1
|
Wang Q, Sun N, Zhang C, Kunzke T, Zens P, Feuchtinger A, Berezowska S, Walch A. Metabolic heterogeneity in tumor cells impacts immunology in lung squamous cell carcinoma. Oncoimmunology 2025; 14:2457797. [PMID: 39924768 PMCID: PMC11812363 DOI: 10.1080/2162402x.2025.2457797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic processes are crucial in immune regulation, yet the impact of metabolic heterogeneity on immunological functions remains unclear. Integrating metabolomics into immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. To elucidate such insight in lung squamous cell carcinoma (LUSC), we analyzed 106 LUSC tumor tissues. We performed high-resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain spatial metabolic profiles, and immunohistochemistry to detect tumor-infiltrating T lymphocytes (TILs). Unsupervised k-means clustering and Simpson's diversity index were employed to assess metabolic heterogeneity, identifying five distinct metabolic tumor subpopulations. Our findings revealed that TILs are specifically associated with metabolite distributions, not randomly distributed. Integrating a validation cohort, we found that heterogeneity-correlated metabolites interact with CD8+ TIL-associated genes, affecting survival. High metabolic heterogeneity was linked to worse survival and lower TIL levels. Pathway enrichment analyses highlighted distinct metabolic pathways in each subpopulation and their potential responses to chemotherapy. This study uncovers the significant impact of metabolic heterogeneity on immune functions in LUSC, providing a foundation for tailoring therapeutic strategies.
Collapse
Affiliation(s)
- Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Philipp Zens
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabina Berezowska
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Al Bakir M, Reading JL, Gamble S, Rosenthal R, Uddin I, Rowan A, Przewrocka J, Rogers A, Wong YNS, Bentzen AK, Veeriah S, Ward S, Garnett AT, Kalavakur P, Martínez-Ruiz C, Puttick C, Huebner A, Cook DE, Moore DA, Abbosh C, Hiley CT, Naceur-Lombardelli C, Watkins TBK, Petkovic M, Schwarz RF, Gálvez-Cancino F, Litchfield K, Meldgaard P, Sorensen BS, Madsen LB, Jäger D, Forster MD, Arkenau T, Domingo-Vila C, Tree TIM, Kadivar M, Hadrup SR, Chain B, Quezada SA, McGranahan N, Swanton C. Clonal driver neoantigen loss under EGFR TKI and immune selection pressures. Nature 2025; 639:1052-1059. [PMID: 39972134 PMCID: PMC11946900 DOI: 10.1038/s41586-025-08586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
Neoantigen vaccines are under investigation for various cancers, including epidermal growth factor receptor (EGFR)-driven lung cancers1,2. We tracked the phylogenetic history of an EGFR mutant lung cancer treated with erlotinib, osimertinib, radiotherapy and a personalized neopeptide vaccine (NPV) targeting ten somatic mutations, including EGFR exon 19 deletion (ex19del). The ex19del mutation was clonal, but is likely to have appeared after a whole-genome doubling (WGD) event. Following osimertinib and NPV treatment, loss of the ex19del mutation was identified in a progressing small-cell-transformed liver metastasis. Circulating tumour DNA analyses tracking 467 somatic variants revealed the presence of this EGFR wild-type clone before vaccination and its expansion during osimertinib/NPV therapy. Despite systemic T cell reactivity to the vaccine-targeted ex19del neoantigen, the NPV failed to halt disease progression. The liver metastasis lost vaccine-targeted neoantigens through chromosomal instability and exhibited a hostile microenvironment, characterized by limited immune infiltration, low CXCL9 and elevated M2 macrophage levels. Neoantigens arising post-WGD were more likely to be absent in the progressing liver metastasis than those occurring pre-WGD, suggesting that prioritizing pre-WGD neoantigens may improve vaccine design. Data from the TRACERx 421 cohort3 provide evidence that pre-WGD mutations better represent clonal variants, and owing to their presence at multiple copy numbers, are less likely to be lost in metastatic transition. These data highlight the power of phylogenetic disease tracking and functional T cell profiling to understand mechanisms of immune escape during combination therapies.
Collapse
Affiliation(s)
- Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James L Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Pre-Cancer Immunology Laboratory, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Samuel Gamble
- Pre-Cancer Immunology Laboratory, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Imran Uddin
- Division of Infection and Immunity, University College London, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Amber Rogers
- Pre-Cancer Immunology Laboratory, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Yien Ning Sophia Wong
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Amalie K Bentzen
- Pre-Cancer Immunology Laboratory, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Genomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | | - Carlos Martínez-Ruiz
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Marina Petkovic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Biology, Humboldt University of Berlin, Berlin, Germany
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Roland F Schwarz
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Felipe Gálvez-Cancino
- Immune-Regulation and Immune-Interactions Laboratory, Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Headington, UK
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Line Bille Madsen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin D Forster
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, UCL Cancer Institute, London, UK
| | | | - Clara Domingo-Vila
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Timothy I M Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
- Department of Computer Sciences, University College London, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
3
|
Song KJ, Choi S, Kim K, Hwang HS, Chang E, Park JS, Shim SB, Choi S, Heo YJ, An WJ, Yang DY, Cho KC, Ji W, Choi CM, Lee JC, Kim HR, Yoo J, Ahn HS, Lee GH, Hwa C, Kim S, Kim K, Kim MS, Paek E, Na S, Jang SJ, An JY, Kim KP. Proteogenomic analysis reveals non-small cell lung cancer subtypes predicting chromosome instability, and tumor microenvironment. Nat Commun 2024; 15:10164. [PMID: 39580524 PMCID: PMC11585665 DOI: 10.1038/s41467-024-54434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is histologically classified into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LSCC). However, some tumors are histologically ambiguous and other pathophysiological features or microenvironmental factors may be more prominent. Here we report integrative multiomics analyses using data for 229 patients from a Korean NSCLC cohort and 462 patients from previous multiomics studies. Histological examination reveals five molecular subtypes, one of which is a NSCLC subtype with PI3K-Akt pathway upregulation, showing a high proportion of metastasis and poor survival outcomes regardless of any specific NSCLC histology. Proliferative subtypes are present in LUAD and LSCC, which show strong associations with whole genome doubling (WGD) events. Comprehensive characterization of the immune microenvironment reveals various immune cell compositions and neoantigen loads across molecular subtypes, which predicting different prognoses. Immunological subtypes exhibit a hot tumor-enriched state and a higher efficacy of adjuvant therapy.
Collapse
Affiliation(s)
- Kyu Jin Song
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Seunghyuk Choi
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Sang Hwang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunhyong Chang
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Soo Park
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seok Bo Shim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seunghwan Choi
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Jin Heo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Ju An
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Dae Yeol Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Cho Cho
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyeong-Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiyoung Yoo
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Hee-Sung Ahn
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Gang-Hee Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanwoong Hwa
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Kyunggon Kim
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea
| | - Eunok Paek
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Artificial Intelligence, Hanyang University, Seoul, 04763, Republic of Korea
- Institute for Artificial Intelligence Research, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungjin Na
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
- SG Medical, Inc., 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea.
| |
Collapse
|
4
|
Corvaja C, Passaro A, Attili I, Aliaga PT, Spitaleri G, Signore ED, de Marinis F. Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev 2024; 130:102824. [PMID: 39366135 DOI: 10.1016/j.ctrv.2024.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Third-generation EGFR tyrosine kinase inhibitor (TKIs) have revolutionized the treatment landscape for patients with non-small cell lung cancer (NSCLC) harboring EGFR activating mutations, with improved long-term outcomes compared to first-generation TKIs. Nevertheless, disease progression inevitably occurs, limiting osimertinib long-term efficacy. Indeed, the molecular biology underlying acquired resistance to first-line osimertinib is multifaceted and includes the emergence of on-target and off-target alterations. EGFR-C797S mutation represents the most frequent mechanism of on-target resistance and hinders drug binding to the target site. EGFR-independent resistance includes the activation of alternative signaling pathways, such as MET amplification and HER2 mutations, and histological transformation. In this setting, chemotherapy is the current therapeutic option, with modest clinical outcomes. Therefore, the development of novel therapeutic strategies to overcome resistance to osimertinib is a major challenge. In this setting, fourth-generation TKIs are emerging as an interesting therapeutic option to overcome on-target resistance. Preclinical drug development has led to the discovery of thiazole-amid inhibitors, which activity is mediated by the allosteric inhibition of EGFR, resulting in high specificity towards mutant-EGFR. Early phase 1/2 clinical trials are ongoing to elucidate their activity also in the clinical setting. Aim of this review is to provide a state-of-the-art analysis on preclinical development of fourth-generation EGFR-TKIs and promising preliminary clinical data.
Collapse
Affiliation(s)
- Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy.
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| |
Collapse
|
5
|
Li H, Huang Z, Guo C, Wang Y, Li B, Wang S, Bai N, Chen H, Xue J, Wang D, Zheng Z, Bing Z, Song Y, Xu Y, Huang G, Yu X, Li R, Fung KL, Li J, Song L, Zhu Z, Liu S, Liang N, Li S. Super multiple primary lung cancers harbor high-frequency BRAF and low-frequency EGFR mutations in the MAPK pathway. NPJ Precis Oncol 2024; 8:229. [PMID: 39384982 PMCID: PMC11464572 DOI: 10.1038/s41698-024-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The incidence of multiple primary lung cancer (MPLC) is increasing, with some of our surgical patients exhibiting numerous lesions. We defined lung cancer with five or more primary lesions as super MPLCs. Elucidating the genomic characteristics of this special MPLC subtype can help reduce disease burden and understand tumor evolution. In our cohort of synchronous super early-stage MPLCs (PUMCH-ssesMPLC), whole-exome sequencing on 130 resected malignant specimens from 18 patients provided comprehensive super-MPLC genomic landscapes. Mutations are enriched in PI3k-Akt and MAPK pathways. Their BRAF mutation frequency (31.5%) is significantly higher than MPLC with fewer lesions and early-stage single-lesion cancer, while EGFR mutations are significantly fewer (13.8%). As lesion counts increase, BRAF mutations gradually become dominant. Also, invasive lesions more tend to have classic super-MPLC mutation patterns. High-frequency BRAF mutations, especially Class II, and low-frequency EGFR mutations could be a reason for the limited effectiveness of targeted therapy in super-MPLC patients.
Collapse
Affiliation(s)
- Haochen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Na Bai
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Hanlin Chen
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Daoyun Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guanghua Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Yu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruirui Li
- Department of Thoracic Surgery, Aviation General Hospital, Beijing, 100025, China
| | | | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwei Zhu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Songtao Liu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Gorman BR, Ji SG, Francis M, Sendamarai AK, Shi Y, Devineni P, Saxena U, Partan E, DeVito AK, Byun J, Han Y, Xiao X, Sin DD, Timens W, Moser J, Muralidhar S, Ramoni R, Hung RJ, McKay JD, Bossé Y, Sun R, Amos CI, Pyarajan S. Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk. Nat Commun 2024; 15:8629. [PMID: 39366959 PMCID: PMC11452618 DOI: 10.1038/s41467-024-52129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Lung cancer remains the leading cause of cancer mortality, despite declining smoking rates. Previous lung cancer GWAS have identified numerous loci, but separating the genetic risks of lung cancer and smoking behavioral susceptibility remains challenging. Here, we perform multi-ancestry GWAS meta-analyses of lung cancer using the Million Veteran Program cohort (approximately 95% male cases) and a previous study of European-ancestry individuals, jointly comprising 42,102 cases and 181,270 controls, followed by replication in an independent cohort of 19,404 cases and 17,378 controls. We then carry out conditional meta-analyses on cigarettes per day and identify two novel, replicated loci, including the 19p13.11 pleiotropic cancer locus in squamous cell lung carcinoma. Overall, we report twelve novel risk loci for overall lung cancer, lung adenocarcinoma, and squamous cell lung carcinoma, nine of which are externally replicated. Finally, we perform PheWAS on polygenic risk scores for lung cancer, with and without conditioning on smoking. The unconditioned lung cancer polygenic risk score is associated with smoking status in controls, illustrating a reduced predictive utility in non-smokers. Additionally, our polygenic risk score demonstrates smoking-independent pleiotropy of lung cancer risk across neoplasms and metabolic traits.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Sun-Gou Ji
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- BridgeBio Pharma, Palo Alto, CA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Anoop K Sendamarai
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Yunling Shi
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Poornima Devineni
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Uma Saxena
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Elizabeth Partan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Andrea K DeVito
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jennifer Moser
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Sumitra Muralidhar
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rachel Ramoni
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Schill R, Klever M, Lösch A, Hu YL, Vocht S, Rupp K, Grasedyck L, Spang R, Beerenwinkel N. Correcting for Observation Bias in Cancer Progression Modeling. J Comput Biol 2024; 31:927-945. [PMID: 39480133 DOI: 10.1089/cmb.2024.0666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Tumor progression is driven by the accumulation of genetic alterations, including both point mutations and copy number changes. Understanding the temporal sequence of these events is crucial for comprehending the disease but is not directly discernible from cross-sectional genomic data. Cancer progression models, including Mutual Hazard Networks (MHNs), aim to reconstruct the dynamics of tumor progression by learning the causal interactions between genetic events based on their co-occurrence patterns in cross-sectional data. Here, we highlight a commonly overlooked bias in cross-sectional datasets that can distort progression modeling. Tumors become clinically detectable when they cause symptoms or are identified through imaging or tests. Detection factors, such as size, inflammation (fever, fatigue), and elevated biochemical markers, are influenced by genomic alterations. Ignoring these effects leads to "conditioning on a collider" bias, where events making the tumor more observable appear anticorrelated, creating false suppressive effects or masking promoting effects among genetic events. We enhance MHNs by incorporating the effects of genetic progression events on the inclusion of a tumor in a dataset, thus correcting for collider bias. We derive an efficient tensor formula for the likelihood function and apply it to two datasets from the MSK-IMPACT study. In colon adenocarcinoma, we observe a significantly higher rate of clinical detection for TP53-positive tumors, while in lung adenocarcinoma, the same is true for EGFR-positive tumors. Compared to classical MHNs, this approach eliminates several spurious suppressive interactions and uncovers multiple promoting effects.
Collapse
Affiliation(s)
- Rudolf Schill
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Maren Klever
- Institute for Geometry and Applied Mathematics, RWTH Aachen, Aachen, Germany
| | - Andreas Lösch
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Y Linda Hu
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Stefan Vocht
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Kevin Rupp
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lars Grasedyck
- Institute for Geometry and Applied Mathematics, RWTH Aachen, Aachen, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
8
|
Zhao J, Wang L, Zhou A, Wen S, Fang W, Zhang L, Duan J, Bai H, Zhong J, Wan R, Sun B, Zhuang W, Lin Y, He D, Cui L, Wang Z, Wang J. Decision model for durable clinical benefit from front- or late-line immunotherapy alone or with chemotherapy in non-small cell lung cancer. MED 2024; 5:981-997.e4. [PMID: 38781965 DOI: 10.1016/j.medj.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Predictive biomarkers and models of immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC). However, evidence for many biomarkers remains inconclusive, and the opaqueness of machine learning models hinders practicality. We aimed to provide compelling evidence for biomarkers and develop a transparent decision tree model. METHODS We consolidated data from 3,288 ICI-treated patients with NSCLC across real-world multicenter, public cohorts and the Choice-01 trial (ClinicalTrials.gov: NCT03856411). Over 50 features were examined for predicting durable clinical benefits (DCBs) from ICIs. Noteworthy biomarkers were identified to establish a decision tree model. Additionally, we explored the tumor microenvironment and peripheral CD8+ programmed death-1 (PD-1)+ T cell receptor (TCR) profiles. FINDINGS Multivariate logistic regression analysis identified tumor histology, PD-ligand 1 (PD-L1) expression, tumor mutational burden, line, and regimen of ICI treatment as significant factors. Mutation subtypes of EGFR, KRAS, KEAP1, STK11, and disruptive TP53 mutations were associated with DCB. The decision tree (DT10) model, using the ten clinicopathological and genomic markers, showed superior performance in predicting DCB in the training set (area under the curve [AUC] = 0.82) and consistently outperformed other models in test sets. DT10-predicted-DCB patients manifested longer survival, an enriched inflamed tumor immune phenotype (67%), and higher peripheral TCR diversity, whereas the DT10-predicted-NDB (non-durable benefit) group showed an enriched desert immune phenotype (86%) and higher peripheral TCR clonality. CONCLUSIONS The model effectively predicted DCB after front-/subsequent-line ICI treatment, with or without chemotherapy, for squamous and non-squamous lung cancer, offering clinicians valuable insights into efficacy prediction using cost-effective variables. FUNDING This study was supported by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Lu Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Anda Zhou
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Shidi Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Wenfeng Fang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Li Zhang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Yiwen Lin
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Danming He
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Lina Cui
- Department of Clinical and Translational Medicine, 3D Medicines, Inc., Shanghai, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
9
|
Huang Y, Zhang Y, Duan X, Hou R, Wang Q, Shi J. Exploring the immune landscape and drug prediction of an M2 tumor-associated macrophage-related gene signature in EGFR-negative lung adenocarcinoma. Thorac Cancer 2024; 15:1626-1637. [PMID: 38886907 PMCID: PMC11260554 DOI: 10.1111/1759-7714.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD. METHODS M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature. RESULTS CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy. CONCLUSION The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.
Collapse
Affiliation(s)
- Yajie Huang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yaozhong Zhang
- Department of Infectious DiseasesThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaoyang Duan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ran Hou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qi Wang
- Department of EndoscopyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian Shi
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
10
|
Rupp K, Lösch A, Hu YL, Nie C, Schill R, Klever M, Pfahler S, Grasedyck L, Wettig T, Beerenwinkel N, Spang R. Modeling metastatic progression from cross-sectional cancer genomics data. Bioinformatics 2024; 40:i140-i150. [PMID: 38940126 PMCID: PMC11245855 DOI: 10.1093/bioinformatics/btae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early stages of dissemination and spread to distant organs. Genomic datasets of matched primary tumors and metastases may offer insights into the underpinnings and the dynamics of metastasis formation. RESULTS We present metMHN, a cancer progression model designed to deduce the joint progression of primary tumors and metastases using cross-sectional cancer genomics data. The model elucidates the statistical dependencies among genomic events, the formation of metastasis, and the clinical emergence of both primary tumors and their metastatic counterparts. metMHN enables the chronological reconstruction of mutational sequences and facilitates estimation of the timing of metastatic seeding. In a study of nearly 5000 lung adenocarcinomas, metMHN pinpointed TP53 and EGFR as mediators of metastasis formation. Furthermore, the study revealed that post-seeding adaptation is predominantly influenced by frequent copy number alterations. AVAILABILITY AND IMPLEMENTATION All datasets and code are available on GitHub at https://github.com/cbg-ethz/metMHN.
Collapse
Affiliation(s)
- Kevin Rupp
- Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg, Regensburg 93053, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4056, Switzerland
| | - Andreas Lösch
- Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg, Regensburg 93053, Germany
| | - Yanren Linda Hu
- Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg, Regensburg 93053, Germany
| | - Chenxi Nie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland
| | - Rudolf Schill
- Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg, Regensburg 93053, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4056, Switzerland
| | - Maren Klever
- Institute for Geometry and Applied Mathematics, RWTH Aachen, Aachen 52062, Germany
| | - Simon Pfahler
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Lars Grasedyck
- Institute for Geometry and Applied Mathematics, RWTH Aachen, Aachen 52062, Germany
| | - Tilo Wettig
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4056, Switzerland
| | - Rainer Spang
- Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
11
|
Huang CY, Jiang N, Shen M, Lai GG, Tan AC, Jain A, Saw SP, Ang MK, Ng QS, Lim DW, Kanesvaran R, Tan EH, Tan WL, Ong BH, Chua KL, Anantham D, Takano AM, Lim KH, Tam WL, Sim NL, Skanderup AJ, Tan DS, Rozen SG. Oncogene-Driven Non-Small Cell Lung Cancers in Patients with a History of Smoking Lack Smoking-Induced Mutations. Cancer Res 2024; 84:2009-2020. [PMID: 38587551 DOI: 10.1158/0008-5472.can-23-2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell lung cancers (NSCLC) in nonsmokers are mostly driven by mutations in the oncogenes EGFR, ERBB2, and MET and fusions involving ALK and RET. In addition to occurring in nonsmokers, alterations in these "nonsmoking-related oncogenes" (NSRO) also occur in smokers. To better understand the clonal architecture and genomic landscape of NSRO-driven tumors in smokers compared with typical-smoking NSCLCs, we investigated genomic and transcriptomic alterations in 173 tumor sectors from 48 NSCLC patients. NSRO-driven NSCLCs in smokers and nonsmokers had similar genomic landscapes. Surprisingly, even in patients with prominent smoking histories, the mutational signature caused by tobacco smoking was essentially absent in NSRO-driven NSCLCs, which was confirmed in two large NSCLC data sets from other geographic regions. However, NSRO-driven NSCLCs in smokers had higher transcriptomic activities related to the regulation of the cell cycle. These findings suggest that, whereas the genomic landscape is similar between NSRO-driven NSCLC in smokers and nonsmokers, smoking still affects the tumor phenotype independently of genomic alterations. SIGNIFICANCE Non-small cell lung cancers driven by nonsmoking-related oncogenes do not harbor genomic scars caused by smoking regardless of smoking history, indicating that the impact of smoking on these tumors is mainly nongenomic.
Collapse
Affiliation(s)
- Chen-Yang Huang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Nanhai Jiang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meixin Shen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillianne G Lai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Stephanie P Saw
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Darren W Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Eng Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wan Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore, Singapore
| | - Kevin L Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Devanand Anantham
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Angela M Takano
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ngak Leng Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anders J Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel S Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Chang E, An JY. Whole-genome doubling is a double-edged sword: the heterogeneous role of whole-genome doubling in various cancer types. BMB Rep 2024; 57:125-134. [PMID: 38449300 PMCID: PMC10979346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Whole-genome doubling (WGD), characterized by the duplication of an entire set of chromosomes, is commonly observed in various tumors, occurring in approximately 30-40% of patients with different cancer types. The effect of WGD on tumorigenesis varies depending on the context, either promoting or suppressing tumor progression. Recent advances in genomic technologies and large-scale clinical investigations have led to the identification of the complex patterns of genomic alterations underlying WGD and their functional consequences on tumorigenesis progression and prognosis. Our comprehensive review aims to summarize the causes and effects of WGD on tumorigenesis, highlighting its dualistic influence on cancer cells. We then introduce recent findings on WGD-associated molecular signatures and genetic aberrations and a novel subtype related to WGD. Finally, we discuss the clinical implications of WGD in cancer subtype classification and future therapeutic interventions. Overall, a comprehensive understanding of WGD in cancer biology is crucial to unraveling its complex role in tumorigenesis and identifying novel therapeutic strategies. [BMB Reports 2024; 57(3): 125-134].
Collapse
Affiliation(s)
- Eunhyong Chang
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul 02841, Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul 02841, Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
13
|
Stockhammer P, Grant M, Wurtz A, Foggetti G, Expósito F, Gu J, Zhao H, Choi J, Chung S, Li F, Walther Z, Dietz J, Duffield E, Gettinger S, Politi K, Goldberg SB. Co-Occurring Alterations in Multiple Tumor Suppressor Genes Are Associated With Worse Outcomes in Patients With EGFR-Mutant Lung Cancer. J Thorac Oncol 2024; 19:240-251. [PMID: 37806385 PMCID: PMC11364167 DOI: 10.1016/j.jtho.2023.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Patients with metastatic EGFR-mutant NSCLC inevitably have disease progression while on tyrosine kinase inhibitor (TKI) therapy. Co-occurring tumor suppressor gene (TSG) alterations have been associated with poor outcomes, however, detailed analyses of their impact on patient outcomes are limited. METHODS Patients with EGFR-mutant NSCLC treated with EGFR TKIs who had tumor genomic profiling were included. Alterations in TP53 and five additional TSGs (RB1, NF1, ARID1A, BRCA1, and PTEN) were used to stratify the cohort into the following three subgroups: patients with tumors harboring a TP53 mutation plus a mutation in at least one additional TSG (TP53mut/TSGmut), those having a TP53 mutation without additional TSG mutations (TP53mut/TSGwt), and those with TP53wt. Patient characteristics and clinical outcomes were assessed in two independent cohorts. RESULTS A total of 101 patients from the Yale Cancer Center and 182 patients from the American Association for Cancer Research Project GENIE database were included. In the Yale cohort, TP53 mutations were identified in 65 cases (64%), of which 23 were TP53mut/TSGmut and 42 were TP53mut/TSGwt. Although the presence of a TP53 mutation was associated with worse outcomes, the additional TSG alteration in TP53mut tumors identified a subset of patients associated with particularly aggressive disease and inferior clinical outcome in both the Yale and the GENIE cohorts. Specifically, in the Yale cohort for patients receiving first-line TKIs, those with TP53mut/TSGmut tumors had shorter progression-free survival (PFS) and overall survival (OS) than TP53mut/TSGwt (PFS: hazard ratio [HR] = 2.03, confidence interval [CI]: 1.12-3.69, p < 0.01, OS: HR = 1.58, CI: 0.82-3.04, p = 0.12) or TP53wt cases (PFS: HR 2.4, CI: 1.28-4.47, p < 0.001, OS: HR = 2.54, CI: 1.21-5.34, p < 0.005). Inferior outcomes in patients with TP53mut/TSGmut tumors were also found in those receiving osimertinib as second-line therapy. Similar findings were seen in patients in the GENIE cohort. CONCLUSIONS Patients with TP53mut/TSGmut tumors represent a patient subgroup characterized by an aggressive disease phenotype and inferior outcomes on EGFR TKIs. This information is important for understanding the biological underpinnings of differential outcomes with TKI treatment and has implications for identifying patients who may benefit from additional therapeutic interventions beyond osimertinib monotherapy.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Michael Grant
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Anna Wurtz
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Giorgia Foggetti
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Vita-Salute San Raffaele University, Milano, Italy; Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milano, Italy
| | - Francisco Expósito
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sangyun Chung
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Fangyong Li
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Julia Dietz
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emily Duffield
- Yale New Haven Hospital, Smilow Cancer Hospital, New Haven, Connecticut
| | - Scott Gettinger
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Katerina Politi
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
14
|
Remon J, Saw SPL, Cortiula F, Singh PK, Menis J, Mountzios G, Hendriks LEL. Perioperative Treatment Strategies in EGFR-Mutant Early-Stage NSCLC: Current Evidence and Future Challenges. J Thorac Oncol 2024; 19:199-215. [PMID: 37783386 DOI: 10.1016/j.jtho.2023.09.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Treatment with 3 years of adjuvant osimertinib is considered a new standard in patients with completely resected stage I to IIIA NSCLC harboring a common sensitizing EGFR mutation. This therapeutic approach significantly prolonged the disease-free survival and the overall survival versus placebo and revealed a significant role in preventing the occurrence of brain metastases. However, many unanswered questions remain, including the optimal duration of this therapy, whether all patients benefit from adjuvant osimertinib, and the role of adjuvant chemotherapy in this population. Indeed, there is a renewed interest in neoadjuvant strategies with targeted therapies in resectable NSCLC harboring oncogenic drivers. In light of these considerations, we discuss the past and current treatment options, and the clinical challenges that should be addressed to optimize the treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stephanie P L Saw
- Department of Medical Oncology, National Cancer Centre Singapore, Duke-National University of Singapore Oncology Academic Clinical Programme, Singapore
| | | | - Pawan Kumar Singh
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Science, Rothak, India
| | - Jessica Menis
- Medical Oncology Department, University and Hospital Trust of Verona, Verona, Italy
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| |
Collapse
|
15
|
Bonner SN, Curley R, Love K, Akande T, Akhtar A, Erhunmwunsee L. Structural Racism and Lung Cancer Risk: A Scoping Review. JAMA Oncol 2024; 10:122-128. [PMID: 38032677 DOI: 10.1001/jamaoncol.2023.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Importance Structural racism is associated with persistent inequities in health and health outcomes in the US for racial and ethnic minority groups. This review summarizes how structural racism contributes to differential population-level exposure to lung cancer risk factors and thus disparate lung cancer risk across different racial and ethnic groups. Observations A scoping review was conducted focusing on structural racism and lung cancer risk for racial and ethnic minority groups. The domains of structural racism evaluated included housing and built environment, occupation and employment, health care, economic and educational opportunity, private industry, perceived stress and discrimination, and criminal justice involvement. The PubMed, Embase, and MedNar databases were searched for English-language studies in the US from January 1, 2010, through June 30, 2022. The review demonstrated that racial and ethnic minority groups are more likely to have environmental exposures to air pollution and known carcinogens due to segregation of neighborhoods and poor housing quality. In addition, racial and ethnic minority groups were more likely to have exposures to pesticides, silica, and asbestos secondary to higher employment in manual labor occupations. Furthermore, targeted marketing and advertisement of tobacco products by private industry were more likely to occur in neighborhoods with more racial and ethnic minority groups. In addition, poor access to primary care services and inequities in insurance status were associated with elevated lung cancer risk among racial and ethnic minority groups. Lastly, inequities in tobacco use and cessation services among individuals with criminal justice involvement had important implications for tobacco use among Black and Hispanic populations. Conclusions and Relevance The findings suggest that structural racism must be considered as a fundamental contributor to the unequal distribution of lung cancer risk factors and thus disparate lung cancer risk across different racial and ethnic groups. Additional research is needed to better identify mechanisms contributing to inequitable lung cancer risk and tailor preventive interventions.
Collapse
Affiliation(s)
- Sidra N Bonner
- Department of Surgery, University of Michigan, Ann Arbor
- National Clinician Scholars Program, University of Michigan, Ann Arbor
| | - Richard Curley
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Kyra Love
- Library Services, City of Hope, Duarte, California
| | - Tola Akande
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Aamna Akhtar
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Loretta Erhunmwunsee
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Populations Sciences, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
16
|
Lee JS, Kim EK, Kim KA, Shim HS. Clinical Impact of Genomic and Pathway Alterations in Stage I EGFR-Mutant Lung Adenocarcinoma. Cancer Res Treat 2024; 56:104-114. [PMID: 37499696 PMCID: PMC10789943 DOI: 10.4143/crt.2023.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE We investigated the clinical impact of genomic and pathway alterations in stage I epidermal growth factor receptor (EGFR)-mutant lung adenocarcinomas, which have a high recurrence rate despite complete surgical resection. MATERIALS AND METHODS Out of the initial cohort of 257 patients with completely resected stage I EGFR-mutant lung adenocarcinoma, tumor samples from 105 patients were subjected to analysis using large-panel next-generation sequencing. We analyzed 11 canonical oncogenic pathways and determined the number of pathway alterations (NPA). Survival analyses were performed based on co-occurring alterations and NPA in three patient groups: all patients, patients with International Association for the Study of Lung Cancer (IASLC) pathology grade 2, and patients with recurrent tumors treated with EGFR-tyrosine kinase inhibitor (TKI). RESULTS In the univariate analysis, pathological stage, IASLC grade, TP53 mutation, NPA, phosphoinositide 3-kinase pathway, p53 pathway, and cell cycle pathway exhibited significant associations with worse recurrence-free survival (RFS). Moreover, RPS6KB1 or EGFR amplifications were linked to a poorer RFS. Multivariate analysis revealed that pathologic stage, IASLC grade, and cell cycle pathway alteration were independent poor prognostic factors for RFS (p=0.002, p < 0.001, and p=0.006, respectively). In the grade 2 subgroup, higher NPA was independently associated with worse RFS (p=0.003). Additionally, in patients with recurrence treated with EGFR-TKIs, co-occurring TP53 mutations were linked to shorter progression-free survival (p=0.025). CONCLUSION Genomic and pathway alterations, particularly cell cycle alterations, high NPA, and TP53 mutations, were associated with worse clinical outcomes in stage I EGFR-mutant lung adenocarcinoma. These findings may have implications for risk stratification and the development of new therapeutic strategies in early-stage EGFR-mutant lung cancer patients.
Collapse
Affiliation(s)
- Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Kyung A Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Hara N, Ichihara E, Kano H, Ando C, Morita A, Nishi T, Okawa S, Nakasuka T, Hirabae A, Abe M, Asada N, Ninomiya K, Makimoto G, Fujii M, Kubo T, Ohashi K, Hotta K, Tabata M, Maeda Y, Kiura K. CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:2098-2112. [PMID: 38025818 PMCID: PMC10654429 DOI: 10.21037/tlcr-23-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Background Epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion and exon 21 L858R, are driver oncogenes of non-small cell lung cancer (NSCLC), with EGFR tyrosine kinase inhibitors (TKIs) being effective against EGFR-mutant NSCLC. However, the efficacy of EGFR-TKIs is transient and eventually leads to acquired resistance. Herein, we focused on the significance of cell cycle factors as a mechanism to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC before the emergence of acquired resistance. Methods Using several EGFR-mutant cell lines, we investigated the significance of cell cycle factors to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC. Results In several EGFR-mutant cell lines, certain cancer cells continued to proliferate without EGFR signaling, and the cell cycle regulator retinoblastoma protein (RB) was not completely dephosphorylated. Further inhibition of phosphorylated RB with cyclin-dependent kinase (CDK) 4/6 inhibitors, combined with the EGFR-TKI osimertinib, enhanced G0/G1 cell cycle accumulation and growth inhibition of the EGFR-mutant NSCLC in both in vitro and in vivo models. Furthermore, residual RB phosphorylation without EGFR signaling was maintained by extracellular signal-regulated kinase (ERK) signaling, and the ERK inhibition pathway showed further RB dephosphorylation. Conclusions Our study demonstrated that the CDK4/6-RB signal axis, maintained by the MAPK pathway, attenuates the efficacy of EGFR-TKIs in EGFR-mutant NSCLC, and targeting CDK4/6 enhances this efficacy. Thus, combining CDK4/6 inhibitors and EGFR-TKI could be a novel treatment strategy for TKI-naïve EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Naofumi Hara
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Hirohisa Kano
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ayako Morita
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuya Nishi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Hirabae
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaya Abe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Kiichiro Ninomiya
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Go Makimoto
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Masanori Fujii
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
18
|
Wang Y, Liu H, Yu N, Xiang X. Concordance of Abundance for Mutational EGFR and Co-Mutational TP53 with Efficacy of EGFR-TKI Treatment in Metastatic Patients with Non-Small-Cell Lung Cancer. Curr Oncol 2023; 30:8464-8476. [PMID: 37754531 PMCID: PMC10528559 DOI: 10.3390/curroncol30090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
The present study aimed to investigate the influence of the mutation abundance of the epidermal growth factor receptor (EGFR) and its co-mutation with TP53 on the therapeutic efficacy of tyrosine kinase inhibitor (TKI) treatment in patients with metastatic lung adenocarcinoma (LUAD). In total, 130 patients (January 2018-September 2022) with metastatic LUAD from the Second Affiliated Hospital of Zhejiang University were included. Kaplan-Meier analysis was performed to measure the duration of drug application (DDA) and the log-rank test was used to compare differences. Univariate and multivariate analyses of Cox proportional hazard regression models were used to evaluate the association between the relevant clinicopathological factors and DDA. Hazard ratios with 95% confidence intervals were also calculated. Among the 130 patients who were treated with first-generation EGFR-TKIs, 86 showed high-EGFR mutation abundance (>22.0%) and 44 showed low-EGFR mutation abundance (≤22.0%). Patients in the high-EGFR group had a greater DDA than those in the low-EGFR group (p < 0.05). The results of the subgroup analysis were consistent with those of the total mutation population (exon19: >18.5% vs. ≤18.5%, 14 months vs. 10 months, p = 0.049; exon21: >22.0% vs. ≤22.0%, 15 months vs. 9 months, p = 0.005). In addition, the mutation abundance of TP53 was negatively correlated with the DDA (p < 0.05). Patients in the combination group had a better DDA than those in the monotherapy group (p < 0.05). Subgroup analysis showed that, among the low mutation abundance of the EGFR exon 21 or 19 cohort, the combination group had a better DDA than the monotherapy group (p < 0.05). An EGFR mutation abundance greater than 22.0% was a positive predictor of DDA in patients with metastatic LUAD. However, a TP53 mutation abundance higher than 32.5% could reverse this situation. Finally, first-line treatment with EGFR-TKIs plus chemotherapy is a potential treatment strategy for patients with low-abundance EGFR mutations.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| | - Hong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Ningjuan Yu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| | - Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| |
Collapse
|
19
|
Wang CX, Yan J, Lin S, Ding Y, Qin YR. Mutant-allele dispersion correlates with prognosis risk in patients with advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:8545-8555. [PMID: 37093348 DOI: 10.1007/s00432-023-04801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Intra-tumor heterogeneity (ITH) contributes to lung cancer progression and resistance to therapy. To evaluate ITH and determine whether it may be employed as a predictive biomarker of prognosis in patients with advanced non-small cell lung cancer (NSCLC), we used a novel algorithm called mutant-allele dispersion (MAD). METHODS In the study, 103 patients with advanced NSCLC were enrolled. Using a panel of 425 cancer-related genes, next-generation sequencing (NGS) was performed on tumor specimens that had been collected. From NGS data, we derived MAD values, and we next looked into their relationships with clinical variables and different mutation subtypes. RESULTS The median MAD among 103 NSCLC patients was 0.73. EGFR mutation, tyrosine kinase inhibitor (TKI) therapy, radiotherapy, and chemotherapy cycles were all substantially correlated with the MAD score. In patients with lung adenocarcinoma (LUAD), correlation analysis revealed that the MAD score was substantially linked with Notch pathway mutation (P = 0.021). A significant relationship between high MAD and shorter progression-free survival (PFS) was found (HR = 2.004, 95%CI 1.269-3.163, P = 0.003). In patients with advanced NSCLC, histological type (P = 0.004), SMARCA4 mutation (P = 0.038), and LRP1B mutation (P = 0.006) were all independently associated with prognosis. The disease control rate was considerably greater in the low MAD group compared to the high MAD group in 19 LUAD patients receiving immunotherapy (92.9% vs. 40%, P = 0.037). TKI-PFS was longer in 37 patients with low MAD who received first-line TKI therapy (P = 0.014). CONCLUSION Our findings suggested that MAD is a practical and simple algorithm for assessing ITH, and populations with high MAD values are more likely to have EGFR mutations. MAD can be used as a potential biomarker to predict not only the prognosis of NSCLC but also the efficacy of immunotherapy and TKI therapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Chen-Xu Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan Lin
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian, China
| | - Yi Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yan-Ru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Sung H, Nisotel L, Sedeta E, Islami F, Jemal A. Racial and Ethnic Disparities in Survival Among People With Second Primary Cancer in the US. JAMA Netw Open 2023; 6:e2327429. [PMID: 37540510 PMCID: PMC10403787 DOI: 10.1001/jamanetworkopen.2023.27429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023] Open
Abstract
Importance Comprehensive data for racial and ethnic disparities after second primary cancers (SPCs) are lacking despite the growing burden of SPCs. Objective To quantify racial and ethnic disparities in survival among persons with SPCs. Design, Setting, and Participants This population-based, retrospective cohort study used data from 18 Surveillance, Epidemiology, and End Results registries in the US for persons diagnosed with the most common SPCs at age 20 years or older from January 1, 2000, to December 31, 2013 (with follow-up through December 31, 2018). Data were analyzed between January and April 2023. Exposure Race and ethnicity (Hispanic, non-Hispanic Asian or Pacific Islander, non-Hispanic Black, and non-Hispanic White). Main Outcomes and Measures The main outcomes were 5-year relative survival and cause-specific survival. Cause-specific hazard ratios (HRs) were calculated for death from cancer or cardiovascular disease (CVD) in each racial and ethnic minority population compared with the White population overall and stratified by SPC type, with adjustment for sex, year and age at SPC diagnosis, and prior cancer type and stage (baseline model) and additionally for county attributes (household income, urbanicity), SPC characteristics (stage, subtype), and treatment. Results Among 230 370 persons with SPCs (58.4% male), 4.5% were Asian or Pacific Islander, 9.6% were Black, 6.4% were Hispanic, and 79.5% were White. A total of 109 757 cancer-related deaths (47.6%) and 18 283 CVD-related deaths (7.9%) occurred during a median follow-up of 54 months (IQR, 12-93 months). In baseline models, compared with the White population, the risk of cancer-related death overall was higher in the Black (HR, 1.21; 95% CI, 1.18-1.23) and Hispanic (HR, 1.10; 95% CI, 1.07-1.13) populations but lower in the Asian or Pacific Islander population (HR, 0.93; 95% CI, 0.90-0.96). When stratified by 13 SPC types, the risk of cancer-related death was higher for 10 SPCs in the Black population, with the highest HR for uterine cancer (HR, 1.87; 95% CI, 1.63-2.15), and for 7 SPCs in the Hispanic population, most notably for melanoma (HR, 1.46; 95% CI, 1.21-1.76). For CVD-related death, the overall HR was higher in the Black population (HR, 1.41; 95% CI, 1.34-1.49), with elevated risks evident for 11 SPCs, but lower in the Asian or Pacific Islander (HR, 0.75; 95% CI, 0.69-0.81) and Hispanic (HR, 0.90; 95% CI, 0.84-0.96) populations than in the White population. After further adjustments for county attributes and SPC characteristics and treatment, HRs were reduced for cancer-related death and for CVD-related death and associations in the same direction remained. Conclusions and Relevance In this cohort study of SPC survivors, the Black population had the highest risk of both death from cancer and death from CVD, and the Hispanic population had a higher risk of death from cancer than the White population. Attenuations in HRs after adjustment for potentially modifiable factors highlight opportunities to reduce survival disparities among persons with multiple primary cancers.
Collapse
Affiliation(s)
- Hyuna Sung
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Lauren Nisotel
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Ephrem Sedeta
- Department of Medicine, Brookdale University Hospital and Medical Center, Brooklyn, New York
| | - Farhad Islami
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Ahmedin Jemal
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
21
|
Passaro A, Mok TSK, Attili I, Wu YL, Tsuboi M, de Marinis F, Peters S. Adjuvant Treatments for Surgically Resected Non-Small Cell Lung Cancer Harboring EGFR Mutations: A Review. JAMA Oncol 2023; 9:1124-1131. [PMID: 37166792 DOI: 10.1001/jamaoncol.2023.0459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Importance The use of adjuvant chemotherapy for stage IB-IIIA resected non-small cell lung cancer (NSCLC) has limited benefit for improving cure rates. The proportion of epidermal growth factor receptor (EGFR) alterations among patients with resected NSCLC is comparable to that observed in patients with advanced disease, and the use of EGFR tyrosine kinase inhibitors (TKIs) has been demonstrated to prolong disease-free survival (DFS). With recent approval of osimertinib in this context, a focus on the rapidly evolving scenario and future perspective in clinical practice is needed and was the aim of the current review. Observations Randomized phase 3 clinical trials demonstrated DFS benefit with adjuvant EGFR TKI therapy in patients with resected EGFR mutation-positive NSCLC. The most recent trial (ADAURA) assessed 3-year adjuvant osimertinib and showed consistent DFS benefit and a significant role of the intervention in preventing the occurrence of brain metastasis. However, the role of adjuvant chemotherapy, the appropriate duration of treatment, the management of disease relapse, and the effective cure rate remain undetermined. A deeper investigation on molecular biomarkers, covariant patterns, and dynamic monitoring of postsurgical circulating DNA would be helpful for the implementation of future strategies to further improve survival rates after adjuvant therapy for EGFR mutation-positive NSCLC. Conclusions and Relevance Adjuvant osimertinib revolutionized the treatment algorithm for patients with stage IB-IIIA resected EGFR mutation-positive NSCLC. Further evidence driven by clinical issues will be key for further optimization of the goals of adjuvant treatment in these patients.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Masahiro Tsuboi
- Division of Thoracic Surgery and Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
22
|
Predicting EGFR gene mutation status in lung adenocarcinoma based on multifeature fusion. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, Yokote K, Ribera NT, Clatch A, Christo S, Teh CE, Mitchell AJ, Trussart M, Rankin L, Obers A, McDonald JA, Sutherland KD, Sharma VJ, Starkey G, D'Costa R, Antippa P, Leong T, Steinfort D, Irving L, Swanton C, Gordon CL, Mackay LK, Speed TP, Gray DHD, Asselin-Labat ML. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer. Cancer Cell 2023; 41:837-852.e6. [PMID: 37086716 DOI: 10.1016/j.ccell.2023.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/24/2023]
Abstract
Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.
Collapse
Affiliation(s)
- Clare E Weeden
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Velimir Gayevskiy
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Claire Marceaux
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel Batey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tania Tan
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kenta Yokote
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nina Tubau Ribera
- Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Susan Christo
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Charis E Teh
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, the University of Melbourne, Parkville, VIC, Australia
| | - Marie Trussart
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Lucille Rankin
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jackson A McDonald
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Varun J Sharma
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia; Department of Cardiothoracic Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Graham Starkey
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia; Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Phillip Antippa
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tracy Leong
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia; Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Daniel Steinfort
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Louis Irving
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK; University College London Hospitals, London, UK
| | - Claire L Gordon
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; North Eastern Public Health Unit, Austin Health, Heidelberg, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics and Statistics, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Qiao S, Hao Y, Cai L, Duan X, Wang L, Zhou A, Zhu X. Prognostic value of cell-free DNA in cerebrospinal fluid from lung cancer patients with brain metastases during radiotherapy. Radiat Oncol 2023; 18:50. [PMID: 36906568 PMCID: PMC10007729 DOI: 10.1186/s13014-023-02239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND During the last decades, radiotherapy (RT) for non-small cell lung cancer (NSCLC) with brain metastases (BM) has been developed. However, the lack of predictive biomarkers for therapeutic responses has limited the precision treatment in NSCLC-BM. PATIENTS AND METHODS In order to find the predictive biomarkers for RT, we investigated the influence of RT on the cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and the frequency of T cell subsets of NSCLC patients with BM. A total of 19 patients diagnosed as NSCLC with BM were enrolled. The CSF from 19 patients and matched plasma samples from 11 patients were collected before RT, during RT, and after RT. The cfDNA from CSF and plasma were extracted, and the cerebrospinal fluid tumor mutation burden (cTMB) was calculated after through next-generation sequencing. The frequency of T cell subsets in peripheral blood was using flow cytometry. RESULTS The detection rate of cfDNA was higher in CSF compared to plasma in the matched samples. The mutation abundance of cfDNA in CSF was decreased after RT. However, no significant difference was observed in cTMB before and after RT. Although the median intracranial progression-free survival (iPFS) has not yet been reached in patients with decreased or undetectable cTMB, there was a trend that these patients possessed longer iPFS compared to those with stable or increased cTMB (HR 0.28, 95% CI 0.07-1.18, P = 0.067). The proportion of CD4+T cells in peripheral blood was decreased after RT. CONCLUSION Our study indicates that cTMB can serve as a prognostic biomarker in NSCLC patients with BMs.
Collapse
Affiliation(s)
- Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Yuying Hao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510515, China
| | - Xiaotong Duan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Lijuan Wang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Aidong Zhou
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China.
| |
Collapse
|
25
|
Unraveling the Impact of Intratumoral Heterogeneity on EGFR Tyrosine Kinase Inhibitor Resistance in EGFR-Mutated NSCLC. Int J Mol Sci 2023; 24:ijms24044126. [PMID: 36835536 PMCID: PMC9964908 DOI: 10.3390/ijms24044126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The advent of tyrosine kinase inhibitors (TKIs) for treating epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) has been a game changer in lung cancer therapy. However, patients often develop resistance to the drugs within a few years. Despite numerous studies that have explored resistance mechanisms, particularly in regards to collateral signal pathway activation, the underlying biology of resistance remains largely unknown. This review focuses on the resistance mechanisms of EGFR-mutated NSCLC from the standpoint of intratumoral heterogeneity, as the biological mechanisms behind resistance are diverse and largely unclear. There exist various subclonal tumor populations in an individual tumor. For lung cancer patients, drug-tolerant persister (DTP) cell populations may have a pivotal role in accelerating the evolution of tumor resistance to treatment through neutral selection. Cancer cells undergo various changes to adapt to the new tumor microenvironment caused by drug exposure. DTP cells may play a crucial role in this adaptation and may be fundamental in mechanisms of resistance. Intratumoral heterogeneity may also be precipitated by DNA gains and losses through chromosomal instability, and the role of extrachromosomal DNA (ecDNA) may play an important role. Significantly, ecDNA can increase oncogene copy number alterations and enhance intratumoral heterogeneity more effectively than chromosomal instability. Additionally, advances in comprehensive genomic profiling have given us insights into various mutations and concurrent genetic alterations other than EGFR mutations, inducing primary resistance in the context of tumor heterogeneity. Understanding the mechanisms of resistance is clinically crucial since these molecular interlayers in cancer-resistance mechanisms may help to devise novel and individualized anticancer therapeutic approaches.
Collapse
|
26
|
Müller P, Velazquez Camacho O, Yazbeck AM, Wölwer C, Zhai W, Schumacher J, Heider D, Buettner R, Quaas A, Hillmer AM. Why loss of Y? A pan-cancer genome analysis of tumors with loss of Y chromosome. Comput Struct Biotechnol J 2023; 21:1573-1583. [PMID: 36874157 PMCID: PMC9978323 DOI: 10.1016/j.csbj.2023.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Loss of the Y chromosome (LoY) is frequently observed in somatic cells of elderly men. However, LoY is highly increased in tumor tissue and correlates with an overall worse prognosis. The underlying causes and downstream effects of LoY are widely unknown. Therefore, we analyzed genomic and transcriptomic data of 13 cancer types (2375 patients) and classified tumors of male patients according to loss or retain of the Y chromosome (LoY or RoY, average LoY fraction: 0.46). The frequencies of LoY ranged from almost absence (glioblastoma, glioma, thyroid carcinoma) to 77% (kidney renal papillary cell carcinoma). Genomic instability, aneuploidy, and mutation burden were enriched in LoY tumors. In addition, we found more frequently in LoY tumors the gate keeping tumor suppressor gene TP53 mutated in three cancer types (colon adenocarcinoma, head and neck squamous carcinoma, lung adenocarcinoma) and oncogenes MET, CDK6, KRAS, and EGFR amplified in multiple cancer types. On the transcriptomic level, we observed MMP13, known to be involved in invasion, to be up-regulated in LoY of three adenocarcinomas and down-regulation of the tumor suppressor gene GPC5 in LoY of three cancer types. Furthermore, we found enrichment of a smoking-related mutation signature in LoY tumors of head and neck and lung cancer. Strikingly, we observed a correlation between cancer type-specific sex bias in incidence rates and frequencies of LoY, in line with the hypothesis that LoY increases cancer risk in males. Overall, LoY is a frequent phenomenon in cancer that is enriched in genomically unstable tumors. It correlates with genomic features beyond the Y chromosome and might contribute to higher incidence rates in males.
Collapse
Affiliation(s)
- Philipp Müller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Oscar Velazquez Camacho
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Ali M. Yazbeck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Christina Wölwer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Johannes Schumacher
- Institute of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Dominik Heider
- Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Germany
| | - Reinhard Buettner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Alexander Quaas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
- Cologne Group of Sex-specific Oncobiology (CGSO), Germany
| | - Axel M. Hillmer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
- Cologne Group of Sex-specific Oncobiology (CGSO), Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
27
|
Cheng X, Amanullah M, Liu W, Liu Y, Pan X, Zhang H, Xu H, Liu P, Lu Y. WMDS.net: a network control framework for identifying key players in transcriptome programs. Bioinformatics 2023; 39:7023921. [PMID: 36727489 PMCID: PMC9925106 DOI: 10.1093/bioinformatics/btad071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Mammalian cells can be transcriptionally reprogramed to other cellular phenotypes. Controllability of such complex transitions in transcriptional networks underlying cellular phenotypes is an inherent biological characteristic. This network controllability can be interpreted by operating a few key regulators to guide the transcriptional program from one state to another. Finding the key regulators in the transcriptional program can provide key insights into the network state transition underlying cellular phenotypes. RESULTS To address this challenge, here, we proposed to identify the key regulators in the transcriptional co-expression network as a minimum dominating set (MDS) of driver nodes that can fully control the network state transition. Based on the theory of structural controllability, we developed a weighted MDS network model (WMDS.net) to find the driver nodes of differential gene co-expression networks. The weight of WMDS.net integrates the degree of nodes in the network and the significance of gene co-expression difference between two physiological states into the measurement of node controllability of the transcriptional network. To confirm its validity, we applied WMDS.net to the discovery of cancer driver genes in RNA-seq datasets from The Cancer Genome Atlas. WMDS.net is powerful among various cancer datasets and outperformed the other top-tier tools with a better balance between precision and recall. AVAILABILITY AND IMPLEMENTATION https://github.com/chaofen123/WMDS.net. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310006, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Md Amanullah
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.,Department of Respiratory Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weigang Liu
- Department of Respiratory Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yi Liu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.,Department of Respiratory Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Xuhui 200234, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Liu
- Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cancer Center, Zhejiang University, Hangzhou 310029, China
| | - Yan Lu
- Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310006, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.,Cancer Center, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
28
|
Liu X, Chen J, Li J, Zeng Z, Jiang X, Gao Y, Huang Z, Wu Q, Gong Y, Xie C. Integrated analysis reveals common DNA methylation patterns of alcohol-associated cancers: A pan-cancer analysis. Front Genet 2023; 14:1032683. [PMID: 36861126 PMCID: PMC9968750 DOI: 10.3389/fgene.2023.1032683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The role of alcohol in carcinogenesis has received increasing attention in recent years. Evidence shows its impacts on various aspects, including epigenetics alteration. The DNA methylation patterns underlying alcohol-associated cancers are not fully understood. Methods: We investigated the aberrant DNA methylation patterns in four alcohol-associated cancers based on the Illumina HumanMethylation450 BeadChip. Pearson coefficient correlations were identified between differential methylated CpG probes and annotated genes. Transcriptional factor motifs were enriched and clustered using MEME Suite, and a regulatory network was constructed. Results: In each cancer, differential methylated probes (DMPs) were identified, and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were examined further. Annotated genes significantly regulated by PDMPs were investigated and enriched in transcriptional misregulation in cancers. The CpG island chr19:58220189-58220517 was hypermethylated in all four cancers and silenced in the transcription factor ZNF154. Various biological effects were exerted by 33 hypermethylated and seven hypomethylated transcriptional factor motifs grouped into five clusters. Eleven pan-cancer DMPs were identified to be associated with clinical outcomes in the four alcohol-associated cancers, which might provide a potential point of view for clinical outcome prediction. Conclusion: This study provides an integrated insight into DNA methylation patterns in alcohol-associated cancers and reveals the corresponding features, influences, and potential mechanisms.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Liao R, Yi G, Shen L, Zhang X, Xu Z, Peng Y, Yang Z. Genomic features and its potential implication in bone oligometastatic NSCLC. BMC Pulm Med 2023; 23:59. [PMID: 36755257 PMCID: PMC9906959 DOI: 10.1186/s12890-023-02354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES Emerging evidence have demonstrated that oligometastatic non-small cell lung cancer (NSCLC) can achieve clinical benefit from local consolidative therapy. Bone oligometastasis is common in advanced lung cancer, but little is known about its molecular features. The purpose of our study aimed to investigate the genomic landscape bone oligometastatic NSCLC. METHODS We collected paired blood and tissue samples from 31 bone oligometastatic NSCLC patients to make a comprehensive analysis of mutations by performing next-generation sequencing. RESULTS A total of 186 genomic mutations were detected from 105 distinct cancer-relevant genes, with a median number of 6 alterations per tumor. The most frequently mutated genes were EGFR (58%) and TP53 (55%), followed by KRAS (16%), CDKN2A (13%) and MET (13%). The signatures related to smoking, aging, homologous recombination deficiency and APOBEC were identified as the most important mutational processes in bone oligometastasis. The median tumor mutation burden was 4.4 mutations/Mb. Altogether, genetic alterations of bone oligometastasis are highly targetable that 74.19% of patients had at least one actionable alteration that was recommended for targeted therapy based on the OncoKB evidence. Of these patients, 16.13% had two actionable alterations that could potentially benefit from a different combination of targeted drugs to achieve better outcomes. CONCLUSION Our research comprehensively elucidates the genomic features of bone oligometastatic NSCLC patients, which may optimize individualized cancer treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Rongxin Liao
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Guangming Yi
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Lu Shen
- Geneplus-Beijing, Beijing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zaicheng Xu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Peng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Zhenzhou Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China.
| |
Collapse
|
30
|
Rao W, Yang L, Dai N, Zhang L, Liu J, Yang B, Li M, Shan J, Wang Q, Wang D. Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1767-1778. [PMID: 36739576 DOI: 10.1007/s12094-023-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/06/2023]
Abstract
PURPOSE Approximately, 45-65% stage I non-small cell lung cancer (NSCLC) patients with surgical resection relapse within 5 years. Therefore, it is urgent to identify the predictors involved in the relapse of stage I NSCLC. METHODS/PATIENTS Targeted sequencing was used to examine the mutation of tumor tissues and matched adjacent normal tissues from 35 patients with stage I lung adenocarcinoma (LUAD). Then, tissue microarrays containing tumor tissues from 149 stage I LUAD patients were used to assess protein expression of frequently mutated genes by immunohistochemistry. COX regression model was used to evaluate the impacts of frequently mutated genes and their protein expression on relapse-free survival (RFS) in stage I LUAD. RESULTS AND CONCLUSIONS Three hundred and twenty-nine non-synonymous somatic variants were identified in 161 genes among these 35 patients. EGFR, TP53, LRP1B, RBM10, KRAS, NTRK3, RB1, ALK, APC, FAT2, KEAP1, MED12 and MLL3 were described as frequently mutated genes with prevalence more than 10%. Patients harboring KRAS mutation had more relapse in 1 year after surgical resection. For the expression of these frequently mutated genes in 149 stage I patients, multivariate Cox regression analyses showed that the expression of RBM10 was positively associated with RFS in all patients (HR 0.40, 95% CI 0.15-1.0, p = 0.052), and the expression of APC was negative associated with RFS in patients with EGFR mutations (HR 3.10, 95% CI 1.54-6.26, p = 0.002). Stage I LUAD patients with KRAS mutation or low RBM10 expression are inclined to receive more positive intervention rather than just disease surveillance.
Collapse
Affiliation(s)
- Wen Rao
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.,The 75th Group Army Hospital, Dali, Yunnan, People's Republic of China
| | - Lujie Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Liang Zhang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jie Liu
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Bo Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital and Army Medical Center of PLA, Army Medical University, Chongqing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Lei T, Xu T, Zhang N, Zou X, Kong Z, Wei C, Wang Z. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol Res 2023; 188:106668. [PMID: 36681369 DOI: 10.1016/j.phrs.2023.106668] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Favorable clinical evidence suggests that the next trend in new treatments for advanced non-small cell lung cancer (NSCLC) will be combination therapies. However, inevitable epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance greatly limits the clinical efficacy of patients carrying EGFR-activating mutants. In this study, we found a patient with clinical osimertinib resistance who regained a positive response after osimertinib plus anlotinib treatment. Two osimertinib-resistant cell lines were constructed, and AXL conferred resistance to osimertinib in NSCLC cell lines. The combined effects of anlotinib and osimertinib restored sensitivity to osimertinib in two osimertinib-resistant NSCLC cell lines and in xenografts. Moreover, anlotinib inhibits the phosphorylation of AXL in both resistant cell lines. Mechanistically, we confirmed that MYC binds to the promoter of AXL to promote its transcription in NSCLC cells, and we demonstrated that anlotinib combined with osimertinib treatment enhances the anti-tumor effect by inactivating the c-MET/MYC/AXL axis to reverse osimertinib resistance in NSCLC. In conclusion, our results provide strong support that this combination therapy may be effective in enhancing the efficacy of treatments in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Tianwei Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, PR China.
| | - Niu Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Xiaoteng Zou
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Ziyue Kong
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Chenchen Wei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| |
Collapse
|
32
|
Predictive value of p53 and AXL immunostaining for the efficacy of immune checkpoint inhibitor-based therapy after osimertinib treatment in patients with epidermal growth factor-mutant non-small cell lung cancer. Cancer Immunol Immunother 2023; 72:1699-1707. [PMID: 36617602 DOI: 10.1007/s00262-023-03370-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
BACKGROUND Current evidence indicates that immune checkpoint inhibitors (ICIs) have a limited efficacy in patients with lung cancer harboring epidermal growth factor receptor (EGFR) mutations. However, there is a lack of data on the efficacy of ICIs after osimertinib treatment, and the predictors of ICI efficacy are unclear. METHODS We retrospectively assessed consecutive patients with EGFR-mutant NSCLC who received ICI-based therapy after osimertinib treatment at 10 institutions in Japan, between March 2016 and March 2021. Immunohistochemical staining was used to evaluate the expression of p53 and AXL. The deletions of exon 19 and the exon 21 L858R point mutation in EGFR were defined as common mutations; other mutations were defined as uncommon mutations. RESULTS A total of 36 patients with advanced or recurrent EGFR-mutant NSCLC were analyzed. In multivariate analysis, p53 expression in tumors was an independent predictor of PFS after ICI-based therapy (p = 0.002). In patients with common EGFR mutations, high AXL expression was a predictor of shorter PFS and overall survival after ICI-based therapy (log-rank test; p = 0.04 and p = 0.02, respectively). CONCLUSION The levels of p53 in pretreatment tumors may be a predictor of ICI-based therapy outcomes in patients with EGFR-mutant NSCLC after osimertinib treatment. High levels of AXL in tumors may also be a predictor of ICI-based therapy outcomes, specifically for patients with common EGFR mutations. Further prospective large-scale investigations on the predictors of ICI efficacy following osimertinib treatment are warranted.
Collapse
|
33
|
Saw SPL, Ng WP, Zhou S, Lai GGY, Tan AC, Ang MK, Lim WT, Kanesvaran R, Ng QS, Jain A, Tan WL, Rajasekaran T, Chan JWK, Teh YL, Pang M, Yeo JC, Takano A, Ong BH, Tan EH, Tan SH, Skanderup AJ, Tan DSW. PD-L1 score as a prognostic biomarker in asian early-stage epidermal growth factor receptor-mutated lung cancer. Eur J Cancer 2023; 178:139-149. [PMID: 36436331 DOI: 10.1016/j.ejca.2022.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
AIM To determine the prognostic value of programmed death-ligand 1 (PD-L1) score in early-stage epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC), contrasted against EGFR-wildtype NSCLC. METHODS Consecutive patients with Stage IA-IIIA NSCLC diagnosed 1st January 2010-31st December 2019 at National Cancer Centre Singapore with evaluable EGFR and PD-L1 status were included. Co-primary end-points were 2-year disease-free survival (DFS) and 5-year overall survival (OS) by Kaplan-Meier method. RESULTS 455 patients were included (267 EGFR-mutated, EGFR-M+; 188 EGFR-wildtype, wt). Median age at diagnosis was 65 years, 52.3% (238/455) of patients were males, 62.9% (286/455) of patients were never-smokers and 92.5% (421/455) of patients had R0 resection. Stage IA comprised 42.4% (193/455) of patients, Stage IB comprised 23.1% (105/455) of patients, Stage IIA comprised 10.8% of patients (49/455), Stage IIB comprised 5.1% of patients (23/455) and Stage IIIA comprised 18.7% (85/455) of patients. Among EGFR-M+, 45.3% (121/267) were Ex19del and 41.9% (112/267) were L858R. PD-L1 ≥1% among EGFR-M+ and EGFR-wt was 45.3% (121/267) and 54.8% (103/188) respectively (p = 0.047). At median follow-up of 47 months, 178 patients had relapsed. Among EGFR-M+, 2-year DFS comparing PD-L1 <1% and PD-L1 ≥1% was 78.1% and 67.6% (p = 0.007) while 5-year OS was 59.5% and 42.8% (p = 0.001), respectively. Controlling for age, gender, lymphovascular invasion, adjuvant therapy and resection margin status, PD-L1 ≥1% (hazard ratio, HR 2.18, 95% CI 1.04-4.54, p = 0.038), stage IIB (HR 7.78, 95% CI 1.72-35.27, p = 0.008) and stage IIIA (HR 4.45, 95% CI 1.44-13.80, p = 0.01) emerged as independent predictors of inferior OS on multivariable analysis. In exploratory analysis, genomic analysis of 81 EGFR-M+ tumours was performed. PD-L1 ≥1% tumours had significantly higher rates of TP53 mutations (36.1% versus 15.6%, p = 0.04), with predominantly missense mutations. CONCLUSION PD-L1 ≥1% is an independent predictor of worse OS among early-stage EGFR-mutated NSCLC and is associated with inferior DFS regardless of EGFR status. PD-L1 score as a risk stratification factor should be evaluated in prospective adjuvant studies among EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Stephanie P L Saw
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore. https://twitter.com/stephanieplsaw
| | - Win Pin Ng
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Genome Institute of Singapore, 60 Biopolis St 138672, Singapore
| | - Siqin Zhou
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 11 Hospital Crescent 169610, Singapore
| | - Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Mei-Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Wan Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Tanujaa Rajasekaran
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Johan W K Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Yi Lin Teh
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Mengyuan Pang
- Genome Institute of Singapore, 60 Biopolis St 138672, Singapore
| | - Jia-Chi Yeo
- Genome Institute of Singapore, 60 Biopolis St 138672, Singapore
| | - Angela Takano
- Division of Pathology, Singapore General Hospital, 20 College Road Academia, Level 7 169856, Singapore
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre, Singapore, 5 Hospital Dr 169609, Singapore
| | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore
| | - Sze Huey Tan
- Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore; Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 11 Hospital Crescent 169610, Singapore
| | | | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Rd 169857, Singapore.
| |
Collapse
|
34
|
Chen YY, Su PL, Huang WL, Chang CC, Yen YT, Lin CC, Tseng YL. The surgical resection of the primary tumor increases survival in patients with EGFR-mutant advanced non-small cell lung cancer: a tertiary center cohort study. Sci Rep 2022; 12:22560. [PMID: 36581631 PMCID: PMC9800377 DOI: 10.1038/s41598-022-22957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022] Open
Abstract
Tumor resection could increase treatment efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) in patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC). This study aimed to retrospectively analyze patients with advanced EGFR-mutant NSCLC from a Taiwanese tertiary center and receiving EGFR-TKI treatment with or without tumor resection. A total of 349 patients were enrolled. After propensity score matching, 53 EGFR-TKI treated patients and 53 EGFR-TKI treated patients with tumor resection were analyzed. The tumor resection group showed improved progression-free survival (PFS) (52.0 vs. 9.8 months; hazard ratio [HR] = 0.19; p < 0.001) and overall survival (OS) (not reached vs. 30.6 months; HR = 0.14; p < 0.001) compared to the monotherapy group. In the subgroup analysis of patients with newly-diagnosed NSCLC, the tumor resection group showed longer PFS (52.0 vs. 9.9 months; HR = 0.14; p < 0.001) and OS (not reached vs. 32.6 months; HR = 0.12; p < 0.001) than the monotherapy group. In conclusion. the combination of EGFR-TKI and tumor resection provided better PFS and OS than EGFR-TKI alone, and patients who underwent tumor resection within six months had fewer co-existing genomic alterations and better PFS.
Collapse
Affiliation(s)
- Ying-Yuan Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Wei-Li Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Chao-Chun Chang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Yi-Ting Yen
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Chien-Chung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan.
| |
Collapse
|
35
|
Zhao J, Wu Y, Chen MJ, Xu Y, Zhong W, Wang MZ. Characterization of driver mutations in Chinese non-small cell lung cancer patients using a novel targeted sequencing panel. J Thorac Dis 2022; 14:4669-4684. [PMID: 36647494 PMCID: PMC9840037 DOI: 10.21037/jtd-22-909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
Background The identification of driver mutations has greatly promoted the precise diagnosis and treatment of non-small cell lung cancer (NSCLC), but there is lack of targeted sequencing panels specifically designed and applied to Chinese NSCLC patients. This study aimed to design and validate of a novel sequencing panel for comprehensive characterization of driver mutations in Chinese NSCLC patients, facilitating further exploration of downstream pathway alterations and therapeutic utility. Methods A novel target sequencing panel including 21 driver genes was designed and examined in a cohort of 260 Chinese NSCLC patients who underwent surgery in Peking Union Medical College Hospital (PUMCH). Genetic alterations were identified and further analyzed for driver mutations, downstream pathways and therapeutic utilities. Results The most frequently identified driver mutations in PUMCH NSCLC cohort were on genes TP53 (28%), EGFR (27%) and PIK3CA (19%) for lung adenocarcinoma (LUAD), and TP53 (41%), PIK3CA (14%) and CDKN2A (13%) for lung squamous cell carcinoma (LUSC), respectively. Downstream pathway analysis revealed common pathways like G1_AND_S1_PHASES pathway were shared not only between LUAD and LUSC patients, but also among three different NSCLC cohorts, while other pathways were subtype-specific, like the unique enrichment of SHC1_EVENT_IN_EGFR_SIGNALING pathway in LUAD patients, and P38_ALPHA_BETA_DOWNSTREAM pathway in LUSC patients, respectively. About 60% of both LUAD and LUSC patients harbored driver mutations as sensitive biomarkers for different targeted therapies, covering not only frequent mutations like EGFR L858R mutation, but also rare mutations like BRAF D594N mutation. Conclusions Our study provides a novel target sequencing panel suitable for Chinese NSCLC patients, which can effectively identify driver mutations, analyze downstream pathway alterations and predict therapeutic utility. Overall it is promising to further optimize and apply this panel in clinic with convenience and effectiveness.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
| | - Min-Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Meng-Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
36
|
Zhang X, Yu Z, Xu Y, Chao Y, Hu Q, Li C, Ye M, Zhu X, Cui L, Bai J, Gong Y, Guan Y, Zhou M, Huang J, Zhang H, Ren T, Shen Q, Wang K, Hou Y, Xia X, Pu X, Carbone DP, Zhang X. Utility of cell-free DNA from bronchial washing fluid in diagnosis and genomic determination for radiology-suspected pulmonary nodules. Br J Cancer 2022; 127:2154-2165. [PMID: 36253524 PMCID: PMC9727069 DOI: 10.1038/s41416-022-01969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.
Collapse
Affiliation(s)
- Xinyu Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Zhuo Yu
- Beijing Tsinghua Changgung Hospital, 168 Litang Road, Changping District, 102218, Beijing, China
| | - Yaping Xu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yencheng Chao
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Qin Hu
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Chun Li
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Maosong Ye
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xiuli Zhu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Liang Cui
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Min Zhou
- Ruijin Hospital, Shanghai Jiao Tong University, No. 197 Ruijin Second Road, Huangpu District, 200025, Shanghai, China
| | - Jian'an Huang
- First People's Hospital, Suzhou University, No. 899 Pinghai Road, Gusu District, 215008, Suzhou, China
| | - Hua Zhang
- Zhengzhou Central Hospital, Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, 450000, Zhengzhou, China
| | - Tao Ren
- Shanghai Sixth People's Hospital, No 600 Yishan Road, Xuhui District, 200233, Shanghai, China
| | - Qian Shen
- First Affiliated Hospital of Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310002, Hangzhou, China
| | - Kai Wang
- Fourth Affiliated Hospital of Zhejiang University, No 88 Jiefang Road, Shangcheng District, 310002, Hangzhou, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, 410013, Changsha, Hunan, China.
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, 460W 12th Ave., Columbus, OH, 43210, USA.
| | - Xin Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China.
| |
Collapse
|
37
|
Li J, Liu B, Ye Q, Xiao X, Yan S, Guan W, He L, Wang C, Yu Z, Tai Z, Pei S, Ma Y, Li S, Wang Y, Wu N. Comprehensive genomic analysis of primary malignant melanoma of the esophagus reveals similar genetic patterns compared with epithelium-associated melanomas. Mod Pathol 2022; 35:1596-1608. [PMID: 35688970 DOI: 10.1038/s41379-022-01116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Primary malignant melanoma of the esophagus (PMME) is an exceedingly rare disease with a poor prognosis. The etiology of PMME remains largely unknown and genetic characteristics are yet to be clarified, essential for identifying potential therapeutic targets and defining treatment guidelines. Here, we performed whole-exome sequencing on 47 formalin-fixed paraffin-embedded specimens from 18 patients with PMME, including 23 tumor samples, 6 metastatic lymph nodes, and 18 tumor-adjacent normal tissues. The genomic features of PMME were comprehensively characterized, and comparative genomic analysis was further performed between these specimens and 398 skin cutaneous melanomas (SKCM), 67 non-esophagus mucosal melanomas (NEMM), and 79 uveal melanomas (UVM). In the PMME cohort, recurrently mutated driver genes, such as MUC16, RANBP2, NRAS, TP53, PTPRT, NF1, MUC4, KMT2C, and BRAF, were identified. All RANBP2 mutations were putatively deleterious, and most affected samples had multipoint mutations. Furthermore, RANBP2 showed parallel evolution by multiregional analysis. Whole-genome doubling was an early truncal event that occurred before most driver mutations, except for in TP53. An ultraviolet radiation-related mutational signature, SBS38, was identified as specific to epithelial melanomas and could predict inferior survival outcomes in both PMME and SKCM patients. Comparing the mutational and copy number landscapes between PMME and other subtypes of melanoma revealed that PMME has a similar genomic pattern and biological characteristics to SKCM. In summary, we comprehensively defined the key genomic aberrations and mutational processes driving PMME and suggested for the first time that PMME may share similar genomic patterns with SKCM; therefore, patients with rare melanomas, such as PMME, may benefit from the current treatment used for common cutaneous melanoma.
Collapse
Affiliation(s)
- Jingjing Li
- The Precision Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qing Ye
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xiao Xiao
- Geneplus-Shenzhen, Shenzhen, 518118, Guangdong, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenyan Guan
- The Pathology Department, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lu He
- The Pathology Department, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Changxi Wang
- Geneplus-Shenzhen, Shenzhen, 518118, Guangdong, China
| | - Zicheng Yu
- Geneplus-Shenzhen, Shenzhen, 518118, Guangdong, China
| | - Zaixian Tai
- Geneplus-Shenzhen, Shenzhen, 518118, Guangdong, China
| | - Shimei Pei
- Geneplus-Shenzhen, Shenzhen, 518118, Guangdong, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
38
|
Remon J, Hendriks LE, Mountzios G, García-Campelo R, Saw SP, Uprety D, Recondo G, Villacampa G, Reck M. MET alterations in NSCLC—Current Perspectives and Future Challenges. J Thorac Oncol 2022; 18:419-435. [PMID: 36441095 DOI: 10.1016/j.jtho.2022.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti-MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.
Collapse
|
39
|
Dzul Keflee R, Hoong Leong K, Ogawa S, Bignon J, Chiang Chan M, Weng Kong K. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol 2022; 205:115262. [PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanism of resistances towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever evolving and adaptive nature of NSCLC.
Collapse
Affiliation(s)
- Rashidi Dzul Keflee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Li L, Li J, Jia J, He H, Li M, Yan X, Yu Q, Guo H, Wang H, Lv Z, Sun H, Liao G, Cui J. Clonal evolution characteristics and reduced dimension prognostic model for non-metastatic metachronous bilateral breast cancer. Front Oncol 2022; 12:963884. [PMID: 36249030 PMCID: PMC9559188 DOI: 10.3389/fonc.2022.963884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND How to evaluate the prognosis and develop overall treatment strategies of metachronous bilateral breast cancer (MBBC) remains confused in clinical. Here, we investigated the correlation between clonal evolution and clinical characteristics of MBBC; we aim to establish a novel prognostic model in these patients. METHODS The data from Surveillance, Epidemiology, and End Results (SEER) database and the First Hospital of Jilin University were analyzed for breast cancer-specific cumulative mortality (BCCM) by competing risk model. Meanwhile, whole-exome sequencing was applied for 10 lesions acquired at spatial-temporal distinct regions of five patients from our own hospital to reconstruct clonal evolutionary characteristics of MBBC. Then, dimensional-reduction (DR) cumulative incidence function (CIF) curves of MBBC features were established on different point in diagnostic interval time, to build a novel DR nomogram. RESULTS Significant heterogeneity in genome and clinical features of MBBC was widespread. The mutational diversity of contralateral BC (CBC) was significantly higher than that in primary BC (PBC), and the most effective prognostic MATH ratio was significantly correlated with interval time (R 2 = 0.85, p< 0.05). In SEER cohort study (n = 13,304), the interval time was not only significantly affected the BCCM by multivariate analysis (p< 0.000) but determined the weight of clinical features (T/N stage, grade and ER status) on PBC and CBC in prognostic evaluation. Thus, clinical parameters after DR based on interval time were incorporated into the nomogram for prognostic predicting BCCM. Concordance index was 0.773 (95% CI, 0.769-0.776) in training cohort (n = 8,869), and 0.819 (95% CI, 0.813-0.826) in validation cohort (n = 4,435). CONCLUSIONS Bilateral heterogeneous characteristics and interval time were determinant prognostic factors of MBBC. The DR prognostic nomogram may help clinicians in prognostic evaluation and decision making.
Collapse
Affiliation(s)
- Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaxuan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiwei Jia
- School of Mathematics, Jilin University, Changchun, China
- National Applied Mathematical Center (Jilin), Changchun, China
| | - Hua He
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Mingyang Li
- College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Xu Yan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qing Yu
- Department of Translational Medicine, Geneplus-Beijing, Beijing, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haishuang Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guidong Liao
- School of Mathematics, Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
The comparison of cancer gene mutation frequencies in Chinese and U.S. patient populations. Nat Commun 2022; 13:5651. [PMID: 36163440 PMCID: PMC9512793 DOI: 10.1038/s41467-022-33351-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Knowing the mutation frequency of cancer genes in China is crucial for reducing the global health burden. We integrate the tumor epidemiological statistics with cancer gene mutation rates identified in 11,948 cancer patients to determine their weighted proportions within a Chinese cancer patient cohort. TP53 (51.4%), LRP1B (13.4%), PIK3CA (11.6%), KRAS (11.1%), EGFR (10.6%), and APC (10.5%) are identified as the top mutated cancer genes in China. Additionally, 18 common cancer types from both China and U.S. cohorts are analyzed and classified into three patterns principally based upon TP53 mutation rates: TP53-Top, TP53-Plus, and Non-TP53. Next, corresponding similarities and prominent differences are identified upon comparing the mutational profiles from both cohorts. Finally, the potential population-specific and environmental risk factors underlying the disparities in cancer gene mutation rates between the U.S. and China are analyzed. Here, we show and compare the mutation rates of cancer genes in Chinese and U.S. population cohorts, for a better understanding of the associated etiological and epidemiological factors, which are important for cancer prevention and therapy.
Collapse
|
42
|
Serna-Blasco R, Sánchez-Herrero E, Robado de Lope L, Sanz-Moreno S, Rodríguez-Festa A, Ares-Trotta D, Cruz-Bermúdez A, Franco F, Sánchez-Hernández A, Campayo MDJ, García-Girón C, Dómine M, Blasco A, Sánchez JM, Oramas J, Bosch-Barrera J, Sala MÁ, Sereno M, Romero A, Provencio M. Molecular Divergence upon EGFR-TKI Resistance Could Be Dependent on the Exon Location of the Original EGFR-Sensitizing Mutation. Cancers (Basel) 2022; 14:4446. [PMID: 36139605 PMCID: PMC9496947 DOI: 10.3390/cancers14184446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor molecular profiling upon disease progression enables investigations of the tumor evolution. Next-generation sequencing (NGS) of liquid biopsies constitutes a noninvasive readily available source of tumor molecular information. In this study, 124 plasma samples from advanced EGFR-positive NSCLC patients, treated with a first-line EGFR tyrosine kinase inhibitor (EGFR-TKI) were collected upon disease progression. The circulating cell-free DNA (cfDNA) was sequenced using the Oncomine Pan-Cancer Cell-Free Assay™. Excluding EGFR mutations, the most frequently mutated gene was TP53 (57.3%), followed by APC (11.3%), FGFR3 (7.3%), and KRAS (5.6%). Different molecular alterations were observed upon disease progression depending on the location of the original EGFR-sensitizing mutation. Specifically, the detection of the p.T790M mutation was significantly associated with the presence of exon 19 mutations in EGFR (Fisher p-value: 0.028). All KRAS activating mutations (n = 8) were detected in tumors with EGFR mutations in exons 18 and 21 (Fisher p-value < 0.001). Similarly, mutations in NRAS and HRAS were more frequently detected in samples from tumors harboring mutations in exons 18 or 21 (Fisher p-value: 0.050 and Fisher p-value: 0.099, respectively). In conclusion, our data suggest that the mechanisms underlying EGFR-TKI resistance could be dependent on the exon location of the original EGFR-sensitizing mutation.
Collapse
Affiliation(s)
- Roberto Serna-Blasco
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Estela Sánchez-Herrero
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
- I+D Department, Atrys Health, 08025 Barcelona, Spain
| | - Lucía Robado de Lope
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Sandra Sanz-Moreno
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Alejandro Rodríguez-Festa
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Dunixe Ares-Trotta
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
| | - Fabio Franco
- Medical Oncology, Hospital Puerta de Hierro, 28222 Majadahonda, Spain
| | | | - María de Julián Campayo
- Medical Oncology, Hospital Provincial Centre de Castelló, 120002 Castellón de La Plana, Spain
| | | | - Manuel Dómine
- Medical Oncology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Ana Blasco
- Medical Oncology, Hospital General Universitario Valencia, 46014 Valencia, Spain
| | - José M. Sánchez
- Medical Oncology, Hospital de La Princesa, 28006 Madrid, Spain
| | - Juana Oramas
- Medical Oncology, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | | | - María Á. Sala
- Medical Oncology, Hospital Basurto, 48013 Bilbao, Spain
| | - María Sereno
- Medical Oncology, Hospital Universitario Infanta Sofía, 28703 San Sebastián de Los Reyes, Spain
| | - Atocha Romero
- Liquid Biopsy Laboratory, Instituto de Investigación Sanitaria Hospital Puerta de Hierro—Segovia de Arana, 28222 Madrid, Spain
- Medical Oncology, Hospital Puerta de Hierro, 28222 Majadahonda, Spain
| | - Mariano Provencio
- Medical Oncology, Hospital Puerta de Hierro, 28222 Majadahonda, Spain
| |
Collapse
|
43
|
Liu SY, Liu SYM, Zhong WZ, Wu YL. Targeted Therapy in Early Stage Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1169-1184. [PMID: 35876956 DOI: 10.1007/s11864-022-00994-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Tyrosine kinase inhibitors (TKIs) have dramatically improved tumor response rates and survival benefits in advanced oncogenic non-small-cell lung cancer (NSCLC). Given the impressive success, a renewed interest has been raised in the study of these agents in the perioperative setting. Preliminary data have shown dramatic effectiveness compared to conventional chemotherapy. Given the explicit need to induce durable responses and raise cure rates, we summarize the current progression, identify key challenges, and raise potential opportunities for perioperative targeted therapy that range from precise biomarkers to optimal adjuvant regimens for individual patients. As perioperative treatment indeed provides researchers with a unique platform to address the challenges mentioned above, investigators could obtain a comprehensive analysis of genomic profiling and trace resistance mechanisms. Multidisciplinary collaboration and adaptive clinical trial designs are warranted to integrate translational research into personalized perioperative TKI treatment paradigms.
Collapse
Affiliation(s)
- Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Si-Yang Maggie Liu
- Department of Hematology, Jinan University, Guangzhou, 510632, China.,First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
44
|
Wu X, Song P, Guo L, Ying J, Li W. Mutant-Allele Tumor Heterogeneity, a Favorable Biomarker to Assess Intra-Tumor Heterogeneity, in Advanced Lung Adenocarcinoma. Front Oncol 2022; 12:888951. [PMID: 35847947 PMCID: PMC9286753 DOI: 10.3389/fonc.2022.888951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Intra-tumor heterogeneity (ITH) plays a vital role in drug resistance and recurrence of lung cancer. We used a mutant-allele tumor heterogeneity (MATH) algorithm to assess ITH and investigated its association with clinical and molecular features in advanced lung adenocarcinoma. Methods Tissues from 63 patients with advanced lung adenocarcinoma were analyzed by next-generation sequencing (NGS) using a panel targeting 520 cancer-relevant genes. We calculated the MATH values from NGS data and further investigated their correlation with clinical and molecular characteristics. Results Among the 63 patients with advanced lung adenocarcinoma, the median value of MATH was 33.06. Patients with EGFR mutation had higher level of MATH score than those with wild-type EGFR status (P = 0.008). Patients with stage IV disease showed a trend to have a higher MATH score than those with stage III (P = 0.052). MATH was higher in patients with disruptive TP53 mutations than in those with non-disruptive mutations (P = 0.036) or wild-type sequence (P = 0.023), but did not differ between tumors with non-disruptive mutations and wild-type TP53 (P = 0.867). High MATH is associated with mutations in mismatch repair (MMR) pathway (P = 0.026) and base excision repair (BER) pathway (P = 0.008). In addition, MATH was found to have a positive correlation with tumor mutational burden (TMB) (Spearman ρ = 0.354; P = 0.004). In 26 patients harboring EGFR mutation treated with first generation EGFR TKI as single-agent therapy, the objective response rate was higher in the Low-MATH group than in the High-MATH group (75% vs. 21%; P = 0.016) and Low-MATH group showed a significantly longer progression-free survival than High-MATH group (median PFS: 13.7 months vs. 10.1 months; P = 0.024). Conclusions For patients with advanced lung adenocarcinoma, MATH may serve as a clinically practical biomarker to assess intratumor heterogeneity.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Wenbin Li, ; Jianming Ying,
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Wenbin Li, ; Jianming Ying,
| |
Collapse
|
45
|
A phylogenetic approach to study the evolution of somatic mutational processes in cancer. Commun Biol 2022; 5:617. [PMID: 35732905 PMCID: PMC9217972 DOI: 10.1038/s42003-022-03560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer cell genomes change continuously due to mutations, and mutational processes change over time in patients, leaving dynamic signatures in the accumulated genomic variation in tumors. Many computational methods detect the relative activities of known mutation signatures. However, these methods may produce erroneous signatures when applied to individual branches in cancer cell phylogenies. Here, we show that the inference of branch-specific mutational signatures can be improved through a joint analysis of the collections of mutations mapped on proximal branches of the cancer cell phylogeny. This approach reduces the false-positive discovery rate of branch-specific signatures and can sometimes detect faint signatures. An analysis of empirical data from 61 lung cancer patients supports trends based on computer-simulated datasets for which the correct signatures are known. In lung cancer somatic variation, we detect a decreasing trend of smoking-related mutational processes over time and an increasing influence of APOBEC mutational processes as the tumor evolution progresses. These analyses also reveal patterns of conservation and divergence of mutational processes in cell lineages within patients.
Collapse
|
46
|
Sakamoto Y, Miyake S, Oka M, Kanai A, Kawai Y, Nagasawa S, Shiraishi Y, Tokunaga K, Kohno T, Seki M, Suzuki Y, Suzuki A. Phasing analysis of lung cancer genomes using a long read sequencer. Nat Commun 2022; 13:3464. [PMID: 35710642 PMCID: PMC9203510 DOI: 10.1038/s41467-022-31133-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal backgrounds of cancerous mutations still remain elusive. Here, we conduct the phasing analysis of non-small cell lung cancer specimens of 20 Japanese patients. By the combinatory use of short and long read sequencing data, we obtain long phased blocks of 834 kb in N50 length with >99% concordance rate. By analyzing the obtained phasing information, we reveal that several cancer genomes harbor regions in which mutations are unevenly distributed to either of two haplotypes. Large-scale chromosomal rearrangement events, which resemble chromothripsis events but have smaller scales, occur on only one chromosome, and these events account for the observed biased distributions. Interestingly, the events are characteristic of EGFR mutation-positive lung adenocarcinomas. Further integration of long read epigenomic and transcriptomic data reveal that haploid chromosomes are not always at equivalent transcriptomic/epigenomic conditions. Distinct chromosomal backgrounds are responsible for later cancerous aberrations in a haplotype-specific manner.
Collapse
Affiliation(s)
- Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shuhei Miyake
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Ono Pharmaceutical Co., Ltd, Ibaraki, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoi Nagasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
47
|
Kumar S U, Balasundaram A, Cathryn R H, Varghese RP, R S, R G, Younes S, Zayed H, Doss C GP. Whole-exome sequencing analysis of NSCLC reveals the pathogenic missense variants from cancer-associated genes. Comput Biol Med 2022; 148:105701. [PMID: 35753820 DOI: 10.1016/j.compbiomed.2022.105701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. NSCLC accounts for 84% of all lung cancer cases. In recent years, advances in pathway understanding, methods for discovering novel genetic biomarkers, and new drugs designed to inhibit the signaling cascades have enabled clinicians to personalize therapy for NSCLC. OBJECTIVES The primary aim of this study is to identify the genes associated with NSCLC that harbor pathogenic variants that could be causative for NSCLC. The second aim is to investigate their roles in different pathways that lead to NSCLC. METHODS We examined exome-sequencing datasets from 54 NSCLC patients to characterize the variants associated with NSCLC. RESULTS Our findings revealed that 17 variants in 14 genes were considered highly pathogenic, including CDKN2A, ERBB2, FOXP1, IDH1, JAK3, KMT2D, K-Ras, MSH3, MSH6, POLE, RNF43, TCF7L2, TP53, and TSC1. Gene set enrichment analysis revealed the involvement of transmembrane receptor protein tyrosine kinase activity, protein binding, ATP binding, phosphatidylinositol-4,5-bisphosphate 3-kinase, and Ras guanyl-nucleotide exchange factor activity. Pathway analysis of these genes yielded different cancer-related pathways, including colorectal, prostate, endometrial, pancreatic, PI3K-Akt signaling pathways, and signaling pathways regulating pluripotency of stem cells. Module 1 from protein-protein interactions (PPIs) identified genes that harbor pathogenic SNPs. Three of the most deleterious SNPs are ERBB2 (rs1196929947), K-Ras (rs121913529), and POLE (rs751425952). Interestingly, one patient has a pathogenic K-Ras variant (rs121913529) co-occurred with the missense variant (rs752054698) inTSC1 gene. CONCLUSION This study maps highly pathogenic variants associated with NSCLC and investigates their contributions to the pathogenesis of NSCLC. This study sheds light on the potential applications of precision medicine in patients with NSCLC.
Collapse
Affiliation(s)
- Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rinku Polachirakkal Varghese
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, 2713, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, 2713, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
48
|
Vokes NI, Chambers E, Nguyen T, Coolidge A, Lydon CA, Le X, Sholl L, Heymach JV, Nishino M, Van Allen EM, Jänne PA. Concurrent TP53 Mutations Facilitate Resistance Evolution in EGFR-Mutant Lung Adenocarcinoma. J Thorac Oncol 2022; 17:779-792. [PMID: 35331964 PMCID: PMC10478031 DOI: 10.1016/j.jtho.2022.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Patients with EGFR-mutant NSCLC experience variable duration of benefit on EGFR tyrosine kinase inhibitors. The effect of concurrent genomic alterations on outcome has been incompletely described. METHODS In this retrospective study, targeted next-generation sequencing data were collected from patients with EGFR-mutant lung cancer treated at the Dana-Farber Cancer Institute. Clinical data were collected and correlated with somatic mutation data. Associations between TP53 mutation status, genomic features, and mutational processes were analyzed. RESULTS A total of 269 patients were identified for inclusion in the cohort. Among 185 response-assessable patients with pretreatment specimens, TP53 alterations were the most common event associated with decreased first-line progression-free survival and decreased overall survival, along with DNMT3A, KEAP1, and ASXL1 alterations. Reduced progression-free survival on later-line osimertinib in 33 patients was associated with MET, APC, and ERBB4 alterations. Further investigation of the effect of TP53 alterations revealed an association with worse outcomes even in patients with good initial radiographic response, and faster acquisition of T790M and other resistance mechanisms. TP53-mutated tumors had higher mutational burdens and increased mutagenesis with exposure to therapy and tobacco. Cell cycle alterations were not independently predictive, but portended worse OS in conjunction with TP53 alterations. CONCLUSIONS TP53 alterations associate with faster resistance evolution independent of mechanism in EGFR-mutant NSCLC and may cooperate with other genomic events to mediate acquisition of resistance mutations to EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Chambers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexis Coolidge
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Christine A Lydon
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
49
|
Nanjo S, Wu W, Karachaliou N, Blakely CM, Suzuki J, Chou YT, Ali SM, Kerr DL, Olivas VR, Shue J, Rotow J, Mayekar MK, Haderk F, Chatterjee N, Urisman A, Yeo JC, Skanderup AJ, Tan AC, Tam WL, Arrieta O, Hosomichi K, Nishiyama A, Yano S, Kirichok Y, Tan DS, Rosell R, Okimoto RA, Bivona TG. Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR mutant lung cancer. J Clin Invest 2022; 132:145099. [PMID: 35579943 PMCID: PMC9246391 DOI: 10.1172/jci145099] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Molecularly targeted cancer therapy has improved outcomes for patients with cancer with targetable oncoproteins, such as mutant EGFR in lung cancer. Yet, the long-term survival of these patients remains limited, because treatment responses are typically incomplete. One potential explanation for the lack of complete and durable responses is that oncogene-driven cancers with activating mutations of EGFR often harbor additional co-occurring genetic alterations. This hypothesis remains untested for most genetic alterations that co-occur with mutant EGFR. Here, we report the functional impact of inactivating genetic alterations of the mRNA splicing factor RNA-binding motif 10 (RBM10) that co-occur with mutant EGFR. RBM10 deficiency decreased EGFR inhibitor efficacy in patient-derived EGFR-mutant tumor models. RBM10 modulated mRNA alternative splicing of the mitochondrial apoptotic regulator Bcl-x to regulate tumor cell apoptosis during treatment. Genetic inactivation of RBM10 diminished EGFR inhibitor–mediated apoptosis by decreasing the ratio of (proapoptotic) Bcl-xS to (antiapoptotic) Bcl-xL isoforms of Bcl-x. RBM10 deficiency was a biomarker of poor response to EGFR inhibitor treatment in clinical samples. Coinhibition of Bcl-xL and mutant EGFR overcame the resistance induced by RBM10 deficiency. This study sheds light on the role of co-occurring genetic alterations and on the effect of splicing factor deficiency on the modulation of sensitivity to targeted kinase inhibitor cancer therapy.
Collapse
Affiliation(s)
- Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Niki Karachaliou
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Junji Suzuki
- Department of Physiology, University of California, San Francisco, San Francisco, United States of America
| | - Yu-Ting Chou
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Siraj M Ali
- Foundation Medicine, Inc., Foundation Medicine, Inc., Cambridge, United States of America
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Victor R Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Jonathan Shue
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Julia Rotow
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, San Francisco, United States of America
| | - Jia Chi Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anders J Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Oscar Arrieta
- Thoracic Oncology Unit, National Cancer Center Institute (INCan), México City, Mexico
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomic, Kanazawa Universuty, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Seiji Yano
- Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, United States of America
| | - Daniel Sw Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Trever G Bivona
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, United States of America
| |
Collapse
|
50
|
Perioperative targeted therapy for oncogene-driven NSCLC. Lung Cancer 2022; 172:160-169. [DOI: 10.1016/j.lungcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
|