2 -/- hamsters than in wild-type hamsters. Additionally, the amplitude of transient outward potassium currents (IA) in cortical neurons of Apoc2 -/- hamsters was observed to be elevated compared to wild-type hamsters. Conclusion Hypertriglyceridemic Apoc2 -/- hamsters exhibited reduced seizure frequency and decreased cortical neuron excitability. The upregulation of ZDHHC14, leading to increased IA, may be a crucial mechanism underlying the observed seizure protection.
Collapse
Affiliation(s)
- Qiuyue Shen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Nana Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Lili Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Natale F, Spinelli M, Rinaudo M, Gulisano W, Nifo Sarrapochiello I, Aceto G, Puzzo D, Fusco S, Grassi C. Inhibition of zDHHC7-driven protein S-palmitoylation prevents cognitive deficits in an experimental model of Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2402604121. [PMID: 39589870 PMCID: PMC11626176 DOI: 10.1073/pnas.2402604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024] Open
Abstract
Protein post-translational modifications (PTM) play a crucial role in the modulation of synaptic function and their alterations are involved in the onset and progression of neurodegenerative disorders. S-palmitoylation is a PTM catalyzed by zinc finger DHHC domain containing (zDHHC) S-acyltransferases that affects both localization and activity of proteins regulating synaptic plasticity and amyloid-β (Aβ) metabolism. Here, we found significant increases of both zDHHC7 expression and protein S-palmitoylation in hippocampi of both 3×Tg-AD mice and post-mortem Alzheimer's disease (AD) patients. Chronic intranasal administration of the S-palmitoylation inhibitor 2-bromopalmitate counteracted synaptic plasticity and cognitive deficits, reduced the Aβ deposition in the hippocampus and extended the lifespan of both male and female 3×Tg-AD mice. Moreover, hippocampal silencing of zDHHC7 prevented the onset of cognitive deficits in the same experimental model. We also identified a FoxO1-mediated epigenetic mechanism inducing zDHHC7 expression, which was triggered by brain insulin resistance in 3×Tg-AD mice. Finally, in hippocampi of AD patients S-palmitoylation levels of Beta-Secretase 1 were associated with Aβ 1 to 42 load and they inversely correlated with Mini Mental State Examination scores. Our data reveal a key role of both zDHHC7 overexpression and protein hyperpalmitoylation in the onset and progression of AD-related alterations of synaptic plasticity and memory.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
| | | | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
- Oasi Research Institute-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Troina94018, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| |
Collapse
|
11
|
Sanz-Martos AB, Roca M, Plaza A, Merino B, Ruiz-Gayo M, Olmo ND. Long-term saturated fat-enriched diets impair hippocampal learning and memory processes in a sex-dependent manner. Neuropharmacology 2024; 259:110108. [PMID: 39128582 DOI: 10.1016/j.neuropharm.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice. Our findings reveal that SOLF has a detrimental impact on spatial memory and synaptic plasticity mechanisms, such as long-term potentiation (LTP), and downregulates Gria1 expression specifically in males. In females, SOLF downregulates the gene expression of Gria1/2/3 and Grin1/2A/2B glutamate receptor subunits as well as some proinflammatory interleukins. These findings highlight the importance of considering sex-specific factors when assessing the long-term effects of high-fat diets on cognition and brain plasticity.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain.
| | - María Roca
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| |
Collapse
|
12
|
Li RQ, Zhu WW, Li C, Zhan KB, Zhang P, Xiao F, Jiang JM, Zou W. Hippocampal warburg effect mediates hydrogen sulfide-ameliorated diabetes-associated cognitive dysfunction: Involving promotion of hippocampal synaptic plasticity. Neurosci Res 2024; 208:15-28. [PMID: 39025266 DOI: 10.1016/j.neures.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Run-Qi Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Wen Zhu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Li
- The Affiliated Nanhua Hospital, Emergency department, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ke-Bin Zhan
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
13
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Spinelli M, Spallotta F, Cencioni C, Natale F, Re A, Dellaria A, Farsetti A, Fusco S, Grassi C. High fat diet affects the hippocampal expression of miRNAs targeting brain plasticity-related genes. Sci Rep 2024; 14:19651. [PMID: 39179650 PMCID: PMC11343842 DOI: 10.1038/s41598-024-69707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD). In comparison to the control group fed with standard diet, we observed 69 miRNAs exhibiting increased expression and 63 showing decreased expression in the HFD mice's hippocampus. Through bioinformatics analysis, we identified numerous potential targets of the dysregulated miRNAs, pinpointing a subset of genes regulating neuroplasticity that were targeted by multiple differentially modulated miRNAs. We also validated the expression of these synaptic and non-synaptic proteins, confirming the downregulation of Synaptotagmin 1 (SYT1), calcium/calmodulin dependent protein kinase I delta (CaMK1D), 2B subunit of N-methyl-D-aspartate glutamate receptor (GRIN2B), the DNA-binding protein Special AT-Rich Sequence-Binding Protein 2 (SATB2), and RNA-binding proteins Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) and Neuro-oncological ventral antigen 1 (NOVA1) in the hippocampus of HFD mice. In summary, our study offers a snapshot of the HFD-related miRNA landscape potentially involved in the alterations of brain functions associated with metabolic disorders. By shedding light on the specific miRNA-mRNA interactions, our research contributes to a deeper understanding of the molecular mechanisms underlying the effects of HFD on the synaptic function.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
- Dipartimento di Scienze Laboratoristiche ed Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alice Dellaria
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
15
|
Krzystyniak A, Gluchowska A, Pytyś A, Dudkowska M, Wójtowicz T, Targonska A, Janiszewska D, Sikora E, Mosieniak G. 2-Bromopalmitate treatment attenuates senescence phenotype in human adult cells - possible role of palmitoylation. Aging (Albany NY) 2024; 16:11796-11808. [PMID: 39181690 PMCID: PMC11386925 DOI: 10.18632/aging.206080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/10/2024] [Indexed: 08/27/2024]
Abstract
Cells may undergo senescence in response to DNA damage, which is associated with cell cycle arrest, altered gene expression and altered cell morphology. Protein palmitoylation is one of the mechanisms by which the DNA damage response is regulated. Therefore, we hypothesized that protein palmitoylation played a role in regulation of the senescent phenotype. Here, we showed that treatment of senescent human vascular smooth muscle cells (VSMCs) with 2-bromopalmitate (2-BP), an inhibitor of protein acyltransferases, is associated with changes in different aspects of the senescent phenotype, including the resumption of cell proliferation, a decrease in DNA damage markers and the downregulation of senescence-associated β-galactosidase activity. The effects were dose dependent and associated with significantly decreased total protein palmitoylation level. We also showed that the senescence-modifying properties of 2-BP were at least partially mediated by the downregulation of elements of DNA damage-related molecular pathways, such as phosphorylated p53. Our data suggest that cell senescence may be regulated by palmitoylation, which provides a new perspective on the role of this posttranslational modification in age-related diseases.
Collapse
Affiliation(s)
- Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Gluchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Pytyś
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Calcium Binding Protein, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Targonska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Calcium Binding Protein, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
16
|
Rojas R, Griñán-Ferré C, Castellanos A, Griego E, Martínez M, Navarro-López JDD, Jiménez-Díaz L, Rodríguez-Álvarez J, Del Cerro DS, Castillo PE, Pallàs M, Fadó R, Casals N. BETA-HYDROXYBUTYRATE COUNTERACTS THE DELETERIOUS EFFECTS OF A SATURATED HIGH-FAT DIET ON SYNAPTIC AMPA RECEPTORS AND COGNITIVE PERFORMANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576931. [PMID: 39091837 PMCID: PMC11291009 DOI: 10.1101/2024.01.23.576931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The ketogenic diet, characterized by high fat and low carbohydrates, has gained popularity not only as a strategy for managing body weight but also for its efficacy in delaying cognitive decline associated with neurodegenerative diseases and the aging process. Since this dietary approach stimulates the liver's production of ketone bodies, primarily β-hydroxybutyrate (BHB), which serves as an alternative energy source for neurons, we investigated whether BHB could mitigate impaired AMPA receptor trafficking, synaptic dysfunction, and cognitive decline induced by metabolic challenges such as saturated fatty acids. Here, we observe that, in cultured primary cortical neurons, exposure to palmitic acid (200μM) decreased surface levels of glutamate GluA1-containing AMPA receptors, whereas unsaturated fatty acids, such as oleic acid and ω-3 docosahexaenoic acid (200μM), and BHB (5mM) increased them. Furthermore, BHB countered the adverse effects of palmitic acid on synaptic GluA1 levels in hippocampal neurons, as well as excitability and plasticity in hippocampal slices. Additionally, daily intragastric administration of BHB (100 mg/kg/day) for two months reversed cognitive impairment induced by a saturated high-fat diet (49% of calories from fat) in a mouse experimental model of obesity. In summary, our findings underscore the significant impact of fatty acids and ketone bodies on AMPA receptors abundance, synaptic function and neuroplasticity, shedding light on the potential use of BHB to delay cognitive impairments associated with metabolic diseases.
Collapse
|
17
|
Gunawan F, Matson BC, Coppoli A, Jiang L, Ding Y, Perry R, Sanchez-Rangel E, Belfort DeAguiar R, Behar KL, Rothman DL, Mason GF, Hwang JJ. Deficits in brain glucose transport among younger adults with obesity. Obesity (Silver Spring) 2024; 32:1329-1338. [PMID: 38764181 PMCID: PMC11966602 DOI: 10.1002/oby.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.
Collapse
Affiliation(s)
- Felona Gunawan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Brooke C. Matson
- Division of Endocrinology and Metabolism, Department of Medicine, UNC School of Medicine, Chapel Hill, NC
| | - Anastasia Coppoli
- Yale Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Lihong Jiang
- Yale Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Yuyan Ding
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Rachel Perry
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Elizabeth Sanchez-Rangel
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Renata Belfort DeAguiar
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Kevin L. Behar
- Yale Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Douglas L. Rothman
- Yale Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Graeme F. Mason
- Yale Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Janice J. Hwang
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Division of Endocrinology and Metabolism, Department of Medicine, UNC School of Medicine, Chapel Hill, NC
| |
Collapse
|
18
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Wu HM, Yang YV, Huang NJ, Fan LP, Dai YY, Hu KT, Tang TY, Liu L, Xu Y, Liu DT, Cai ZX, Niu XY, Ren XY, Yao ZH, Qin HY, Chen JZ, Huang X, Zhang C, You X, Wang C, He Y, Hong W, Sun YX, Zhan YH, Lin SY. Probucol mitigates high-fat diet-induced cognitive and social impairments by regulating brain redox and insulin resistance. Front Neurosci 2024; 18:1368552. [PMID: 38716255 PMCID: PMC11074470 DOI: 10.3389/fnins.2024.1368552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/04/2024] [Indexed: 01/03/2025] Open
Abstract
Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.
Collapse
Affiliation(s)
- Han-Ming Wu
- Department of Neurology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Vivian Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Na-Jun Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying-Ying Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ke-Ting Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Tian-Yu Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lin Liu
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yue Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ze-Xin Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yu Niu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zheng-Hao Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hao-Yu Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian-Zhen Chen
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiang You
- School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen, China
| | - Wei Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu-Xia Sun
- Institute of Metabolism and Health, Henan University, Zhengzhou, China
| | - Yi-Hong Zhan
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Digestive Diseases, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Rojas-Criollo M, Novau-Ferré N, Gutierrez-Tordera L, Ettcheto M, Folch J, Papandreou C, Panisello L, Cano A, Mostafa H, Mateu-Fabregat J, Carrasco M, Camins A, Bulló M. Effects of a High-Fat Diet on Insulin-Related miRNAs in Plasma and Brain Tissue in APP Swe/PS1dE9 and Wild-Type C57BL/6J Mice. Nutrients 2024; 16:955. [PMID: 38612989 PMCID: PMC11013640 DOI: 10.3390/nu16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Insulin resistance (IR)-related miRNAs have been associated with the development and progression of Alzheimer's disease (AD). The dietary modulation of these miRNAs could become a potential strategy to manage AD. The aim of this study was to evaluate the effect of a high-fat diet (HFD), which aggravates AD-related pathogenic processes, on serum, cortex and hippocampus IR-related miRNA expression. C57BL/6J WT and APPSwe/PS1dE9 mice were fed either an HFD or a conventional diet till 6 months of age. The mice fed with the HFD showed a significant increase in body weight and worsening glucose and insulin metabolism. miR-19a-3p was found to be up-regulated in the cortex, hippocampus and serum of APP/PS1 mice and in the serum and hippocampus of WT mice fed with the HFD. miR-34a-5p and miR-146a-5p were up-regulated in the serum of both groups of mice after consuming the HFD. Serum miR-29c-3p was overexpressed after consuming the HFD, along with hippocampal miR-338-3p and miR-125b-5p, only in WT mice. The HFD modulated the expression of peripheral and brain miRNAs related to glucose and insulin metabolism, suggesting the potential role of these miRNAs not only as therapeutic targets of AD but also as peripheral biomarkers for monitoring AD.
Collapse
Affiliation(s)
- Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08028 Barcelona, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
21
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
22
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
23
|
Talwadekar M, Khatri S, Balaji C, Chakraborty A, Basak NP, Kamat SS, Kolthur-Seetharam U. Metabolic transitions regulate global protein fatty acylation. J Biol Chem 2024; 300:105563. [PMID: 38101568 PMCID: PMC10808961 DOI: 10.1016/j.jbc.2023.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.
Collapse
Affiliation(s)
- Manasi Talwadekar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Nandini-Pal Basak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
24
|
Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N, Wang J. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System. Int J Mol Sci 2023; 25:111. [PMID: 38203282 PMCID: PMC10779435 DOI: 10.3390/ijms25010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Ling-Ling Wu
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Xiao-Nan Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Yu-Lian Yuan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Wan-Wei Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Jing-Xuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Xu-Yu Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Natalie Ward
- Medical Laboratory, Exceptional Community Hospital, 19060 N John Wayne Pkwy, Maricopa, AZ 85139, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| |
Collapse
|
25
|
Viguier C, Bullich S, Botella M, Fasseu L, Alfonso A, Rekik K, Gauzin S, Guiard BP, Davezac N. Impact of physical activity on brain oxidative metabolism and intrinsic capacities in young swiss mice fed a high fat diet. Neuropharmacology 2023; 241:109730. [PMID: 37758019 DOI: 10.1016/j.neuropharm.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.
Collapse
Affiliation(s)
- Clémence Viguier
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Bullich
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Marlene Botella
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Laure Fasseu
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Amélie Alfonso
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Khaoula Rekik
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Gauzin
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Bruno P Guiard
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| | - Noélie Davezac
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| |
Collapse
|
26
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
27
|
Zangeneh FZ, Hantoushzadeh S. The physiological basis with uterine myometrium contractions from electro-mechanical/hormonal myofibril function to the term and preterm labor. Heliyon 2023; 9:e22259. [PMID: 38034762 PMCID: PMC10687101 DOI: 10.1016/j.heliyon.2023.e22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Most labor-related problems can be attributed to the uterine myometrium muscle, as this irritable tissue must suppress its irritability potential during pregnancy. Unfortunately, fewer studies have investigated the causes of this lack of suppression in preterm labor. Methods We conducted a scoping narrative review using three online databases (PubMed, Scopus, and Science Direct). Results The review focused on ion channel functions in the myometrium, including sodium channels [Na K-ATPase, Na-activated K channels (Slo2), voltage-gated (SCN) Na+, Na+ leaky channels, nonselective (NALCN) channels], potassium channels [KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), intermediate (KCNN4) conductance], and calcium channels [L-Type and T-type Ca2+ channels, calcium-activated chloride channels (CaCC)], as well as hyperpolarization-activated cation channels. These channels' functions are associated with hormonal effects such as oxytocin, estrogen/progesterone, and local prostaglandins. Conclusion Electromechanical/hormonal activity and environmental autocrine factors can serve as the primary practical basis for premature uterine contractions in term/preterm labor. Our findings highlight the significance of.1.the amplitude rate of hyperpolarization and the frequency of contractions,2.changes in the estrogen/progesterone ratio,3.Prostaglandins E/F involvement in initiating potential spikes and the increase of intracytoplasmic Ca2+.This narrative study highlights the range of hyperpolarization and the frequency of myometrium contractions as crucial factors. The synchronized complex progress of estrogen to progesterone ratio and prostaglandins plays a significant role in initiating potential spikes and increasing intracytoplasmic Ca2+, which further influences the contraction process during labor. Insights into myometrium physiology gained from this study may pave the way for much-needed new treatments to reduce problems associated with normal and preterm labor.
Collapse
Affiliation(s)
- Farideh Zafari Zangeneh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Hantoushzadeh
- Department of Fetal-Maternal Medicine, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
28
|
Wang Y, Rong X, Guan H, Ouyang F, Zhou X, Li F, Tan X, Li D. The Potential Effects of Isoleucine Restricted Diet on Cognitive Impairment in High-Fat-Induced Obese Mice via Gut Microbiota-Brain Axis. Mol Nutr Food Res 2023; 67:e2200767. [PMID: 37658490 DOI: 10.1002/mnfr.202200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/15/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Obesity induced by high-fat diet (HFD) can cause lipid metabolism disorders and cognitive impairment. Isoleucine restriction can effectively alleviate lipid metabolism disorders caused by HFD but the underlying mechanisms on cognition are unknown. METHODS AND RESULTS Thirty 3-month-old C57BL/6J mice are divided equally into the following groups: the control group, HFD group, and HFD Low Ile group (67% reduction in isoleucine in high fat feeds). Feeding for 11 weeks with behavioral testing, which shows that isoleucine restriction attenuates HFD-induced cognitive dysfunction. As observed by staining, isoleucine restriction inhibits HFD-induced neuronal damage and microglia activation. Furthermore, isoleucine restriction significantly increases the relative abundance of gut microbiota, decreases the proportion of Proteobacteria, and reduces the levels of lipopolysaccharide (LPS) in serum and brain. Isoleucine restriction reduces protein expression of TLR4/MyD88/NF-κB signaling pathway and inhibits upregulation of proinflammatory cytokine genes and protein expression in mice brain. In addition, isoleucine restriction significantly improves insulin resistance in the brain as well as synaptic plasticity impairment. CONCLUSION Isoleucine restriction may be a potential intervention to reduce HFD-induced cognitive impairment by altering gut microbiota, reducing neuroinflammation, insulin resistance, and improving synaptic plasticity in mice brain.
Collapse
Affiliation(s)
- Yuli Wang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xue Rong
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Fangxin Ouyang
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xing Zhou
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, 271018, China
| |
Collapse
|
29
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
30
|
Xu M, Tan J, Zhu L, Ge C, Zhang Y, Gao F, Dai X, Kuang Q, Chai J, Zou B, Wang B. Palmitoyltransferase ZDHHC3 Aggravates Nonalcoholic Steatohepatitis by Targeting S-Palmitoylated IRHOM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302130. [PMID: 37544908 PMCID: PMC10558657 DOI: 10.1002/advs.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Indexed: 08/08/2023]
Abstract
Underestimation of the complexity of pathogenesis in nonalcoholic steatohepatitis (NASH) significantly encumbers development of new drugs and targeted therapy strategies. Inactive rhomboid protein 2 (IRHOM2) has a multifunctional role in regulating inflammation, cell survival, and immunoreaction. Although cytokines and chemokines promote IRHOM2 trafficking or cooperate with partner factors by phosphorylation or ubiquitin ligases-mediated ubiquitination to perform physiological process, it remains unknown whether other regulators induce IRHOM2 activation via different mechanisms in NASH progression. Here the authors find that IRHOM2 is post-translationally S-palmitoylated at C476 in iRhom homology domain (IRHD), which facilitates its cytomembrane translocation and stabilization. Fatty-acids challenge can directly promote IRHOM2 trafficking by increasing its palmitoylation. Additionally, the authors identify Zinc finger DHHC-type palmitoyltransferase 3 (ZDHHC3) as a key acetyltransferase required for the IRHOM2 palmitoylation. Fatty-acids administration enhances IRHOM2 palmitoylation by increasing the direct association between ZDHHC3 and IRHOM2, which is catalyzed by the DHHC (C157) domain of ZDHHC3. Meanwhile, a metabolic stresses-triggered increase of ZDHHC3 maintains palmitoylated IRHOM2 accumulation by blocking its ubiquitination, consequently suppressing its ubiquitin-proteasome-related degradation mediated by tripartite motif containing 31 (TRIM31). High-levels of ZDHHC3 protein abundance positively correlate with the severity of NASH phenotype in patient samples. Hepatocyte-specific dysfunction of ZDHHC3 significantly inhibits palmitoylated IRHOM2 deposition, therefore suppressing the fatty-acids-mediated hepatosteatosis and inflammation in vitro, as well as NASH pathological phenotype induced by two different high-energy diets (HFHC & WTDF) in the in vivo rodent and rabbit model. Inversely, specific restoration of ZDHHC3 in hepatocytes markedly provides acceleration over the course of NASH development via increasing palmitoylation of IRHOM2 along with suppression of ubiquitin degradation. The current work uncovers that ZDHHC3-induced palmitoylation is a novel regulatory mechanism and signal that regulates IRHOM2 trafficking, which confers evidence associating the regulation of palmitoylation with NASH progression.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological and Chemical EngineeringChongqing University of EducationChongqing400067P. R. China
- College of Modern Health IndustryChongqing University of EducationChongqing400067P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological and Chemical EngineeringChongqing University of EducationChongqing400067P. R. China
- College of Modern Health IndustryChongqing University of EducationChongqing400067P. R. China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological and Chemical EngineeringChongqing University of EducationChongqing400067P. R. China
- College of Modern Health IndustryChongqing University of EducationChongqing400067P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| | - Yi Zhang
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University&Shandong Academy of Medical ScienceJinan250117P. R. China
| | - Fufeng Gao
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University&Shandong Academy of Medical ScienceJinan250117P. R. China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological and Chemical EngineeringChongqing University of EducationChongqing400067P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological and Chemical EngineeringChongqing University of EducationChongqing400067P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| | - Jie Chai
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University&Shandong Academy of Medical ScienceJinan250117P. R. China
| | - Benkui Zou
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University&Shandong Academy of Medical ScienceJinan250117P. R. China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University)Ministry of EducationCollege of BioengineeringChongqing UniversityChongqing400030P. R. China
| |
Collapse
|
31
|
Ribeiro R, Silva EG, Moreira FC, Gomes GF, Cussat GR, Silva BSR, da Silva MCM, de Barros Fernandes H, de Sena Oliveira C, de Oliveira Guarnieri L, Lopes V, Ferreira CN, de Faria AMC, Maioli TU, Ribeiro FM, de Miranda AS, Moraes GSP, de Oliveira ACP, Vieira LB. Chronic hyperpalatable diet induces impairment of hippocampal-dependent memories and alters glutamatergic and fractalkine axis signaling. Sci Rep 2023; 13:16358. [PMID: 37773430 PMCID: PMC10541447 DOI: 10.1038/s41598-023-42955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023] Open
Abstract
Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.
Collapse
Affiliation(s)
- Roberta Ribeiro
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Emanuele Guimarães Silva
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta Moreira
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanni Freitas Gomes
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriela Reis Cussat
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Barbara Stehling Ramos Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Carolina Machado da Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Carolina de Sena Oliveira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Victoria Lopes
- Colégio Técnico, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Tatiani Uceli Maioli
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Luciene Bruno Vieira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
32
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
33
|
Song J, Li W, Yuan C, Gao T, Lu X, Wang L, Niu Q. Changes in miR-134-3p expression and zDHHC3-AMPARs axis in association with aluminum neurotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92880-92890. [PMID: 37495815 DOI: 10.1007/s11356-023-28901-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Aluminum (Al) is a neurotoxic substance associated with cognitive dysfunction and neurodegenerative diseases, such as Alzheimer's disease, but the mechanisms for aluminum neurotoxicity remain to be identified. In this work, we try to investigate a novel potential biomarker of cognitive dysfunction following aluminum exposure and the mechanism involved. Recently, miR-134-3p was reported as a novel regulator of cognitive function. To address this, we investigate the expression level of miR-134-3p in plasma from 280 aluminum factory workers and analyzed the correlation between miRNA-134-3p, blood Al concentration, and Montreal Cognitive Assessment Scale (MoCA scale) score. The results implied that occupational aluminum exposure elevated miR-134-3p expression in the plasma of workers accompanied by cognitive impairment. Our experiment studies using both animal models and PC12 cells validated the upregulation of miR-134-3p caused by aluminum. In addition, we identified that palmitoylation enzyme zDHHC3 was the target of miR-134-3p, and the decreasing AMPAR receptor (AMPAR) trafficking was related to the learning and memory impairment induced by aluminum. More importantly, using transfection and interference approaches in PC12 cells, inhibition of miR-134-3p resulted in a recovery of zDHHC3-AMPARs axis to a certain extent in response to aluminum. In summary, miR-134-3p was found to be involved in aluminum neurotoxicity by targeting zDHHC3-AMPARs axis and could serve as a potential biomarker or helpful target.
Collapse
Affiliation(s)
- Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China.
- National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China.
| | - Wenjing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chunman Yuan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ting Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
- National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
- National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
35
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
36
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
37
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
38
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
39
|
Li J, Bi H. Molecular mechanisms of atrazine toxicity on H19-7 hippocampal neurons revealed by integrated miRNA and mRNA "omics". ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114681. [PMID: 36841081 DOI: 10.1016/j.ecoenv.2023.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATR) is a widely applied herbicide in Asia and South America with slow natural degradation and documented deleterious effects on human and animal health, including hippocampal toxicity. However, relatively little is known about the molecular mechanisms responsible for ATR-induced hippocampal damage. Screening for differentially expressed mRNAs and microRNAs (miRNAs), and construction of potential miRNA-mRNA regulatory networks can reveal such mechanisms, so we analyzed the mRNA and miRNA expression profiles of rat hippocampus-derived H19-7 cells in response to ATR (500 μM) and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analyses. Integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) results identified 114 differentially expressed miRNAs (DEMIs, 40 upregulated and 74 downregulated), and 510 differentially expressed mRNAs (DEMs, 177 upregulated and 333 downregulated) targeted by these DEMIs. The top 10 hub mRNAs (Fos, Prkcb, Ncf1, Vcam1, Atf3, Pak3, Pak1, Cacna1s, Junb, and Ccl2) and 19 related miRNAs (rno-miR-194-5p, rno-miR-24-3p, rno-miR-3074, rno-miR-1949, rno-miR-218a-1-3p, rno-miR-1843a-5p, rno-miR-1843b-5p, rno-miR-296-3p, rno-miR-320-3p, rno-miR-219a-1-3p, rno-miR-122-5p, rno-miR-1839-5p, rno-miR-1843a-3p, rno-miR-215, rno-miR-3583-3p, rno-miR-194-3p, rno-miR-128-1-5p, rno-miR-1956-5p, and rno-miR-466b-2-3p) were validated by quantitative real-time PCR. GO analysis indicated that these DEMs were enriched in genes associated with synaptic plasticity and antioxidant capacity, while KEGG analysis suggested that enriched DEMs were involved in calcium signaling, axon guidance, MAPK signaling, and glial carcinogenesis. The miRNA-mRNA regulatory network identified here may provide potential biomarkers and novel strategies for the treatment of hippocampal neurotoxicity induced by ATR.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China.
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China.
| |
Collapse
|
40
|
Preeti K, Fernandes V, Sood A, Khan I, Khatri DK, Singh SB. Necrostatin-1S mitigates type-2 diabetes-associated cognitive decrement and lipotoxicity-induced neuro-microglia changes through p-RIPK-RIPK3-p-MLKL axis. Metab Brain Dis 2023; 38:1581-1612. [PMID: 36897515 DOI: 10.1007/s11011-023-01185-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Type-2 diabetes mellitus (T2DM) is associated with neuroinflammation and cognitive decrement. Necroptosis programmed necrosis is emerging as the major contributing factor to central changes. It is best characterized by the upregulation of p-RIPK(Receptor Interacting Kinase), p-RIPK3, and the phosphorylated-MLKL (mixed-lineage kinase domain-like protein). The present study aims to evaluate the neuroprotective effect of Necrostatin (Nec-1S), a p-RIPK inhibitor, on cognitive changes in the experimental T2DM model in C57BL/6 mice and lipotoxicity-induced neuro-microglia changes in neuro2A and BV2 cells. Further, the study also explores whether Nec-1S would restore mitochondrial and autophago-lysosomal function.T2DM was developed in mice by feeding them a high-fat diet (HFD) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) on the 12th week. Nec-1S was administered for 3 weeks at (10 mg/kg, i.p) once every 3 days. Lipotoxicity was induced in neuro2A, and BV2 cells using 200 µM palmitate/bovine serum albumin conjugate. Nec-1S (50 µM), and GSK-872(10 µM) were further used to explore their relative effect. The neurobehavioral performance was assessed using mazes and task-assisted performance tests. To decipher the hypothesis plasma parameters, western blot, immunofluorescence, microscopy, and quantitative reverse transcription-PCR studies were carried out. The Nec-1S treatment restored cognitive performance and reduced the p-RIPK-p-RIPK3-p-MLKL mediated neuro-microglia changes in the brain and in cells as well, under lipotoxic stress. Nec-1S reduced tau, and amyloid oligomer load. Moreover, Nec-1S restored mitochondrial function and autophago-lysosome clearance. The findings highlight the central impact of metabolic syndrome and how Nes-1S, by acting as a multifaceted agent, improved central functioning.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India.
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
41
|
Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. J Adv Res 2023; 45:31-42. [PMID: 35618634 PMCID: PMC10006543 DOI: 10.1016/j.jare.2022.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Diminished brain insulin sensitivity is associated with reduced cognitive function. Docosahexaenoic acid (DHA) is known to maintain normal brain function. OBJECTIVES This study aimed to determine whether DHA impacts hippocampal insulin sensitivity and cognitive function in aged rats fed a high-fat diet (HFD). METHODS Eight-month-old female Sprague-Dawley rats were randomly divided into three groups (n = 50 each). Rats in the aged group, HFD group, and DHA treatment group received standard diet (10 kcal% fat), HFD (45 kcal% fat), and DHA-enriched HFD (45 kcal% fat, 1% DHA, W/W) for 10 months, respectively. Four-month-old female rats (n = 40) that received a standard diet served as young controls. Neuroinflammation, oxidative stress, amyloid formation, and tau phosphorylation in the hippocampus, as well as systemic glucose homeostasis and cognitive function, were tested. RESULTS DHA treatment relieved a block in the insulin signaling pathway and consequently protected aged rats against HFD-induced hippocampal insulin resistance. The beneficial effects were explained by a DHA-induced decrease in systemic glucose homeostasis dysregulation, hippocampal neuroinflammation and oxidative stress. In addition, DHA treatment broke the reciprocal cycle of hippocampal insulin resistance, Aβ burden, and tau hyperphosphorylation. Importantly, treatment of model rats with DHA significantly increased their cognitive capacity, as evidenced by their increased hippocampal-dependent learning and memory, restored neuron morphology, enhanced cholinergic activity, and activated cyclic AMP-response element-binding protein. CONCLUSION DHA improves cognitive function by enhancing hippocampal insulin sensitivity.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Ben Ni
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, P.R. China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Xia Xiang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
| |
Collapse
|
42
|
The role of post-translational modifications in synaptic AMPA receptor activity. Biochem Soc Trans 2023; 51:315-330. [PMID: 36629507 DOI: 10.1042/bst20220827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
AMPA-type receptors for the neurotransmitter glutamate are very dynamic entities, and changes in their synaptic abundance underlie different forms of synaptic plasticity, including long-term synaptic potentiation (LTP), long-term depression (LTD) and homeostatic scaling. The different AMPA receptor subunits (GluA1-GluA4) share a common modular structure and membrane topology, and their intracellular C-terminus tail is responsible for the interaction with intracellular proteins important in receptor trafficking. The latter sequence differs between subunits and contains most sites for post-translational modifications of the receptors, including phosphorylation, O-GlcNAcylation, ubiquitination, acetylation, palmitoylation and nitrosylation, which affect differentially the various subunits. Considering that each single subunit may undergo modifications in multiple sites, and that AMPA receptors may be formed by the assembly of different subunits, this creates multiple layers of regulation of the receptors with impact in synaptic function and plasticity. This review discusses the diversity of mechanisms involved in the post-translational modification of AMPA receptor subunits, and their impact on the subcellular distribution and synaptic activity of the receptors.
Collapse
|
43
|
Inhibition of hippocampal palmitoyl acyltransferase activity impairs spatial learning and memory consolidation. Neurobiol Learn Mem 2023; 200:107733. [PMID: 36804592 DOI: 10.1016/j.nlm.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.
Collapse
|
44
|
Lin S, Chen C, Ouyang P, Cai Z, Liu X, Abdurahman A, Peng J, Li Y, Zhang Z, Song GL. SELENOM Knockout Induces Synaptic Deficits and Cognitive Dysfunction by Influencing Brain Glucose Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1607-1619. [PMID: 36635091 DOI: 10.1021/acs.jafc.2c07491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selenium, a trace element associated with memory impairment and glucose metabolism, mainly exerts its function through selenoproteins. SELENOM is a selenoprotein located in the endoplasmic reticulum (ER) lumen. Our study demonstrates for the first time that SELENOM knockout decreases synaptic plasticity and causes memory impairment in 10-month-old mice. In addition, SELENOM knockout causes hyperglycaemia and disturbs glucose metabolism, which is essential for synapse formation and transmission in the brain. Further research reveals that SELENOM knockout leads to inhibition of the brain insulin signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR/p70 S6 kinase pathway], which may impair synaptic plasticity in mice. High-fat diet (HFD) feeding suppresses the brain insulin signaling pathway in SELENOM knockout mice and leads to earlier onset of cognitive impairment at 5 months of age. In general, our study demonstrates that SELENOM knockout induces synaptic deficits via the brain insulin signaling pathway, thus leading to cognitive dysfunction in mice. These data strongly suggest that SELENOM plays a vital role in brain glucose metabolism and contributes substantially to synaptic plasticity.
Collapse
Affiliation(s)
- Shujing Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong518000, People's Republic of China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Pei Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhiyu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Xibei Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518000, People's Republic of China
| |
Collapse
|
45
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
46
|
Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis. Nutrients 2023; 15:nu15020392. [PMID: 36678262 PMCID: PMC9867348 DOI: 10.3390/nu15020392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Neuropsychiatric disorders have been one of the worldwide health problems contributing to profound social and economic consequences. It is reported that consumption of an excessive high-fat diet (HFD) in middle age could induce cognitive and emotional dysfunctions, whereas the mechanisms of the effects of long-term HFD intake on brain disorders have not been fully investigated. We propose a hypothesis that prolonged HFD intake throughout adulthood could lead to neurobehavioral deterioration via gut-brain axis. In this study, the adult C57BL/6J mice consuming long-term HFD (24 weeks) exhibited more anxiety-like, depression-like, and disruptive social behaviors and poorer performance in learning and memory than control mice fed with a normal diet (ND). In addition, the homeostasis of gut microbiota was impaired by long-term HFD consumption. Changes in some flora, such as Prevotellaceae_NK3B31_group and Ruminococcus, within the gut communities, were correlated to neurobehavioral alterations. Furthermore, the gut permeability was increased after prolonged HFD intake due to the decreased thickness of the mucus layer and reduced expression of tight junction proteins in the colon. The mRNA levels of genes related to synaptic-plasticity, neuronal development, microglia maturation, and activation in the hippocampus and prefrontal cortex of HFD-fed mice were lower than those in mice fed with ND. Interestingly, the transcripts of genes related to tight junction proteins, ZO-1 and Occludin involved in blood-brain-barrier (BBB), were decreased in both hippocampus and prefrontal cortex after long-term HFD consumption. Those results indicated that chronic consumption of HFD in mice resulted in gut microbiota dysbiosis, which induced decreased expression of mucus and tight junction proteins in the colon, in turn leading to local and systemic inflammation. Those changes could further contribute to the impairment of brain functions and neurobehavioral alterations, including mood, sociability, learning and memory. In short, long-term HFD intake throughout adulthood could induce behavioral phenotypes related to neuropsychiatric disorders via gut-brain axis. The observations of this study provide potential intervention strategies to reduce the risk of HFD via targeting the gut or manipulating gut microbiota.
Collapse
|
47
|
Natale F, Spinelli M, Rinaudo M, Cocco S, Nifo Sarrapochiello I, Fusco S, Grassi C. Maternal High Fat Diet Anticipates the AD-like Phenotype in 3xTg-AD Mice by Epigenetic Dysregulation of Aβ Metabolism. Cells 2023; 12:cells12020220. [PMID: 36672155 PMCID: PMC9856666 DOI: 10.3390/cells12020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Maternal overnutrition has been reported to affect brain plasticity of the offspring by altering gene expression, regulating both synaptic plasticity and adult neurogenesis. However, whether perinatal metabolic stress may influence the accumulation of misfolded proteins and the development of neurodegeneration remains to be clarified. We investigated the impact of maternal high fat diet (HFD) in an experimental model of Alzheimer's disease (AD). The 3xTg-AD mice born to overfed mothers showed an impairment of synaptic plasticity and cognitive deficits earlier than controls. Maternal HFD also altered the expression of genes regulating amyloid-β-protein (Aβ) metabolism (i.e., Bace1, Ern1, Ide and Nicastrin) and enhanced Aβ deposition in the hippocampus. Finally, we found an epigenetic derangement and an aberrant recruitment of transcription factors NF-kB and STAT3 and chromatin remodeler HDAC2 on the regulatory sequences of the same genes. Collectively, our data indicate that early life metabolic stress worsens the AD phenotype via epigenetic alteration of genes regulating Aβ synthesis and clearance.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
48
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
49
|
Patel SH, Timón-Gómez A, Pradhyumnan H, Mankaliye B, Dave KR, Perez-Pinzon MA, Raval AP. The Impact of Nicotine along with Oral Contraceptive Exposure on Brain Fatty Acid Metabolism in Female Rats. Int J Mol Sci 2022; 23:ijms232416075. [PMID: 36555717 PMCID: PMC9780830 DOI: 10.3390/ijms232416075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Smoking-derived nicotine (N) and oral contraceptive (OC) synergistically exacerbate ischemic brain damage in females, and the underlying mechanisms remain elusive. In a previous study, we showed that N + OC exposure altered brain glucose metabolism in females. Since lipid metabolism complements glycolysis, the current study aims to examine the metabolic fingerprint of fatty acids in the brain of female rats exposed to N+/-OC. Adolescent and adult Sprague-Dawley female rats were randomly (n = 8 per group) exposed to either saline or N (4.5 mg/kg) +/-OC (combined OC or placebo delivered via oral gavage) for 16-21 days. Following exposure, brain tissue was harvested for unbiased metabolomic analysis (performed by Metabolon Inc., Morrisville, NC, USA) and the metabolomic profile changes were complemented with Western blot analysis of key enzymes in the lipid pathway. Metabolomic data showed significant accumulation of fatty acids and phosphatidylcholine (PC) metabolites in the brain. Adolescent, more so than adult females, exposed to N + OC showed significant increases in carnitine-conjugated fatty acid metabolites compared to saline control animals. These changes in fatty acyl carnitines were accompanied by an increase in a subset of free fatty acids, suggesting elevated fatty acid β-oxidation in the mitochondria to meet energy demand. In support, β-hydroxybutyrate was significantly lower in N + OC exposure groups in adolescent animals, implying a complete shunting of acetyl CoA for energy production via the TCA cycle. The reported changes in fatty acids and PC metabolism due to N + OC could inhibit post-translational palmitoylation of membrane proteins and synaptic vesicle formation, respectively, thus exacerbating ischemic brain damage in female rats.
Collapse
Affiliation(s)
- Shahil H. Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alba Timón-Gómez
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Berk Mankaliye
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Miguel A. Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-(305)-243-7491; Fax: +1-(305)-243-6955
| |
Collapse
|
50
|
Cheon SY, Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci 2022; 12:99. [PMID: 35765060 PMCID: PMC9237975 DOI: 10.1186/s13578-022-00836-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by multiple pathologies. The progression of dementia with NAFLD may be affected by various risk factors, including brain insulin resistance, cerebrovascular dysfunction, gut dysbiosis, and neuroinflammation. Many recent studies have focused on the increasing prevalence of dementia in patients with NAFLD. Dementia is characterized by cognitive and memory deficits and has diverse subtypes, including vascular dementia, Alzheimer’s dementia, and diabetes mellitus-induced dementia. Considering the common pathological features of NAFLD and dementia, further studies on the association between them are needed to find appropriate therapeutic solutions for diseases. This review summarizes the common pathological characteristics and mechanisms of NAFLD and dementia. Additionally, it describes recent evidence on association between NAFLD and dementia progression and provides novel perspectives with regard to the treatment of patients with dementia secondary to NAFLD.
Collapse
|