1
|
Beghѐ C, Harpham H, Barberic Y, Gromak N. R-loops in neurodegeneration. Curr Opin Genet Dev 2025; 92:102345. [PMID: 40203732 DOI: 10.1016/j.gde.2025.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025]
Abstract
Neurodegenerative diseases are associated with the progressive loss of neurons. R-loops are non-canonical nucleic acid structures formed during transcription and composed of an RNA/DNA hybrid and a displaced single-stranded DNA. Whilst R-loops are important regulators of cellular processes, they are also associated with the pathologies of multiple disorders, including repeat expansion, motor neuron, inflammatory and ageing diseases. In this review, we discuss how R-loops contribute to pathological mechanisms that underpin neurodegeneration. We highlight the role of R-loops in several hallmarks of neurodegenerative disorders, including RNA and DNA defects, DNA damage, protein aggregation, inflammation, mitochondrial dysfunction, and neuronal cell death. We also discuss the potential role of R-loops as therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Beghѐ
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Helena Harpham
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Yasmine Barberic
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK.
| |
Collapse
|
2
|
Westemeier-Rice ES, Winters MT, Rawson TW, Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B, Dziadowicz S, Yi W, Bobbala S, Hu G, Martinez I. Lnc-RAINY regulates genes involved in radiation susceptibility through DNA:DNA:RNA triplex-forming interactions and has tumor therapeutic potential in lung cancers. Noncoding RNA Res 2025; 12:152-166. [PMID: 40235937 PMCID: PMC11999364 DOI: 10.1016/j.ncrna.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 04/17/2025] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. Unfortunately, radiation resistance remains a major problem facing lung cancer patients. Recently, we identified a group of long non-coding RNAs (lncRNAs) known as linc-SPRY3 RNAs, expressed on the Y-chromosome, which play a role in radiation sensitivity by decreasing tumor burden in vitro and in vivo after radiation. In this study, we found that the linc-SPRY3 RNAs are one large lncRNA that we named Radiation Induced Y-chromosome linked long non-coding RNA (lnc-RAINY). Through ATAC-seq and immunoprecipitation experiments, we show that lnc-RAINY interacts with DNA in a triple helix to induce chromatin remodeling and gene expression. We also identified that lnc-RAINY regulates CDC6 and CDC25A expression affecting senescence induction, cell migration patterns, and cell cycle regulation. Furthermore, the administration of Lnc-RAINY encapsulated in FDA-approved nanoparticles into a lung cancer patient-derived xenograft model dramatically reduces tumor progression demonstrating therapeutic potential.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Kiran J. Patel
- West Virginia School of Medicine, West Virginia University, West Virginia, United States
| | - Olivia McHugh
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sierra Ward
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sarah McLaughlin
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Amanda Stewart
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Bishal Misra
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Weijun Yi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sharan Bobbala
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| |
Collapse
|
3
|
Palmer B, Lee CY, Yang L, Paul T, Myong S. High-frequency transcription leads to rapid R-loop formation. J Biol Chem 2025; 301:108514. [PMID: 40250562 DOI: 10.1016/j.jbc.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
R-loops are transcriptionally generated three-stranded nucleic acid structures where the mRNA hybridizes with template DNA, leaving a displaced single-stranded non-template DNA loop. Previously, we demonstrated that R-loop and subsequent G-quadruplex formation upregulate transcription. However, the mechanistic basis of how transcription activity generates R-loop formation is unknown. Here, we investigate the kinetics of transcription and its impact on R-loop formation using single-molecule FRET and EMSA. We show that R-loop formation is tuned by the frequency and the rate of transcription, controlled by the RNA polymerase and NTP concentrations, respectively. We provide a plausible mechanism in which gradually increasing the duration of the promoter opening leads to the R-loop formation. Through stochastic simulation, we demonstrate that the frequency of transcription primarily governs R-loop formation. This work highlights the intricate balance between transcription dynamics and R-loop formation, providing new insights into the structure-function relationship.
Collapse
Affiliation(s)
- Bradleigh Palmer
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chun-Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Leya Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Bártová E, Stixová L, Svobodová Kovaříková A. N4-acetylcytidine and other RNA modifications in epitranscriptome: insight into DNA repair and cancer development. Epigenomics 2025; 17:411-422. [PMID: 40040517 PMCID: PMC11980489 DOI: 10.1080/17501911.2025.2473308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that plays a crucial role in the epitranscriptome, influencing gene expression and cellular function. This modification occurs at the cytosine base, where an acetyl group is installed to the nitrogen at the 4th position (N4). This co-transcription modification affects RNA stability, RNA structure, and translation efficiency. Recent studies have uncovered a potential link between RNA modifications and DNA repair mechanisms, suggesting that ac4C-modified or methylated RNAs may interact with factors involved in DNA repair pathways; thus, influencing the cellular response to DNA damage. Dysregulation of modified RNAs, including ac4C RNA, has been implicated in cancer development, where aberrant levels of these RNAs may contribute to oncogenic transformation by altering genome stability and the expression of key genes regulating cell proliferation, cell cycle progression, and apoptosis. Understanding the dynamics of modified RNAs offers promising insights into the role of epitranscriptome in DNA repair processes and cancer treatment.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| | - Lenka Stixová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| | - Alena Svobodová Kovaříková
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| |
Collapse
|
5
|
Sberna S, Filipuzzi M, Bianchi N, Croci O, Fardella F, Soriani C, Rohban S, Carnevali S, Albertini AA, Crosetto N, Rodighiero S, Chiesa A, Curti L, Campaner S. Senataxin prevents replicative stress induced by the Myc oncogene. Cell Death Dis 2025; 16:187. [PMID: 40108134 PMCID: PMC11923212 DOI: 10.1038/s41419-025-07485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
Collapse
Affiliation(s)
- Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Filipuzzi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Federica Fardella
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Chiara Soriani
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Carnevali
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | | | - Nicola Crosetto
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE, 17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE, 17165, Sweden
| | - Simona Rodighiero
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Chiesa
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Mangione RM, Pierce S, Zheng M, Martin RM, Goncalves C, Kumar A, Scaglione S, de Sousa Morgado C, Penzo A, Lancrey A, Reid RJD, Lautier O, Gaillard PH, Stirling PC, de Almeida SF, Rothstein R, Palancade B. DNA lesions can frequently precede DNA:RNA hybrid accumulation. Nat Commun 2025; 16:2401. [PMID: 40064914 PMCID: PMC11893903 DOI: 10.1038/s41467-025-57588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While DNA:RNA hybrids contribute to multiple genomic transactions, their unscheduled formation is a recognized source of DNA lesions. Here, through a suite of systematic screens, we rather observed that a wide range of yeast mutant situations primarily triggering DNA damage actually leads to hybrid accumulation. Focusing on Okazaki fragment processing, we establish that genic hybrids can actually form as a consequence of replication-born discontinuities such as unprocessed flaps or unligated Okazaki fragments. Strikingly, such "post-lesion" DNA:RNA hybrids neither detectably contribute to genetic instability, nor disturb gene expression, as opposed to "pre-lesion" hybrids formed upon defective mRNA biogenesis, e.g., in THO complex mutants. Post-lesion hybrids similarly arise in distinct genomic instability situations, triggered by pharmacological or genetic manipulation of DNA-dependent processes, both in yeast and human cells. Altogether, our data establish that the accumulation of transcription-born DNA:RNA hybrids can occur as a consequence of various types of natural or pathological DNA lesions, yet do not necessarily aggravate their genotoxicity.
Collapse
Affiliation(s)
| | - Steven Pierce
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Zheng
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert M Martin
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Cristiana de Sousa Morgado
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Astrid Lancrey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Ophélie Lautier
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sérgio F de Almeida
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
7
|
Zhou Z, Luquette LJ, Dong G, Kim J, Ku J, Kim K, Bae M, Shao DD, Sahile B, Miller MB, Huang AY, Nathan WJ, Nussenzweig A, Park PJ, Lagier-Tourenne C, Lee EA, Walsh CA. Recurrent patterns of widespread neuronal genomic damage shared by major neurodegenerative disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641186. [PMID: 40093130 PMCID: PMC11908196 DOI: 10.1101/2025.03.03.641186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD) are common neurodegenerative disorders for which the mechanisms driving neuronal death remain unclear. Single-cell whole-genome sequencing of 429 neurons from three C9ORF72 ALS, six C9ORF72 FTD, seven AD, and twenty-three neurotypical control brains revealed significantly increased burdens in somatic single nucleotide variant (sSNV) and insertion/deletion (sIndel) in all three disease conditions. Mutational signature analysis identified a disease-associated sSNV signature suggestive of oxidative damage and an sIndel process, affecting 28% of ALS, 79% of FTD, and 65% of AD neurons but only 5% of control neurons (diseased vs. control: OR=31.20, p = 2.35×10-10). Disease-associated sIndels were primarily two-basepair deletions resembling signature ID4, which was previously linked to topoisomerase 1 (TOP1)-mediated mutagenesis. Duplex sequencing confirmed the presence of sIndels and identified similar single-strand events as potential precursor lesions. TOP1-associated sIndel mutagenesis and resulting genome instability may thus represent a common mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | | | - Guanlan Dong
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School; Boston, MA, USA
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University; Suwon, South Korea
| | - Jayoung Ku
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Kisong Kim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Mingyun Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital; Boston, MA, USA
| | - Bezawit Sahile
- Program in Neuroscience, Harvard Medical School; Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - William J. Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute; Boston, MA, USA
| |
Collapse
|
8
|
Fu H, Huang M, Wu H, Zheng H, Gong Y, Xing L, Gong J, An R, Li Q, Jie X, Ma X, Tang TS, Guo C. SART3 promotes homologous recombination repair by stimulating DNA-RNA hybrids removal and DNA end resection. Nat Commun 2025; 16:2244. [PMID: 40050279 PMCID: PMC11885473 DOI: 10.1038/s41467-025-57599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
DNA-RNA hybrids triggered by double-strand breaks (DSBs) are crucial intermediates during DSB repair, and their timely resolution requires numbers of RNA helicases, including DEAD box 1 (DDX1). However, how these helicases are recruited to DSB-induced hybrids in time remains largely unclear. Here, we revealed that squamous cell carcinoma antigen recognized by T cells 3 (SART3) promotes DDX1 binding to DNA-RNA hybrids at DSBs for optimal homologous recombination (HR) repair. SART3 itself associates with DNA-RNA hybrids and PAR chains and accumulates at DSBs in both PARylation- and DNA-RNA hybrids-dependent fashion. SART3 also associates with DDX1 and is necessary for DDX1 enrichment at DSBs. The defective SART3-DDX1 association observed in cells expressing the cancer-associated variant SART3-R836W impairs not only the accumulation of DDX1, but also hybrid removal and HR efficiency. Moreover, SART3 promotes DNA end resection through enhancing USP15-BARD1 association and BRCA1-BARD1 retention. Together, our study reveals an role of SART3 in DSB repair, rendering SART3 a promising target for cancer therapy.
Collapse
Affiliation(s)
- Hui Fu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Huang
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Hui Zheng
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yifei Gong
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingyu Xing
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Juanjuan Gong
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruiyuan An
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qian Li
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyu Jie
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Biomedical Engineering, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| | - Caixia Guo
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
de Klein B, Eickhoff N, Zwart W. The emerging regulatory interface between DNA repair and steroid hormone receptors in cancer. Trends Mol Med 2025:S1471-4914(25)00006-1. [PMID: 39934021 DOI: 10.1016/j.molmed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Human cells potentiate highly diverse functions through tight transcriptional regulation and maintenance of genome integrity. While the DNA damage response (DDR) safeguards the genome, ligand-activated transcription factors, such as steroid hormone receptors (SHRs), provide complex transcriptional outputs. Interestingly, an increasing body of evidence reveals a direct biological and functional interplay between DDR factors and SHR cascades in cancer. SHRs can directly affect DDR gene expression, but DDR factors in turn act as transcriptional coregulators, enabling oncogenic SHR-mediated signaling, which has the potential for novel therapeutic interventions. With a focus on breast and prostate cancer, we describe in this review recent developments in, and insights into, the complex interplay between SHR signaling and the DDR, highlighting opportunities for future clinical interventions.
Collapse
Affiliation(s)
- Bim de Klein
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands.
| |
Collapse
|
10
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
11
|
Kang Z, Xu C, Lu S, Gong J, Yan R, Luo G, Wang Y, He Q, Wu Y, Yan Y, Qian B, Han S, Bu Z, Zhang J, Xia X, Chen L, Hu Z, Lin M, Sun Z, Gu Y, Ye L. NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit. Nat Commun 2025; 16:791. [PMID: 39824811 PMCID: PMC11742055 DOI: 10.1038/s41467-024-55579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes. NKAPL binds to promoter-associated nascent transcripts and co-localizes with DNA-RNA hybrid R-loop structures at GAA-rich loci to enhance R-loop formation and facilitate Pol II pause-release. NKAPL depletion prolongs Pol II pauses and stalls the SOX30/HDAC3 transcription initiation complex on the chromatin. Genetic variants in NKAPL are associated with azoospermia in humans, while mice carrying an NKAPL frameshift mutation (M349fs) show defective meiotic exit and transcriptomic changes similar to NKAPL depletion. These findings identify NKAPL as an R-loop-recognizing factor that regulates transcription elongation, which coordinates the meiotic-to-postmeiotic transcriptome switch in alliance with the SOX30/HDAC3-mediated transcription initiation.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Gan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zhiwen Bu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xian Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou, Jiangsu, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
13
|
Yang H, Lan L. Transcription-coupled DNA repair protects genome stability upon oxidative stress-derived DNA strand breaks. FEBS Lett 2025; 599:168-176. [PMID: 38813713 PMCID: PMC11607181 DOI: 10.1002/1873-3468.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Elevated oxidative stress, which threatens genome stability, has been detected in almost all types of cancers. Cells employ various DNA repair pathways to cope with DNA damage induced by oxidative stress. Recently, a lot of studies have provided insights into DNA damage response upon oxidative stress, specifically in the context of transcriptionally active genomes. Here, we summarize recent studies to help understand how the transcription is regulated upon DNA double strand breaks (DSB) and how DNA repair pathways are selectively activated at the damage sites coupling with transcription. The role of RNA molecules, especially R-loops and RNA modifications during the DNA repair process, is critical for protecting genome stability. This review provides an update on how cells protect transcribed genome loci via transcription-coupled repair pathways.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Urology, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Aiello U, Porrua O, Libri D. Sen1: The Varied Virtues of a Multifaceted Helicase. J Mol Biol 2025; 437:168808. [PMID: 39357815 DOI: 10.1016/j.jmb.2024.168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Several machineries concurrently work on the DNA, but among them RNA Polymerases (RNAPs) are the most widespread and active users. The homeostasis of such a busy genomic environment relies on the existence of mechanisms that allow limiting transcription to a functional level, both in terms of extent and rate. Sen1 is a central player in this sense: using its translocase activity this protein has evolved the specific function of dislodging RNAPs from the DNA template, thus ending the transcription cycle. Over the years, studies have shown that Sen1 uses this same mechanism in a multitude of situations, allowing termination of all three eukaryotic RNAPs in different contexts. In virtue of its helicase activity, Sen1 has also been proposed to have a prominent function in the resolution of co-transcriptional genotoxic R-loops, which can cause the stalling of replication forks. In this review, we provide a synopsis of past and recent findings on the functions of Sen1 in yeast and of its human homologue Senataxin (SETX).
Collapse
Affiliation(s)
- Umberto Aiello
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA.
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Lu WT, Zalmas LP, Bailey C, Black JRM, Martinez-Ruiz C, Pich O, Gimeno-Valiente F, Usaite I, Magness A, Thol K, Webber TA, Jiang M, Saunders RE, Liu YH, Biswas D, Ige EO, Aerne B, Grönroos E, Venkatesan S, Stavrou G, Karasaki T, Al Bakir M, Renshaw M, Xu H, Schneider-Luftman D, Sharma N, Tovini L, Jamal-Hanjani M, McClelland SE, Litchfield K, Birkbak NJ, Howell M, Tapon N, Fugger K, McGranahan N, Bartek J, Kanu N, Swanton C. TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling. Nat Cell Biol 2025; 27:154-168. [PMID: 39738653 PMCID: PMC11735399 DOI: 10.1038/s41556-024-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency. FAT1 ablation causes persistent replication stress, an elevated mitotic failure rate, nuclear deformation and elevated structural CIN, including chromosome translocations and radial chromosomes. FAT1 loss contributes to whole-genome doubling (a form of numerical CIN) through the dysregulation of YAP1. Co-depletion of YAP1 partially rescues numerical CIN caused by FAT1 loss but does not relieve HR deficiencies, nor structural CIN. Importantly, overexpression of constitutively active YAP15SA is sufficient to induce numerical CIN. Taken together, we show that FAT1 loss in NSCLC attenuates HR and exacerbates CIN through two distinct downstream mechanisms, leading to increased tumour heterogeneity.
Collapse
Affiliation(s)
| | | | | | - James R M Black
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Carlos Martinez-Ruiz
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Francisco Gimeno-Valiente
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Ieva Usaite
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kerstin Thol
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Yun-Hsin Liu
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Dhruva Biswas
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Subramanian Venkatesan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Georgia Stavrou
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
- Department of Thoracic Surgery, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Maise Al Bakir
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Hang Xu
- The Francis Crick Institute, London, UK
| | | | - Natasha Sharma
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Laura Tovini
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mariam Jamal-Hanjani
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kevin Litchfield
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kasper Fugger
- University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Jiri Bartek
- Danish Cancer Society Research Centre, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institutet, Solna, Sweden.
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| | - Charles Swanton
- The Francis Crick Institute, London, UK.
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| |
Collapse
|
17
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. Mol Ther 2024; 32:4256-4271. [PMID: 39369271 PMCID: PMC11638834 DOI: 10.1016/j.ymthe.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, may promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Long Q, Ajit K, Sedova K, Haluza V, Stefl R, Dokaneheifard S, Beckedorff F, Valencia M, Sebesta M, Shiekhattar R, Gullerova M. Tetrameric INTS6-SOSS1 complex facilitates DNA:RNA hybrid autoregulation at double-strand breaks. Nucleic Acids Res 2024; 52:13036-13056. [PMID: 39445827 PMCID: PMC11602137 DOI: 10.1093/nar/gkae937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
Collapse
Affiliation(s)
- Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kamal Ajit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katerina Sedova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Vojtech Haluza
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica G Valencia
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
19
|
Kuznetsova AA, Kosarev IA, Timofeyeva NA, Novopashina DS, Kuznetsov NA. Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli. Int J Mol Sci 2024; 25:12263. [PMID: 39596330 PMCID: PMC11594918 DOI: 10.3390/ijms252212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
R-loops can act as replication fork barriers, creating transcription-replication collisions and inducing replication stress by arresting DNA synthesis, thereby possibly causing aberrant processing and the formation of DNA strand breaks. RNase H1 (RH1) is one of the enzymes that participates in R-loop degradation by cleaving the RNA strand within a hybrid RNA-DNA duplex. In this study, the kinetic features of the interaction of RH1 from Escherichia coli with R-loops of various structures were investigated. It was found that the values of the dissociation constants Kd were minimal for complexes of RH1 with model R-loops containing a 10-11-nt RNA-DNA hybrid part, indicating effective binding. Analysis of the kinetics of RNA degradation in the R-loops by RH1 revealed that the rate-limiting step of the process was catalytic-complex formation. In the presence of RNA polymerase, the R-loops containing a ≤16-nt RNA-DNA hybrid part were efficiently protected from cleavage by RH1. In contrast, R-loops containing longer RNA-DNA hybrid parts, as a model of an abnormal transcription process, were not protected by RNA polymerase and were effectively digested by RH1.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Iurii A. Kosarev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda A. Timofeyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
20
|
Wang Y, Tang F, Zhao T, Yuan J, Kellum A, Wang Y. N 2-Alkyl-dG lesions elicit R-loop accumulation in the genome. Nucleic Acids Res 2024; 52:12487-12497. [PMID: 39351875 PMCID: PMC11551765 DOI: 10.1093/nar/gkae845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/12/2024] Open
Abstract
Humans are exposed to DNA alkylating agents through endogenous metabolism, environmental exposure and cancer chemotherapy. The resulting alkylated DNA adducts may elicit genome instability by perturbing DNA replication and transcription. R-loops regulate various cellular processes, including transcription, DNA repair, and telomere maintenance. However, unscheduled R-loops are also recognized as potential sources of DNA damage and genome instability. In this study, by employing fluorescence microscopy and R-loop sequencing approaches, we uncovered, for the first time, that minor-groove N2-alkyl-dG lesions elicit elevated R-loop accumulation in chromatin and in plasmid DNA in cells. We also demonstrated that the N2-alkyl-dG-induced R-loops impede transcription elongation and compromise genome integrity. Moreover, genetic depletion of DDX23, a R-loop helicase, renders cells more sensitive toward benzo[a]pyrene diolepoxide, a carcinogen that induces mainly the minor-groove N2-dG adduct. Together, our work unveiled that unrepaired minor-groove N2-alkyl-dG lesions may perturb genome integrity through augmenting R-loop levels in chromatin. Our findings suggest a potential therapeutic strategy involving the combination of R-loop helicase inhibitors with DNA alkylating drugs.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Feng Tang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Ting Zhao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | - Jun Yuan
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | - Andrew H Kellum
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
21
|
Li M, Shao G. Senataxin Attenuates DNA Damage Response Activation and Suppresses Senescence. Antioxidants (Basel) 2024; 13:1337. [PMID: 39594478 PMCID: PMC11591223 DOI: 10.3390/antiox13111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), induces DNA double-strand breaks (DSBs) that compromise genomic integrity. The DNA Damage Response (DDR), primarily mediated by ATM and ATR kinases, is crucial for recognizing and repairing DSBs. Senataxin (SETX), a DNA/RNA helicase, is critical in resolving R-loops, with mutations in SETX associated with neurodegenerative diseases. This study uncovers a novel function of senataxin in modulating DDR and its impact on cellular senescence. Senataxin is shown to be crucial not only for DSB repair but also for determining cell fate under oxidative stress. SETX knockout cells show impaired DSB repair and prolonged ATM/ATR signaling detected by Western blotting, leading to increased senescence, as indicated by elevated β-galactosidase activity following H2O2 exposure and I-PpoI-induced DSBs. Wild-type cells exhibit higher apoptosis levels compared to SETX knockout cells under H2O2 treatment, suggesting that senataxin promotes apoptosis over senescence in oxidative stress. This indicates that senataxin plays a protective role against the accumulation of senescent cells, potentially mitigating age-related cellular decline and neurodegenerative disease progression. These findings highlight senataxin as a critical mediator in DDR pathways and a potential therapeutic target for conditions where cellular senescence contributes to disease pathology.
Collapse
Affiliation(s)
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
22
|
Xhemalçe B, Miller KM, Gromak N. Epitranscriptome in action: RNA modifications in the DNA damage response. Mol Cell 2024; 84:3610-3626. [PMID: 39366350 PMCID: PMC12044609 DOI: 10.1016/j.molcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Blerta Xhemalçe
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road OX1 3RE, UK.
| |
Collapse
|
23
|
Lee YJ, Lee SY, Kim S, Kim SH, Lee SH, Park S, Kim JJ, Kim DW, Kim H. REXO5 promotes genomic integrity through regulating R-loop using its exonuclease activity. Leukemia 2024; 38:2150-2161. [PMID: 39080354 PMCID: PMC11436357 DOI: 10.1038/s41375-024-02362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Chronic myeloid leukemia (CML), caused by BCR::ABL1 fusion gene, is known to regulate disease progression by altering the expression of genes. However, the molecular mechanisms underlying these changes are largely unknown. In this study, we identified RNA Exonuclease 5 (REXO5/LOC81691) as a novel gene with elevated mRNA expression levels in chronic myeloid leukemia (CML) patients. Additionally, using the REXO5 knockout (KO) K562 cell lines, we revealed a novel role for REXO5 in the DNA damage response (DDR). Compared to wild-type (WT) cells, REXO5 KO cells showed an accumulation of R-loops and increased DNA damage. We demonstrated that REXO5 translocates to sites of DNA damage through its RNA recognition motif (RRM) and selectively binds to R loops. Interestingly, we identified that REXO5 regulates R-loop levels by degrading mRNA within R-loop using its exonuclease domain. REXO5 KO showed ATR-CHK1 activation. Collectively, we demonstrated that REXO5 plays a key role in the physiological control of R-loops using its exonuclease domain. These findings may provide novel insights into how REXO5 expression changes contribute to CML pathogenesis.
Collapse
Affiliation(s)
- Ye Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Soomi Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Soo-Hyun Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Sungho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea.
| | - Dong-Wook Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea.
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
24
|
Downs JA, Gasser SM. Chromatin remodeling and spatial concerns in DNA double-strand break repair. Curr Opin Cell Biol 2024; 90:102405. [PMID: 39083951 DOI: 10.1016/j.ceb.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The substrate for the repair of DNA damage in living cells is not DNA but chromatin. Chromatin bears a range of modifications, which in turn bind ligands that compact or open chromatin structure, and determine its spatial organization within the nucleus. In some cases, RNA in the form of RNA:DNA hybrids or R-loops modulates DNA accessibility. Each of these parameters can favor particular pathways of repair. Chromatin or nucleosome remodelers are key regulators of chromatin structure, and a number of remodeling complexes are implicated in DNA repair. We cover novel insights into the impact of chromatin structure, nuclear organization, R-loop formation, nuclear actin, and nucleosome remodelers in DNA double-strand break repair, focusing on factors that alter repair functional upon ablation.
Collapse
Affiliation(s)
- Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Susan M Gasser
- ISREC Foundation, and University of Lausanne, Agora Cancer Research Center, Rue du Bugnon 25a, 1005 Lausanne, Switzerland.
| |
Collapse
|
25
|
Chen BR, Pham T, Reynolds LD, Dang N, Zhang Y, Manalang K, Matos-Rodrigues G, Neidigk JR, Nussenzweig A, Tyler JK, Sleckman BP. Senataxin and DNA-PKcs Redundantly Promote Non-Homologous End Joining Repair of DNA Double Strand Breaks During V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615014. [PMID: 39386666 PMCID: PMC11463457 DOI: 10.1101/2024.09.25.615014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-homologous end joining (NHEJ) is required for repairing DNA double strand breaks (DSBs) generated by the RAG endonuclease during lymphocyte antigen receptor gene assembly by V(D)J recombination. The Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) kinases regulate functionally redundant pathways required for NHEJ. Here we report that loss of the senataxin helicase leads to a significant defect in RAG DSB repair upon inactivation of DNA-PKcs. The NHEJ function of senataxin is redundant with the RECQL5 helicase and the HLTF translocase and is epistatic with ATM. Co-inactivation of ATM, RECQL5 and HLTF results in an NHEJ defect similar to that from the combined deficiency of DNA-PKcs and senataxin or losing senataxin, RECQL5 and HLTF. These data suggest that ATM and DNA-PKcs regulate the functions of senataxin and RECQL5/HLTF, respectively to provide redundant support for NHEJ.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Thu Pham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Lance D. Reynolds
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Nghi Dang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Yanfeng Zhang
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
- Genetics Research Division, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Kimberly Manalang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | | | - Jason Romero Neidigk
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Barry P. Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
26
|
Lee S, Lee S, Choi N, Kim J, Kweon J, Miller K, Kim J. PCAF promotes R-loop resolution via histone acetylation. Nucleic Acids Res 2024; 52:8643-8660. [PMID: 38936834 PMCID: PMC11347145 DOI: 10.1093/nar/gkae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nak Hun Choi
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ja Young Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Hee Kweon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
27
|
Jose L, Smith K, Crowner A, Androphy EJ, DeSmet M. Senataxin mediates R-loop resolution on HPV episomes. J Virol 2024; 98:e0100324. [PMID: 39046232 PMCID: PMC11334462 DOI: 10.1128/jvi.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024] Open
Abstract
Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.
Collapse
Affiliation(s)
- Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Appel CD, Bermek O, Williams RS. Expression, purification, and biochemical analysis of the RNA-DNA hybrid helicase Sen1/SETX from Chaetomium thermophilum. Methods Enzymol 2024; 705:223-250. [PMID: 39389664 DOI: 10.1016/bs.mie.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Yeast Sen1 and its vertebrate ortholog Senataxin (also known as SETX) are RNA-DNA resolving helicases. Sen1 and SETX are implicated in multiple critical nuclear functions not limited to but including DNA replication and repair, RNA processing, and transcription. These> 200 kDa helicases have a two-domain architecture with an N-terminal regulatory helical repeat array linked to an SF1b helicase motor core via a variable sized central linker of low complexity sequence. Given the size of these proteins, production of milligram quantities of protein that is suitable for biochemical, biophysical, and protein structural analysis has been challenging. To overcome these limitations, we developed a robust selectable high-yield YFP-fusion protein expression method for Sen1 production in mammalian cells, followed by purification on a high-affinity YFP-binding camelid nanobody support. Herein, we detail methods and protocols for the expression and purification of recombinant Sen1 from the thermophilic fungus Chaetomium thermophilum, and the quantitative characterization of its RNA-DNA duplex resolution activity.
Collapse
Affiliation(s)
- C Denise Appel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Oya Bermek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|
29
|
Choi SY. The roles of TonEBP in the DNA damage response: From DNA damage bypass to R-loop resolution. DNA Repair (Amst) 2024; 140:103697. [PMID: 38878563 DOI: 10.1016/j.dnarep.2024.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024]
Abstract
Tonicity-responsive enhancer binding protein (TonEBP) is a stress-responsive protein that plays a critical role in the regulation of gene expression and cellular adaptation to stressful environments. Recent studies uncovered the novel role of TonEBP in the DNA damage response, which significantly impacts genomic stability. This review provides a comprehensive overview of the novel role of TonEBP in DNA damage repair, including its involvement in the DNA damage bypass pathway and the recognition and resolution of DNA damage-induced R-loop structures.
Collapse
Affiliation(s)
- Soo Youn Choi
- Department of Biology, Jeju National University, Jeju, the Republic of Korea.
| |
Collapse
|
30
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
31
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
32
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
33
|
Wang C, Huang Y, Yang Y, Li R, Li Y, Qiu H, Wu J, Shi G, Ma W, Songyang Z. ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader. Protein Cell 2024; 15:493-511. [PMID: 37991243 PMCID: PMC11214836 DOI: 10.1093/procel/pwad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiali Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
34
|
Wulfridge P, Sarma K. Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization. Nat Cell Biol 2024; 26:1025-1036. [PMID: 38914786 PMCID: PMC12044674 DOI: 10.1038/s41556-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
R-loops are three-stranded nucleic acid structures that are abundant and widespread across the genome and that have important physiological roles in many nuclear processes. Their accumulation is observed in cancers and neurodegenerative disorders. Recent studies have implicated a function for R-loops and G-quadruplex (G4) structures, which can form on the displaced single strand of R-loops, in three-dimensional genome organization in both physiological and pathological contexts. Here we discuss the interconnected functions of DNA:RNA hybrids and G4s within R-loops, their impact on DNA repair and gene regulatory networks, and their emerging roles in genome organization during development and disease.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Bakr A, Corte GD, Veselinov O, Kelekçi S, Chen MJM, Lin YY, Sigismondo G, Iacovone M, Cross A, Syed R, Jeong Y, Sollier E, Liu CS, Lutsik P, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res 2024; 52:5698-5719. [PMID: 38587186 PMCID: PMC11162808 DOI: 10.1093/nar/gkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Giuditta Della Corte
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Mei-Ju May Chen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Marika Iacovone
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Rabail Syed
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yunhee Jeong
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Chun- Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Székvölgyi L. Chromosomal R-loops: who R they? Biol Futur 2024; 75:177-182. [PMID: 38457033 DOI: 10.1007/s42977-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
R-loops, composed of DNA-RNA hybrids and displaced single-stranded DNA, are known to pose a severe threat to genome integrity. Therefore, extensive research has focused on identifying regulatory proteins involved in controlling R-loop levels. These proteins play critical roles in preventing R-loop accumulation and associated genome instability. Herein I summarize recent knowledge on R-loop regulators affecting R-loop homeostasis, involving a wide array of R-loop screening methods that have enabled their characterization, from forward genetic and siRNA-based screens to proximity labeling and machine learning. These approaches not only deepen our understanding on R-loop formation processes, but also hold promise to find new targets in R-loop dysregulation associated with human pathologies.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
37
|
Liu Z, Ajit K, Wu Y, Zhu WG, Gullerova M. The GATAD2B-NuRD complex drives DNA:RNA hybrid-dependent chromatin boundary formation upon DNA damage. EMBO J 2024; 43:2453-2485. [PMID: 38719994 PMCID: PMC11183058 DOI: 10.1038/s44318-024-00111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/19/2024] Open
Abstract
Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.
Collapse
Affiliation(s)
- Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Kamal Ajit
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Yupei Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518055, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518055, Shenzhen, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
38
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592855. [PMID: 38766176 PMCID: PMC11100726 DOI: 10.1101/2024.05.07.592855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
39
|
Min J, Gautier J. Chromatin compartments at DNA double-stranded breaks. Cell Res 2024; 34:337-338. [PMID: 38097773 PMCID: PMC11061130 DOI: 10.1038/s41422-023-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeon, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeon, New York, NY, USA.
| |
Collapse
|
40
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
41
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
42
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Huang TT, Chiang CY, Nair JR, Wilson KM, Cheng K, Lee JM. AKT1 interacts with DHX9 to Mitigate R Loop-Induced Replication Stress in Ovarian Cancer. Cancer Res 2024; 84:887-904. [PMID: 38241710 PMCID: PMC10947874 DOI: 10.1158/0008-5472.can-23-1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
PARP inhibitor (PARPi)-resistant BRCA-mutant (BRCAm) high-grade serous ovarian cancer (HGSOC) represents a new clinical challenge with unmet therapeutic needs. Here, we performed a quantitative high-throughput drug combination screen that identified the combination of an ATR inhibitor (ATRi) and an AKT inhibitor (AKTi) as an effective treatment strategy for both PARPi-sensitive and PARPi-resistant BRCAm HGSOC. The ATRi and AKTi combination induced DNA damage and R loop-mediated replication stress (RS). Mechanistically, the kinase domain of AKT1 directly interacted with DHX9 and facilitated recruitment of DHX9 to R loops. AKTi increased ATRi-induced R loop-mediated RS by mitigating recruitment of DHX9 to R loops. Moreover, DHX9 was upregulated in tumors from patients with PARPi-resistant BRCAm HGSOC, and high coexpression of DHX9 and AKT1 correlated with worse survival. Together, this study reveals an interaction between AKT1 and DHX9 that facilitates R loop resolution and identifies combining ATRi and AKTi as a rational treatment strategy for BRCAm HGSOC irrespective of PARPi resistance status. SIGNIFICANCE Inhibition of the AKT and ATR pathways cooperatively induces R loop-associated replication stress in high-grade serous ovarian cancer, providing rationale to support the clinical development of AKT and ATR inhibitor combinations. See related commentary by Ramanarayanan and Oberdoerffer, p. 793.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chih-Yuan Chiang
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jayakumar R. Nair
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelli M. Wilson
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ken Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jung-Min Lee
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
45
|
Zhang J, Chen F, Tang M, Xu W, Tian Y, Liu Z, Shu Y, Yang H, Zhu Q, Lu X, Peng B, Liu X, Xu X, Gullerova M, Zhu WG. The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability. Cell Rep 2024; 43:113779. [PMID: 38358891 DOI: 10.1016/j.celrep.2024.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.
Collapse
Affiliation(s)
- Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Yuxin Shu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Hui Yang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Bin Peng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xingzhi Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
46
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
47
|
Giannini M, Porrua O. Senataxin: A key actor in RNA metabolism, genome integrity and neurodegeneration. Biochimie 2024; 217:10-19. [PMID: 37558082 DOI: 10.1016/j.biochi.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The RNA/DNA helicase senataxin (SETX) has been involved in multiple crucial processes related to genome expression and integrity such us transcription termination, the regulation of transcription-replication conflicts and the resolution of R-loops. SETX has been the focus of numerous studies since the discovery that mutations in its coding gene are the root cause of two different neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and a juvenile form of Amyotrophic Lateral Sclerosis (ALS4). A plethora of cellular phenotypes have been described as the result of SETX deficiency, yet the precise molecular function of SETX as well as the molecular pathways leading from SETX mutations to AOA2 and ALS4 pathologies have remained unclear. However, recent data have shed light onto the biochemical activities and biological roles of SETX, thus providing new clues to understand the molecular consequences of SETX mutation. In this review we summarize near two decades of scientific effort to elucidate SETX function, we discuss strengths and limitations of the approaches and models used thus far to investigate SETX-associated diseases and suggest new possible research avenues for the study of AOA2 and ALS4 pathogenesis.
Collapse
Affiliation(s)
- Marta Giannini
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
48
|
Bader AS, Bushell M. iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis. Nat Commun 2023; 14:8419. [PMID: 38110444 PMCID: PMC10728174 DOI: 10.1038/s41467-023-44167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most mutagenic form of DNA damage, and play a significant role in cancer biology, neurodegeneration and aging. However, studying DSB-induced mutagenesis is limited by our current approaches. Here, we describe iMUT-seq, a technique that profiles DSB-induced mutations at high-sensitivity and single-nucleotide resolution around endogenous DSBs. By depleting or inhibiting 20 DSB-repair factors we define their mutational signatures in detail, revealing insights into the mechanisms of DSB-induced mutagenesis. Notably, we find that homologous-recombination (HR) is more mutagenic than previously thought, inducing prevalent base substitutions and mononucleotide deletions at distance from the break due to DNA-polymerase errors. Simultaneously, HR reduces translocations, suggesting a primary role of HR is specifically the prevention of genomic rearrangements. The results presented here offer fundamental insights into DSB-induced mutagenesis and have significant implications for our understanding of cancer biology and the development of DDR-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Cancer Research UK/CI, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
- The Gurdon Institute, University of Cambridge, Biochemistry, Cambridge, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
49
|
Haji-Seyed-Javadi R, Koyen AE, Rath SK, Madden MZ, Hou Y, Song BS, Kenney AM, Lan L, Yao B, Yu DS. HELZ promotes R loop resolution to facilitate DNA double-strand break repair by homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571747. [PMID: 38168208 PMCID: PMC10760136 DOI: 10.1101/2023.12.14.571747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
R loops are RNA-DNA hybrid containing structures involved in diverse cellular processes, including DNA double-strand break (DSB) repair. R loop homeostasis involving the formation and resolution of R loops is critical for DSB repair, and its dysregulation leads to genome instability. Here we show that the HELZ helicase promotes R loop resolution to facilitate DSB repair by homologous recombination (HR). HELZ depletion causes hypersensitivity to DSB-inducing agents, and HELZ localizes and binds to DSBs. HELZ depletion further leads to genomic instability in a R loop dependent manner and the accumulation of R loops globally and at DSBs. HELZ binds to R loops in response to DSBs and promotes their resolution, thereby facilitating HR to promote genome integrity. Our findings thus define a role for HELZ in promoting the resolution of R loops critical for DSB repair by HR.
Collapse
|
50
|
Jaiswal AS, Dutta A, Srinivasan G, Yuan Y, Zhou D, Shaheen M, Sadideen D, Kirby A, Williamson E, Gupta Y, Olsen SK, Xu M, Loranc E, Mukhopadhyay P, Pertsemlidis A, Bishop AR, Sung P, Nickoloff J, Hromas R. TATDN2 resolution of R-loops is required for survival of BRCA1-mutant cancer cells. Nucleic Acids Res 2023; 51:12224-12241. [PMID: 37953292 PMCID: PMC10711561 DOI: 10.1093/nar/gkad952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Gayathri Srinivasan
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Montaser Shaheen
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Doraid T Sadideen
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Austin Kirby
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yogesh K Gupta
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Mingjiang Xu
- Department of Molecular Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Eva Loranc
- Department of Cell Systems and Anatomy and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Pramiti Mukhopadhyay
- Department of Cell Systems and Anatomy and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Alexander Pertsemlidis
- Department of Cell Systems and Anatomy and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and the Greehey Children's Cancer Research Institute, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|