1
|
Shou Y, Wu X, Pae KH, Ahn GE, Kim SY, Kim SH, Yoon JW, Sung JH, Lee SK, Gong Z, Yan X, Choi IW, Nam CH. Laser-driven proton acceleration beyond 100 MeV by radiation pressure and Coulomb repulsion in a conduction-restricted plasma. Nat Commun 2025; 16:1487. [PMID: 39929819 PMCID: PMC11811029 DOI: 10.1038/s41467-025-56667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
An ultrahigh-intensity femtosecond laser can establish a longitudinal electric field stronger than 1013 Vm-1 within a plasma, accelerating particles potentially to GeV over a sub-millimetre distance. Laser-accelerated protons with high brightness and picosecond duration are highly desired for applications including proton imaging and flash radiotherapy, while a major limitation is the relatively low proton energy achieved yet, primarily due to the lack of a controllable acceleration structure. Here, we report the generation of protons with a cutoff energy exceeding 110 MeV, achieved by irradiating a multi-petawatt femtosecond laser on a conduction-restricted nanometre polymer foil with a finite lateral size. The enduring obstacles in achieving ultrahigh laser contrast and excellent laser pointing accuracy were successfully overcome, allowing the effective utilization of size-reduced nanometre foils. A long acceleration structure could be maintained in such a quasi-isolated foil since the conduction of cold electrons was restricted and a strong Coulomb field was established by carbon ions. Our achievement paves the road to enhance proton energy further, well meeting the requirements for applications, through a controllable acceleration process using well-designed nano- or micro-structured targets.
Collapse
Affiliation(s)
- Yinren Shou
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Xuezhi Wu
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, CAPT, Peking University, Beijing, China
| | - Ki Hong Pae
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gwang-Eun Ahn
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
| | - Seung Yeon Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
| | - Seong Hoon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jin Woo Yoon
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jae Hee Sung
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seong Ku Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Zheng Gong
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, CAPT, Peking University, Beijing, China
| | - Il Woo Choi
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea.
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | - Chang Hee Nam
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea.
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
2
|
Gong Z, Cao S, Palastro JP, Edwards MR. Laser Wakefield Acceleration of Ions with a Transverse Flying Focus. PHYSICAL REVIEW LETTERS 2024; 133:265002. [PMID: 39879010 DOI: 10.1103/physrevlett.133.265002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025]
Abstract
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration. Here, we show that a laser pulse with a focal spot that moves transverse to the laser propagation direction enables wakefield acceleration of ions to GeV energies in underdense plasma. Three-dimensional particle-in-cell simulations demonstrate that this relativistic-intensity "transverse flying focus" can trap ions in a comoving electrostatic pocket, producing a monoenergetic collimated ion beam. With a peak intensity of 10^{20} W/cm^{2} and an acceleration distance of 0.44 cm, we observe a proton beam with 23.1 pC charge, 1.6 GeV peak energy, and 3.7% relative energy spread. This approach allows for compact high-repetition-rate production of high-energy ions, highlighting the capability of more generalized spatiotemporal pulse shaping to address open problems in plasma physics.
Collapse
Affiliation(s)
- Zheng Gong
- Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA
- Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing 100190, China
| | - Sida Cao
- Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA
| | - John P Palastro
- University of Rochester, Laboratory for Laser Energetics, Rochester, New York 14623, USA
| | - Matthew R Edwards
- Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA
| |
Collapse
|
3
|
Kumar HS, Takahashi M, Kuramitsu Y, Ohnishi N. Integrating sheath and radiation-based acceleration using scaling coefficients for tailoring radiation dominant hybrid acceleration. Sci Rep 2024; 14:22531. [PMID: 39341913 PMCID: PMC11438887 DOI: 10.1038/s41598-024-72623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
An optimal target condition for generating GeV-energy ions with linearly polarized laser pulse is revealed by a hybrid acceleration theory based on the fractional contributions of the target normal sheath acceleration (TNSA) and the radiation pressure acceleration (RPA) mechanisms in the RPA-dominant regime. The theory is established with two scaling coefficients, which scale the TNSA and RPA velocities, and are sophisticated through two-dimensional particle-in-cell simulations where GeV-energy ions are obtained by RPA-dominant hybrid acceleration. By imposing limits on the scaling coefficients, three separate acceleration regions are obtained including a RPA-dominant acceleration region, which is optimal to generate GeV-energy ions. The past experiment/simulation results are in good agreement with the acceleration regions obtained. This RPA-dominant region is narrower than previously reported, and this region becomes even narrower with increasing material density.
Collapse
Affiliation(s)
- Harihara Sudhan Kumar
- Department of Aerospace Engineering, Tohoku University, 6-6-01 Aramakiazaaoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masayuki Takahashi
- Department of Aerospace Engineering, Tohoku University, 6-6-01 Aramakiazaaoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yasuhiro Kuramitsu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naofumi Ohnishi
- Department of Aerospace Engineering, Tohoku University, 6-6-01 Aramakiazaaoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
4
|
Sheil J, Poirier L, Lassise AC, Hemminga DJ, Schouwenaars S, Braaksma N, Frenzel A, Hoekstra R, Versolato OO. Power-Law Scaling Relating the Average Charge State and Kinetic Energy in Expanding Laser-Driven Plasmas. PHYSICAL REVIEW LETTERS 2024; 133:125101. [PMID: 39373435 DOI: 10.1103/physrevlett.133.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 10/08/2024]
Abstract
A universal power-law scaling z[over ¯]∝E^{0.4} in the correlation between the average ion charge state z[over ¯] and kinetic energy E in expanding laser-driven tin plasmas is identified. Universality here refers to an insensitivity to all experimental conditions: target geometry, expansion direction, laser wavelength, and power density. The power law is accurately captured in an analytical consideration of the dependence of the charge state on temperature and the subsequent transfer of internal to kinetic energy in the expansion. These analytical steps are individually, and collectively, validated by a two-dimensional radiation-hydrodynamic simulation of an expanding laser-driven plasma. This power-law behavior is expected to hold also for dense plasma containing heavier, complex ions such as those relevant to current and future laser-driven plasma light sources.
Collapse
|
5
|
Dai K, Cui Q, Zhang J. Single-shot probing of sub-picosecond solid-to-overdense-plasma dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:162. [PMID: 38992043 PMCID: PMC11239890 DOI: 10.1038/s41377-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A single-shot near-infrared probing method has been developed to characterize the formation and evolution of the pre-plasma dynamics over sub-picosecond timescales, which is essential for the societal applications of laser-accelerated ion technologies.
Collapse
Affiliation(s)
- Kunjian Dai
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingzhe Cui
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinwei Zhang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Azamoum Y, Becker GA, Keppler S, Duchateau G, Skupin S, Grech M, Catoire F, Hell S, Tamer I, Hornung M, Hellwing M, Kessler A, Schorcht F, Kaluza MC. Optical probing of ultrafast laser-induced solid-to-overdense-plasma transitions. LIGHT, SCIENCE & APPLICATIONS 2024; 13:109. [PMID: 38719813 PMCID: PMC11079011 DOI: 10.1038/s41377-024-01444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024]
Abstract
Understanding the solid target dynamics resulting from the interaction with an ultrashort laser pulse is a challenging fundamental multi-physics problem involving atomic and solid-state physics, plasma physics, and laser physics. Knowledge of the initial interplay of the underlying processes is essential to many applications ranging from low-power laser regimes like laser-induced ablation to high-power laser regimes like laser-driven ion acceleration. Accessing the properties of the so-called pre-plasma formed as the laser pulse's rising edge ionizes the target is complicated from the theoretical and experimental point of view, and many aspects of this laser-induced transition from solid to overdense plasma over picosecond timescales are still open questions. On the one hand, laser-driven ion acceleration requires precise control of the pre-plasma because the efficiency of the acceleration process crucially depends on the target properties at the arrival of the relativistic intensity peak of the pulse. On the other hand, efficient laser ablation requires, for example, preventing the so-called "plasma shielding". By capturing the dynamics of the initial stage of the interaction, we report on a detailed visualization of the pre-plasma formation and evolution. Nanometer-thin diamond-like carbon foils are shown to transition from solid to plasma during the laser rising edge with intensities < 1016 W/cm². Single-shot near-infrared probe transmission measurements evidence sub-picosecond dynamics of an expanding plasma with densities above 1023 cm-3 (about 100 times the critical plasma density). The complementarity of a solid-state interaction model and kinetic plasma description provides deep insight into the interplay of initial ionization, collisions, and expansion.
Collapse
Grants
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 03Z1H531, 05K16SJC,05K19SJC, 05P15SJFA1, 05P19SJFA1, 03VNE2068D Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- LASERLAB-EUROPE (Grant Agreement No. 871124, European Union’s Horizon 2020 research and innovation program)
Collapse
Affiliation(s)
- Yasmina Azamoum
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany.
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany.
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany.
| | - Georg Alexander Becker
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Sebastian Keppler
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | | | - Stefan Skupin
- Institut Lumière Matière, UMR 5306 - CNRS, Université de Lyon 1, 69622, Villeurbanne, France
| | - Mickael Grech
- LULI, CNRS, CEA, Sorbonne Université, Institut Polytechnique de Paris, Palaiseau, France
| | - Fabrice Catoire
- Université de Bordeaux-CNRS-CEA, CELIA, UMR 5107, Talence, France
| | - Sebastian Hell
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Issa Tamer
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Marco Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Marco Hellwing
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Alexander Kessler
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - Franck Schorcht
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - Malte Christoph Kaluza
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| |
Collapse
|
7
|
Liu Y, Zhang X, Shen B, Zheng X, Xing J, Kong F. Proton energy enhancement by optimizing a laser pulse profile. OPTICS EXPRESS 2024; 32:18007-18016. [PMID: 38858967 DOI: 10.1364/oe.523749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 06/12/2024]
Abstract
Based on current laboratory laser parameters and the low density target that is induced by the inevitable prepulse, we propose what we believe to be a new scheme to enhance the proton energy by employing a laser pulse with two different peak intensities. Initially, the lower-intensity peak of the laser pulse P1, irradiates the low-density plasma target induced by the prepulse to form a significantly denser plasma target. Such a compressed high-density target is critical for supporting the subsequent main pulse P2 with higher peak intensity to drive proton acceleration. As an example, particle-in-cell (PIC) simulations reveal that when using a circularly polarized (CP) flat-top P1 with a peak intensity of approximately 1.71 × 10 19 W/cm2, full-width at half-maximum(FWHM) duration of 325 fs and a CP P2 with a peak intensity of 1.54 × 10 22 W/cm2, FWHM duration of 26.5 fs, and focal spot radius of 4 µm successively acting on a target with an initial density of 8nc, protons with cut-off energy of 940 MeV can be obtained from the cascaded acceleration scheme. Compared with the case without P1, the cutoff energy increased by 340 MeV. Owing to the intervention of P1, this scheme overcomes the limitation of laser contrast and is more feasible to be implemented experimentally.
Collapse
|
8
|
Zeraouli G, Marconi M, Sullivan B, Wang S, Anaraki SZ, Hollinger R, Shlyaptsev S, Mariscal D, Rocca JJ. Multichannel Doppler fiber-imager spectrometer for spatiotemporal characterization of high-intensity laser-driven plasmas. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:043506. [PMID: 38619372 DOI: 10.1063/5.0200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
We demonstrate a flexible multichannel fiber-based imaging Doppler spectrometer to characterize plasmas in high intensity (≥1 × 1018 W/cm2) laser-plasma experiments at high repetition rates. This instrument collects data from ×21 different plasma locations combining optical fibers and a single imaging spectrometer. This diagnostic maps the plasma velocity evolution as a function of time with sub-pico-second resolution. Experimental results showing 2D velocity measurements of plasma with 20 μm spatial resolution are presented. Intensities of the order of 1018 W/cm2 were used to generate a plasma, while a much less intense, frequency doubled (400 nm), probe beam (1011 W/cm2) was used to measure the Doppler shift from the plasma critical surface. The instrument can be scaled to a larger number of channels (e.g., 100) still using a single spectrometer.
Collapse
Affiliation(s)
- G Zeraouli
- Colorado State University, Fort Collins, Colorado 80523, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Marconi
- Colorado State University, Fort Collins, Colorado 80523, USA
| | - B Sullivan
- Colorado State University, Fort Collins, Colorado 80523, USA
- XUV Lasers, Fort Collins, Colorado 80523, USA
| | - S Wang
- Colorado State University, Fort Collins, Colorado 80523, USA
| | | | - R Hollinger
- Colorado State University, Fort Collins, Colorado 80523, USA
| | - S Shlyaptsev
- Colorado State University, Fort Collins, Colorado 80523, USA
| | - D Mariscal
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J J Rocca
- Colorado State University, Fort Collins, Colorado 80523, USA
- XUV Lasers, Fort Collins, Colorado 80523, USA
| |
Collapse
|
9
|
Rösch TF, Afshari M, Balling F, Doyle L, Gerlach S, Hartmann J, Prasselsperger A, Morris S, Schreiber J. Transverse emittance growth of proton sources from laser-irradiated sub-μm-thin planar targets. Phys Rev E 2024; 109:025201. [PMID: 38491621 DOI: 10.1103/physreve.109.025201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2024]
Abstract
Proton bunches with maximum energies between 12 and 22 MeV were emitted from submicrometer-thin plastic foils upon irradiation by laser pulses with peak intensity of 4×10^{20}W/cm^{2}. The images of the protons by a magnetic quadrupole doublet on a screen remained consistently larger by a factor of 10 compared to expectations drawn from the ultralow transverse emittance values reported for thick foil targets. Analytic estimates and particle-in-cell simulations attribute this drastically increased emittance to formerly excluded Coulomb collisions between charged particles. The presence of carbon ions and significant transparency likely play a decisive role. This observation is highly relevant because such thin, partially transparent foils are considered ideal for optimizing maximum proton energies.
Collapse
Affiliation(s)
- Thomas F Rösch
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Masoud Afshari
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Felix Balling
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Leonard Doyle
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Sonja Gerlach
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Jens Hartmann
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | | | - Stuart Morris
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jörg Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| |
Collapse
|
10
|
Peng S, Wang Z, Hu F, Li Z, Zhang Q, Lu P. 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management. FRONTIERS OF OPTOELECTRONICS 2024; 17:3. [PMID: 38252379 PMCID: PMC10803720 DOI: 10.1007/s12200-024-00107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported. Within this system, each channel incorporates a rod-type fiber power amplifier, with individual operations reaching approximately 233 W. The active-locking of these coherently combined channels, followed by compression using gratings, yields an output with a pulse energy of 504 μJ and an average power of 403 W. Exceptional stability is maintained, with a 0.3% root mean square (RMS) deviation and a beam quality factor M2 < 1.2. Notably, precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages. This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam, reducing it from 488 to 260 fs after the gratings compressor, while concurrently enhancing the energy of the primary peak from 65% to 92%.
Collapse
Affiliation(s)
- Shuangxi Peng
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihao Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feilong Hu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengyan Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingbin Zhang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| |
Collapse
|
11
|
Liu M, Wang WM, Li YT. Steady regime of radiation pressure acceleration with foil thickness adjustable within micrometers under a 10-100 PW laser. Phys Rev E 2024; 109:015208. [PMID: 38366504 DOI: 10.1103/physreve.109.015208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024]
Abstract
Quasimonoenergetic GeV-scale protons are predicted to be efficiently generated via radiation pressure acceleration (RPA) when the foil thickness is matched with the laser intensity, e.g., L_{mat} of several nm to 100 nm for 10^{19}-10^{22}Wcm^{-2} available in laboratory. However, nonmonoenergetic protons with much lower energies than predicted were usually observed in RPA experiments because of too small foil thickness which cannot support insufficient laser contrast and foil surface roughness. Besides the technical problems, we here find that there is an upper-limit thickness L_{up} derived from the requirement that the laser energy should dominate over the ion source energy in the effective laser-proton interaction zone, and L_{up} is lower than L_{mat} with the intensity below 10^{22}Wcm^{-2}, which causes inefficient or unsteady RPA. As the intensity is enhanced to ≥10^{23}Wcm^{-2} provided by 10-100 PW laser facilities, L_{up} can significantly exceed L_{mat}, and therefore RPA becomes efficient. In this regime, L_{mat} acts as a lower-limit thickness for efficient RPA, so the matching thickness can be extended to a continuous range from L_{mat} to L_{up}; the range can reach micrometers, within which foil thickness is adjustable. This makes RPA steady and meanwhile the above technical problems can be overcome. Particle-in-cell simulation shows that multi-GeV quasimonoenergetic proton beams can be steadily generated and the fluctuation of the energy peaks and the energy conversation efficiency remains stable although the thickness is taken in a larger range with increasing intensity. This work predicts that near future RPA experiments with 10-100 PW facilities will enter a new regime with a large range of usable foil thicknesses that can be adjusted to the interaction conditions for steady acceleration.
Collapse
Affiliation(s)
- Meng Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- Department of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
12
|
Hata M, Sano T, Iwata N, Sentoku Y. Optimum design of double-layer target for proton acceleration by ultrahigh intense femtosecond lasers considering relativistic rising edge. Phys Rev E 2023; 108:035205. [PMID: 37849131 DOI: 10.1103/physreve.108.035205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023]
Abstract
Advances in laser technology have led to ever-increasing laser intensities. As a result, in addition to the amplified spontaneous emission and pedestal, it has become necessary to accurately treat the relativistic rising edge component. This component has not needed much consideration in the past because of its not relativistic intensity. In the previous study, a thin contamination layer was blown away from the target by the rear sheath field due to the relativistic rising edge component, and the target bulk was accelerated by the sheath field due to the main pulse. These indicated that the proton acceleration is not efficient in the target normal sheath acceleration by the ultrahigh intense femtosecond laser if the proton-containing layer is as thin as the contamination layer. Here we employ a double-layer target, making the second (rear) layer thick enough not to be blown away by the rising edge, so that the second layer is accelerated by the main pulse. The first layer is composed of heavy ions to reduce the total thickness of the target for efficient proton acceleration. We investigate an optimal design of a double-layer target for proton acceleration by the ultrahigh intense femtosecond laser considering the relativistic rising edge using two-dimensional particle-in-cell simulations. We also discuss how to optimize the design of such a double-layer target and find that it can be designed with two conditions: the first layer is not penetrated by hole boring, and the second layer is not blown away by the rising edge.
Collapse
Affiliation(s)
- Masayasu Hata
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kizugawa, Kyoto 619-0215, Japan
| | - Takayoshi Sano
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Natsumi Iwata
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Sentoku
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Wang PJ, Wang DH, Gao Y, Shou YR, Liu JB, Mei ZS, Cao ZX, Pan Z, Kong DF, Xu SR, Liu ZP, Chen SY, Zhao JR, Geng YX, Zhao YY, Yan XQ, Ma WJ. A versatile control program for positioning and shooting targets in laser-plasma experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:093303. [PMID: 37772947 DOI: 10.1063/5.0158103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023]
Abstract
We introduce a LabVIEW-based control program that significantly improves the efficiency and flexibility in positioning and shooting solid targets in laser-plasma experiments. The hardware driven by this program incorporates a target positioning subsystem and an imaging subsystem, which enables us to install up to 400 targets for one experimental campaign and precisely adjust them in six freedom degrees. The overall architecture and the working modes of the control program are demonstrated in detail. In addition, we characterized the distributions of target positions of every target holder and simultaneously saved the target images, resulting in a large dataset that can be used to train machine learning models and develop image recognition algorithms. This versatile control system has become an indispensable platform when preparing and conducting laser-plasma experiments.
Collapse
Affiliation(s)
- P J Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - D H Wang
- State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Y Gao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Y R Shou
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - J B Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Z S Mei
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Z X Cao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Z Pan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - D F Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - S R Xu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Z P Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - S Y Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - J R Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Y X Geng
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Y Y Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - X Q Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- Beijing Laser Acceleration Innovation Center, Huairou, Beijing 101400, China
- Institute of Guangdong Laser Plasma Technology, Baiyun, Guangzhou 510540, China
| | - W J Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- Beijing Laser Acceleration Innovation Center, Huairou, Beijing 101400, China
- Institute of Guangdong Laser Plasma Technology, Baiyun, Guangzhou 510540, China
| |
Collapse
|
14
|
Rehwald M, Assenbaum S, Bernert C, Brack FE, Bussmann M, Cowan TE, Curry CB, Fiuza F, Garten M, Gaus L, Gauthier M, Göde S, Göthel I, Glenzer SH, Huang L, Huebl A, Kim JB, Kluge T, Kraft S, Kroll F, Metzkes-Ng J, Miethlinger T, Loeser M, Obst-Huebl L, Reimold M, Schlenvoigt HP, Schoenwaelder C, Schramm U, Siebold M, Treffert F, Yang L, Ziegler T, Zeil K. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density. Nat Commun 2023; 14:4009. [PMID: 37419912 DOI: 10.1038/s41467-023-39739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.
Collapse
Affiliation(s)
- Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Garten
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ilja Göthel
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lingen Huang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Josefine Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas Miethlinger
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marvin Reimold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Christopher Schoenwaelder
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Franziska Treffert
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| |
Collapse
|
15
|
Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 2023; 131:104046. [PMID: 37207092 PMCID: PMC7614547 DOI: 10.1016/j.ppnp.2023.104046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) radiotherapy. However, the fraction of patients treated with accelerated particles is still very small and the therapy is only applied to a few solid cancer indications. The growth of particle therapy strongly depends on technological innovations aiming to make the therapy cheaper, more conformal and faster. The most promising solutions to reach these goals are superconductive magnets to build compact accelerators; gantryless beam delivery; online image-guidance and adaptive therapy with the support of machine learning algorithms; and high-intensity accelerators coupled to online imaging. Large international collaborations are needed to hasten the clinical translation of the research results.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica “Ettore Pancini”, University Federico II, Naples, Italy
| |
Collapse
|
16
|
Torrisi L, Cutroneo M, Torrisi A. SiC Measurements of Electron Energy by fs Laser Irradiation of Thin Foils. MICROMACHINES 2023; 14:811. [PMID: 37421045 DOI: 10.3390/mi14040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 07/09/2023]
Abstract
SiC detectors based on a Schottky junction represent useful devices to characterize fast laser-generated plasmas. High-intensity fs lasers have been used to irradiate thin foils and to characterize the produced accelerated electrons and ions in the target normal sheath acceleration (TNSA) regime, detecting their emission in the forward direction and at different angles with respect to the normal to the target surface. The electrons' energies have been measured using relativistic relationships applied to their velocity measured by SiC detectors in the time-of-flight (TOF) approach. In view of their high energy resolution, high energy gap, low leakage current, and high response velocity, SiC detectors reveal UV and X-rays, electrons, and ions emitted from the generated laser plasma. The electron and ion emissions can be characterized by energy through the measure of the particle velocities with a limitation at electron relativistic energies since they proceed at a velocity near that of the speed of light and overlap the plasma photon detection. The crucial discrimination between electrons and protons, which are the fastest ions emitted from the plasma, can be well resolved using SiC diodes. Such detectors enable the monitoring of the high ion acceleration obtained using high laser contrast and the absence of ion acceleration using low laser contrast, as presented and discussed.
Collapse
Affiliation(s)
- Lorenzo Torrisi
- Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, V.le F.S. D'Alcontres 31, 98166 Messina, Italy
| | - Mariapompea Cutroneo
- Nuclear Physics Institute of the CAS, Hlavní 130, 250 68 Husinec-Řež, Czech Republic
| | - Alfio Torrisi
- Dipartimento Interateneo di Fisica, Università di Bari "Aldo Moro", 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70126 Bari, Italy
| |
Collapse
|
17
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
18
|
Dover NP, Ziegler T, Assenbaum S, Bernert C, Bock S, Brack FE, Cowan TE, Ditter EJ, Garten M, Gaus L, Goethel I, Hicks GS, Kiriyama H, Kluge T, Koga JK, Kon A, Kondo K, Kraft S, Kroll F, Lowe HF, Metzkes-Ng J, Miyatake T, Najmudin Z, Püschel T, Rehwald M, Reimold M, Sakaki H, Schlenvoigt HP, Shiokawa K, Umlandt MEP, Schramm U, Zeil K, Nishiuchi M. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:71. [PMID: 36914618 PMCID: PMC10011581 DOI: 10.1038/s41377-023-01083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.
Collapse
Affiliation(s)
- Nicholas P Dover
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Emma J Ditter
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marco Garten
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ilja Goethel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - George S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hiromitsu Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - James K Koga
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Akira Kon
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Kotaro Kondo
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Hazel F Lowe
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | | | - Tatsuhiko Miyatake
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Zulfikar Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas Püschel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Marvin Reimold
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Hironao Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | | | - Keiichiro Shiokawa
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| | - Mamiko Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
19
|
Thompson SJ, Prise KM, McMahon SJ. Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Phys Med Biol 2023; 68. [PMID: 36731135 DOI: 10.1088/1361-6560/acb88a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective. Laser-accelerated protons offer an alternative delivery mechanism for proton therapy. This technique delivers dose-rates of ≥109Gy s-1, many orders of magnitude greater than used clinically. Such ultra-high dose-rates reduce delivery time to nanoseconds, equivalent to the lifetime of reactive chemical species within a biological medium. This leads to the possibility of inter-track interactions between successive protons within a pulse, potentially altering the yields of damaging radicals if they are in sufficient spatial proximity. This work investigates the temporal evolution of chemical species for a range of proton energies and doses to quantify the circumstances required for inter-track interactions, and determine any relevance within ultra-high dose-rate proton therapy.Approach. The TOPAS-nBio Monte Carlo toolkit was used to investigate possible inter-track interactions. Firstly, protons between 0.5 and 100 MeV were simulated to record the radial track dimensions throughout the chemical stage from 1 ps to 1μs. Using the track areas, the geometric probability of track overlap was calculated for various exposures and timescales. A sample of irradiations were then simulated in detail to compare any change in chemical yields for independently and instantaneously delivered tracks, and validate the analytic model.Main results. Track overlap for a clinical 2 Gy dose was negligible for biologically relevant timepoints for all energies. Overlap probability increased with time after irradiation, proton energy and dose, with a minimum 23 Gy dose required before significant track overlap occurred. Simulating chemical interactions confirmed these results with no change in radical yields seen up to 8 Gy for independently and instantaneously delivered tracks.Significance. These observations suggest that the spatial separation between incident protons is too large for physico-chemical inter-track interactions, regardless of the delivery time, indicating such interactions would not play a role in any potential changes in biological response between laser-accelerated and conventional proton therapy.
Collapse
Affiliation(s)
- Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
20
|
Bae LJ, Kang GB, Kim M, Lee GS, Sohn JH, Nam CH, Cho BI. Diagnosis of ultrafast surface dynamics of thin foil targets irradiated by intense laser pulses. OPTICS EXPRESS 2023; 31:5767-5776. [PMID: 36823849 DOI: 10.1364/oe.474759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The temporal modulation of an electron bunch train accelerated from a foil target irradiated by an intense laser pulse is studied by measuring the coherent transition radiation (CTR) from the rear surface of a target. We experimentally obtained CTR spectra from a 1 µm thick foil target irradiated at a maximum intensity of 6.5 × 1019 W/cm2. Spectral redshifts of the emitted radiation corresponding to increases in laser intensity were observed. These measurements were compared with the theoretical calculation of CTR spectra considering ultrafast surface dynamics, such as plasma surface oscillation and relativistically induced transparency. Plasma surface oscillations induce a spectral redshift, while relativistic transparency causes a spectral blueshift. Both effects are required to find reasonable agreement with the experiment over the entire range of laser intensities.
Collapse
|
21
|
Bruhaug G, Freeman MS, Rinderknecht HG, Neukirch LP, Wilde CH, Merrill FE, Rygg JR, Wei MS, Collins GW, Shaw JL. Single-shot electron radiography using a laser-plasma accelerator. Sci Rep 2023; 13:2227. [PMID: 36755138 PMCID: PMC9908895 DOI: 10.1038/s41598-023-29217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Contact and projection electron radiography of static targets was demonstrated using a laser-plasma accelerator driven by a kilojoule, picosecond-class laser as a source of relativistic electrons with an average energy of 20 MeV. Objects with areal densities as high as 7.7 g/cm2 were probed in materials ranging from plastic to tungsten, and radiographs with resolution as good as 90 μm were produced. The effects of electric fields produced by the laser ablation of the radiography objects were observed and are well described by an analytic expression relating imaging magnification change to electric-field strength.
Collapse
Affiliation(s)
- G Bruhaug
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA.
| | - M S Freeman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - H G Rinderknecht
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - L P Neukirch
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - C H Wilde
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - F E Merrill
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - J R Rygg
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - M S Wei
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - G W Collins
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - J L Shaw
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| |
Collapse
|
22
|
Chaudhary P, Milluzzo G, McIlvenny A, Ahmed H, McMurray A, Maiorino C, Polin K, Romagnani L, Doria D, McMahon SJ, Botchway SW, Rajeev PP, Prise KM, Borghesi M. Cellular irradiations with laser-driven carbon ions at ultra-high dose rates. Phys Med Biol 2023; 68. [PMID: 36625355 DOI: 10.1088/1361-6560/aca387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
Objective.Carbon is an ion species of significant radiobiological interest, particularly in view of its use in cancer radiotherapy, where its large Relative Biological Efficiency is often exploited to overcome radio resistance. A growing interest in highly pulsed carbon delivery has arisen in the context of the development of the FLASH radiotherapy approach, with recent studies carried out at dose rates of 40 Gy s-1. Laser acceleration methods, producing ultrashort ion bursts, can now enable the delivery of Gy-level doses of carbon ions at ultra-high dose rates (UHDRs), exceeding 109Gy s-1. While studies at such extreme dose rate have been carried out so far using low LET particles such as electrons and protons, the radiobiology of high-LET, UHDR ions has not yet been explored. Here, we report the first application of laser-accelerated carbon ions generated by focussing 1020W cm-2intense lasers on 10-25 nm carbon targets, to irradiate radioresistant patient-derived Glioblastoma stem like cells (GSCs).Approach.We exposed GSCs to 1 Gy of 9.5 ± 0.5 MeV/n carbon ions delivered in a single ultra-short (∼400-picosecond) pulse, at a dose rate of 2 × 109Gy s-1, generated using the ASTRA GEMINI laser of the Central Laser Facility at the Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK. We quantified carbon ion-induced DNA double strand break (DSB) damage using the 53BP1 foci formation assay and used 225 kVp x-rays as a reference radiation.Main Results.Laser-accelerated carbon ions induced complex DNA DSB damage, as seen through persistent 53BP1 foci (11.5 ± 0.4 foci/cell/Gy) at 24 h and significantly larger foci (1.69 ± 0.07μm2) than x-rays induced ones (0.63 ± 0.02μm2). The relative foci induction value for laser-driven carbon ions relative to conventional x-rays was 3.2 ± 0.3 at 24 h post-irradiation also confirming the complex nature of the induced damage.Significance.Our study demonstrates the feasibility of radiobiology investigations at unprecedented dose rates using laser-accelerated high-LET carbon ions in clinically relevant models.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Giuliana Milluzzo
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy
| | - Aodhan McIlvenny
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Hamad Ahmed
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Aaron McMurray
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Carla Maiorino
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania.,University College Cork, College of Medicine and Health, Discipline of Diagnostic Radiography and Radiation Therapy, Brookfield Health Sciences Complex, Brookfield College Road, T12AK54, Cork, United Kingdom
| | - Kathryn Polin
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Lorenzo Romagnani
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratoire LULI, École Polytechnique, Route de Saclay, F-91128 Palaiseau, Paris, France
| | - Domenico Doria
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania
| | - Stephen J McMahon
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Stanley W Botchway
- Research Complex at Harwell & Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Pattathil P Rajeev
- Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Kevin M Prise
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Marco Borghesi
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
23
|
High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Sci Rep 2022; 12:19767. [DOI: 10.1038/s41598-022-24155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractContemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimise neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems. To improve the ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a plasma layer of near-critical density to enhance the laser focusing. We compare the performance of these single- and double-layer targets, and determine their optimum parameters in terms of energy and angular spectra of the accelerated ions. These are then sent into a converter to generate neutrons via nuclear reactions on beryllium and lead nuclei. Overall, we identify configurations that result in neutron yields as high as $$\sim 10^{10}\,{\mathrm{n}}\,{\mathrm{sr}}^{-1}$$
∼
10
10
n
sr
-
1
in $$\sim 1$$
∼
1
-cm-thick converters or instantaneous neutron fluxes above $$10^{23}\,{\mathrm{n}}\,{\mathrm{cm}}^{-2}\,{\mathrm{s}}^{-1}$$
10
23
n
cm
-
2
s
-
1
at the backside of $$\lesssim 100$$
≲
100
-$$\upmu$$
μ
m-thick converters. Considering a realistic repetition rate of one laser shot per minute, the corresponding time-averaged neutron yields are predicted to reach values ($$\gtrsim 10^7\,{\mathrm{n}} \,{\mathrm{sr}}^{-1}\,{\mathrm{s}}^{-1}$$
≳
10
7
n
sr
-
1
s
-
1
) well above the current experimental record, and this even with a mere thin foil as a primary target. A further increase in the time-averaged yield up to above $$10^8\,{\mathrm{sr}}^{-1}\,{\mathrm{s}}^{-1}$$
10
8
sr
-
1
s
-
1
is foreseen using double-layer targets.
Collapse
|
24
|
Minami T, Tokiyasu AO, Kohri H, Abe Y, Iwasaki K, Taguchi T, Oda K, Suzuki S, Asai T, Tanaka SJ, Isayama S, Kanasaki M, Kodaira S, Fukuda Y, Kuramitsu Y. Mass-resolved ion measurement by particle counting analysis for characterizing relativistic ion beams driven by lasers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113530. [PMID: 36461420 DOI: 10.1063/5.0101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Particle counting analysis is a possible way to characterize GeV-scale, multi-species ions produced in laser-driven experiments. We present a multi-layered scintillation detector to differentiate multi-species ions of different masses and energies. The proposed detector concept offers potential advantages over conventional diagnostics in terms of (1) high sensitivity to GeV ions, (2) realtime analysis, and (3) the ability to differentiate ions with the same charge-to-mass ratio. A novel choice of multiple scintillators with different ion stopping powers results in a significant difference in energy deposition between the scintillators, allowing accurate particle identification in the GeV range. Here, we report a successful demonstration of particle identification for heavy ions, performed at the Heavy Ion Medical Accelerator in Chiba. In the experiment, the proposed detector setup showed the ability to differentiate particles with similar atomic numbers, such as C6+ and O8+ ions, and provided an excellent energy resolution of 0.41%-1.2% (including relativistic effect, 0.51%--1.6%).
Collapse
Affiliation(s)
- T Minami
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - A O Tokiyasu
- Research Center for Electron Photon Science, Tohoku University, Miyagi 982-0826, Japan
| | - H Kohri
- Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
| | - Y Abe
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - K Iwasaki
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - T Taguchi
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - K Oda
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - S Suzuki
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - T Asai
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto 619-0215, Japan
| | - S J Tanaka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - S Isayama
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - M Kanasaki
- Graduate School of Maritime Sciences, Kobe University, Hyogo 658-0022, Japan
| | - S Kodaira
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Y Fukuda
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto 619-0215, Japan
| | - Y Kuramitsu
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Afshari M, Morris S, Geulig LD, Chitgar ZM, Gibbon P, Thirolf PG, Schreiber J. The role of collisional ionization in heavy ion acceleration by high intensity laser pulses. Sci Rep 2022; 12:18260. [PMID: 36309599 PMCID: PMC9617862 DOI: 10.1038/s41598-022-23148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
We present here simulation results of the laser-driven acceleration of gold ions using the EPOCH code. Recently, an experiment reported the acceleration of gold ions up to 7 MeV/nucleon with a strong dependency of the charge-state distribution on target thickness and the detection of the highest charge states [Formula: see text]. Our simulations using a developmental branch of EPOCH (4.18-Ionization) show that collisional ionization is the most important cause of charge states beyond Z = 51 up to He-like Au.
Collapse
Affiliation(s)
- M. Afshari
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - S. Morris
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - L. D. Geulig
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - Z. M. Chitgar
- grid.8385.60000 0001 2297 375XInstitute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - P. Gibbon
- grid.8385.60000 0001 2297 375XInstitute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ,grid.5596.f0000 0001 0668 7884Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - P. G. Thirolf
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| | - J. Schreiber
- grid.5252.00000 0004 1936 973XFakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany
| |
Collapse
|
26
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
27
|
Jinno S, Kanasaki M, Asai T, Matsui R, Pirozhkov AS, Ogura K, Sagisaka A, Miyasaka Y, Nakanii N, Kando M, Kitagawa N, Morishima K, Kodaira S, Kishimoto Y, Yamauchi T, Uesaka M, Kiriyama H, Fukuda Y. Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters. Sci Rep 2022; 12:16753. [PMID: 36224197 PMCID: PMC9556756 DOI: 10.1038/s41598-022-18710-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,{0.3}$$\end{document}±0.3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}× 10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^9$$\end{document}9/MeV/sr/shot with an energy of 2.8 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,{1.9}$$\end{document}±1.9 MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.
Collapse
Affiliation(s)
- Satoshi Jinno
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai, Naka, Ibaraki, 319-1188, Japan.,Tono Geoscience Center, Japan Atomic Energy Agency (JAEA), 959-31, Jorinji, Izumi-cho, Toki, Gifu, 509-5102, Japan
| | - Masato Kanasaki
- Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminamimachi, Higashinada, Kobe, Hyogo, 658-0022, Japan
| | - Takafumi Asai
- Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminamimachi, Higashinada, Kobe, Hyogo, 658-0022, Japan
| | - Ryutaro Matsui
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Non-linear / Non-Equilibrium Plasma Science Research UNIT, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Alexander S Pirozhkov
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Koichi Ogura
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Akito Sagisaka
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Yasuhiro Miyasaka
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Nobuhiko Nakanii
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Masaki Kando
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | | | | | - Satoshi Kodaira
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan
| | - Yasuaki Kishimoto
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Non-linear / Non-Equilibrium Plasma Science Research UNIT, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomoya Yamauchi
- Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminamimachi, Higashinada, Kobe, Hyogo, 658-0022, Japan
| | - Mitsuru Uesaka
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai, Naka, Ibaraki, 319-1188, Japan
| | - Hiromitsu Kiriyama
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Yuji Fukuda
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
28
|
Wang X, Bai P, Liu Y, Zhang H, Tang Y, Wang X, Zhang X, Fan C, Yao B, Sun Y, Wu F, Zhang Z, Gan Z, Yu L, Wang C, Lu X, Xu Y, Liang X, Leng Y. Suppressing scattering-induced nanosecond pre-pulses in Ti:sapphire multi-pass amplifiers. OPTICS LETTERS 2022; 47:5164-5167. [PMID: 36181212 DOI: 10.1364/ol.471048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In this Letter, we experimentally investigate a new kind of nanosecond pre-pulse, which originates from the bidirectional scattering of crystals in traditional Ti:sapphire multi-pass amplifiers. The experimental results demonstrate that the intensity of scattering-induced pre-pulses is very sensitive to the scattering angle, and the delay time between the pre-pulse and the main pulse is an integer multiple of the light path in each pass of the amplifier. An optimized multi-pass amplifier configuration is proposed, for what is believed to be the first time, to suppress the scattering-induced pre-pulses. The contrast ratio between pre-pulses and the main pulse is enhanced by more than two orders of magnitude, reaching a level of 10-10. This novel multi-pass amplifier configuration is very simple and economical, and provides an effective solution for the temporal contrast enhancement in the nanosecond range.
Collapse
|
29
|
Alejo A, Ahmed H, Krygier AG, Clarke R, Freeman RR, Fuchs J, Green A, Green JS, Jung D, Kleinschmidt A, Morrison JT, Najmudin Z, Nakamura H, Norreys P, Notley M, Oliver M, Roth M, Vassura L, Zepf M, Borghesi M, Kar S. Stabilized Radiation Pressure Acceleration and Neutron Generation in Ultrathin Deuterated Foils. PHYSICAL REVIEW LETTERS 2022; 129:114801. [PMID: 36154426 DOI: 10.1103/physrevlett.129.114801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.
Collapse
Affiliation(s)
- A Alejo
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
- Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - H Ahmed
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - A G Krygier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - R Clarke
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - R R Freeman
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - J Fuchs
- LULI-CNRS, CEA, UPMC Univ Paris 06: Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - A Green
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - J S Green
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - D Jung
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - A Kleinschmidt
- Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
| | - J T Morrison
- Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433, USA
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ, United Kingdom
| | - H Nakamura
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ, United Kingdom
| | - P Norreys
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - M Notley
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - M Oliver
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - M Roth
- Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
| | - L Vassura
- LULI-CNRS, CEA, UPMC Univ Paris 06: Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - M Zepf
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - M Borghesi
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - S Kar
- School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
30
|
Temperature evolution of dense gold and diamond heated by energetic laser-driven aluminum ions. Sci Rep 2022; 12:15173. [PMID: 36071154 PMCID: PMC9452511 DOI: 10.1038/s41598-022-18758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that energetic laser-driven ions with some energy spread can heat small solid-density samples uniformly. The balance among the energy losses of the ions with different kinetic energies results in uniform heating. Although heating with an energetic laser-driven ion beam is completed within a nanosecond and is often considered sufficiently fast, it is not instantaneous. Here we present a theoretical study of the temporal evolution of the temperature of solid-density gold and diamond samples heated by a quasimonoenergetic aluminum ion beam. We calculate the temporal evolution of the predicted temperatures of the samples using the available stopping power data and the SESAME equation-of-state tables. We find that the temperature distribution is initially very uniform, which becomes less uniform during the heating process. Then, the temperature uniformity gradually improves, and a good temperature uniformity is obtained toward the end of the heating process.
Collapse
|
31
|
Zhu J, Lu H, Zhao Y, Lai M, Gu Y, Xu S, Zhou C. 宽能谱激光驱动质子束的传输与均匀化. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Martin P, Ahmed H, Doria D, Alejo A, Clarke R, Ferguson S, Fernández-Tobias J, Freeman RR, Fuchs J, Green A, Green JS, Gwynne D, Hanton F, Jarrett J, Jung D, Kakolee KF, Krygier AG, Lewis CLS, McIlvenny A, McKenna P, Morrison JT, Najmudin Z, Naughton K, Nersisyan G, Norreys P, Notley M, Roth M, Ruiz JA, Scullion C, Zepf M, Zhai S, Borghesi M, Kar S. Absolute calibration of Fujifilm BAS-TR image plate response to laser driven protons up to 40 MeV. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:053303. [PMID: 35649771 DOI: 10.1063/5.0089402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.
Collapse
Affiliation(s)
- P Martin
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - H Ahmed
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - D Doria
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - A Alejo
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - R Clarke
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - S Ferguson
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - J Fernández-Tobias
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - R R Freeman
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - J Fuchs
- LULI - CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
| | - A Green
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - J S Green
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - D Gwynne
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - F Hanton
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - J Jarrett
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - D Jung
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - K F Kakolee
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - A G Krygier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - C L S Lewis
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - A McIlvenny
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - P McKenna
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - J T Morrison
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Z Najmudin
- Blackett Laboratory, Department of Physics, Imperial College, London, SW7 2AZ, United Kingdom
| | - K Naughton
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - G Nersisyan
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - P Norreys
- Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - M Notley
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - M Roth
- Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, 64289 Darmstadt, Germany
| | - J A Ruiz
- Instituto de Fusion Nuclear, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C Scullion
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - M Zepf
- Helmholtz Institut Jena, 07743 Jena, Germany
| | - S Zhai
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - M Borghesi
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - S Kar
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
33
|
Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a CH2 thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from 6.85×1021 W cm−2 to 4.38×1023 W cm−2, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × 1022 W cm−2 pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about 16%. The QED effects have slight influence on this SRPA scheme.
Collapse
|
34
|
Doria D, Martin P, Ahmed H, Alejo A, Cerchez M, Ferguson S, Fernandez-Tobias J, Green JS, Gwynne D, Hanton F, Jarrett J, Maclellan DA, McIlvenny A, McKenna P, Ruiz JA, Swantusch M, Willi O, Zhai S, Borghesi M, Kar S. Calibration of BAS-TR image plate response to GeV gold ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:033304. [PMID: 35364990 DOI: 10.1063/5.0079564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The response of the BAS-TR image plate (IP) was absolutely calibrated using a CR-39 track detector for high linear energy transfer Au ions up to ∼1.6 GeV (8.2 MeV/nucleon), accelerated by high-power lasers. The calibration was carried out by employing a high-resolution Thomson parabola spectrometer, which allowed resolving Au ions with closely spaced ionization states up to 58+. A response function was obtained by fitting the photo-stimulated luminescence per Au ion for different ion energies, which is broadly in agreement with that expected from ion stopping in the active layer of the IP. This calibration would allow quantifying the ion energy spectra for high energy Au ions, which is important for further investigation of the laser-based acceleration of heavy ion beams.
Collapse
Affiliation(s)
- D Doria
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - P Martin
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - H Ahmed
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - A Alejo
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Cerchez
- Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - S Ferguson
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - J Fernandez-Tobias
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - J S Green
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - D Gwynne
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - F Hanton
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - J Jarrett
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - D A Maclellan
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - A McIlvenny
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - P McKenna
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - J A Ruiz
- Instituto de Fusion Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Swantusch
- Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - O Willi
- Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - S Zhai
- ELI Beamlines, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - M Borghesi
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - S Kar
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
35
|
Effects of pulse chirp on laser-driven proton acceleration. Sci Rep 2022; 12:3031. [PMID: 35194105 PMCID: PMC8863795 DOI: 10.1038/s41598-022-07019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
Optimisation and reproducibility of beams of protons accelerated from laser-solid interactions require accurate control of a wide set of variables, concerning both the laser pulse and the target. Among the former ones, the chirp and temporal shape of the pulse reaching the experimental area may vary because of spectral phase modulations acquired along the laser system and beam transport. Here, we present an experimental study where we investigate the influence of the laser pulse chirp on proton acceleration from ultrathin flat foils (10 and 100 nm thickness), while minimising any asymmetry in the pulse temporal shape. The results show a [Formula: see text] change in the maximum proton energy depending on the sign of the chirp. This effect is most noticeable from 10 nm-thick target foils, suggesting a chirp-dependent influence of relativistic transparency.
Collapse
|
36
|
Robustness of large-area suspended graphene under interaction with intense laser. Sci Rep 2022; 12:2346. [PMID: 35173182 PMCID: PMC8850449 DOI: 10.1038/s41598-022-06055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Graphene is known as an atomically thin, transparent, highly electrically and thermally conductive, light-weight, and the strongest 2D material. We investigate disruptive application of graphene as a target of laser-driven ion acceleration. We develop large-area suspended graphene (LSG) and by transferring graphene layer by layer we control the thickness with precision down to a single atomic layer. Direct irradiations of the LSG targets generate MeV protons and carbons from sub-relativistic to relativistic laser intensities from low contrast to high contrast conditions without plasma mirror, evidently showing the durability of graphene.
Collapse
|
37
|
Vacuum laser acceleration of super-ponderomotive electrons using relativistic transparency injection. Nat Commun 2022; 13:54. [PMID: 35013209 PMCID: PMC8749006 DOI: 10.1038/s41467-021-27691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Intense lasers can accelerate electrons to very high energy over a short distance. Such compact accelerators have several potential applications including fast ignition, high energy physics, and radiography. Among the various schemes of laser-based electron acceleration, vacuum laser acceleration has the merits of super-high acceleration gradient and great simplicity. Yet its realization has been difficult because injecting free electrons into the fast-oscillating laser field is not trivial. Here we demonstrate free-electron injection and subsequent vacuum laser acceleration of electrons up to 20 MeV using the relativistic transparency effect. When a high-contrast intense laser drives a thin solid foil, electrons from the dense opaque plasma are first accelerated to near-light speed by the standing laser wave in front of the solid foil and subsequently injected into the transmitted laser field as the opaque plasma becomes relativistically transparent. It is possible to further optimize the electron injection/acceleration by manipulating the laser polarization, incident angle, and temporal pulse shaping. Our result also sheds light on the fundamental relativistic transparency process, crucial for producing secondary particle and light sources. Compact electron accelerators based on laser-plasma acceleration scheme may be useful for future light sources, radiation therapy etc. Here the authors demonstrate electron acceleration in laser plasma interaction via vacuum laser acceleration and relativistic transparency injection.
Collapse
|
38
|
Time-resolved study of holeboring in realistic experimental conditions. Nat Commun 2021; 12:6999. [PMID: 34853323 PMCID: PMC8636483 DOI: 10.1038/s41467-021-27363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
The evolution of dense plasmas prior to the arrival of the peak of the laser irradiation is critical to understanding relativistic laser plasma interactions. The spectral properties of a reflected laser pulse after the interaction with a plasma can be used to gain insights about the interaction itself, whereas the effect of holeboring has a predominant role. Here we developed an analytical model, describing the non-relativistic temporal evolution of the holeboring velocity in the presence of an arbitrary overdense plasma density and laser intensity profile. We verify this using two-dimensional particle-in-cell simulations, showing a major influence on the holeboring dynamic depending on the density profile. The influence on the reflected laser pulse has been verified during an experiment at the PHELIX laser. We show that this enables the possibility to determine the sub-micrometer scale length of the preplasma by measuring the maximum holeboring velocity and acceleration during the laser-plasma interaction.
Collapse
|
39
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
McIlvenny A, Doria D, Romagnani L, Ahmed H, Booth N, Ditter EJ, Ettlinger OC, Hicks GS, Martin P, Scott GG, Williamson SDR, Macchi A, McKenna P, Najmudin Z, Neely D, Kar S, Borghesi M. Selective Ion Acceleration by Intense Radiation Pressure. PHYSICAL REVIEW LETTERS 2021; 127:194801. [PMID: 34797126 DOI: 10.1103/physrevlett.127.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^{20} W/cm^{2}, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.
Collapse
Affiliation(s)
- A McIlvenny
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - D Doria
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania
| | - L Romagnani
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- LULI-CNRS, Ecole Polytechnique, CEA, Universit Paris-Saclay, F-91128 Palaiseau cedex, France
| | - H Ahmed
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - N Booth
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - E J Ditter
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - O C Ettlinger
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - G S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - P Martin
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - G G Scott
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - S D R Williamson
- SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - A Macchi
- Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), research unit Adriano Gozzini, Pisa 56124, Italy
- Dipartimento di Fisica Enrico Fermi, Università di Pisa, Pisa 56127, Italy
| | - P McKenna
- SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| | - D Neely
- Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - S Kar
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Borghesi
- Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
41
|
Abstract
We experimentally investigated the accelerated proton beam characteristics such as maximum energy and number by varying the incident laser parameters. For this purpose, we varied the laser energy, focal spot size, polarization, and pulse duration. The proton spectra were recorded using a single-shot Thomson parabola spectrometer equipped with a microchannel plate and a high-resolution charge-coupled device with a wide detection range from a few tens of keV to several MeV. The outcome of the experimental findings is discussed in detail and compared to other theoretical works.
Collapse
|
42
|
Zimmer M, Scheuren S, Ebert T, Schaumann G, Schmitz B, Hornung J, Bagnoud V, Rödel C, Roth M. Analysis of laser-proton acceleration experiments for development of empirical scaling laws. Phys Rev E 2021; 104:045210. [PMID: 34781535 DOI: 10.1103/physreve.104.045210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Numerous experiments on laser-driven proton acceleration in the MeV range have been performed with a large variety of laser parameters since its discovery around the year 2000. Both experiments and simulations have revealed that protons are accelerated up to a maximum cut-off energy during this process. Several attempts have been made to find a universal model for laser proton acceleration in the target normal sheath acceleration regime. While these models can qualitatively explain most experimental findings, they can hardly be used as predictive models, for example, for the energy cut-off of accelerated protons, as many of the underlying parameters are often unknown. Here we analyze experiments on laser proton acceleration in which scans of laser and target parameters were performed. We derive empirical scaling laws from these parameter scans and combine them in a scaling law for the proton energy cut-off that incorporates the laser pulse energy, the laser pulse duration, the focal spot radius, and the target thickness. Using these scaling laws, we give examples for predicting the proton energy cut-off and conversion efficiency for state-of-the-art laser systems.
Collapse
Affiliation(s)
- M Zimmer
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - S Scheuren
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - T Ebert
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - G Schaumann
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - B Schmitz
- Institute for Accelerator Science and Electromagnetic Fields, Technical University of Darmstadt, Schlossgartenstr. 8, 64289 Darmstadt, Germany
| | - J Hornung
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
- Friedrich-Schiller-Universität Jena, Fürstengraben 1, 07743 Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - V Bagnoud
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
| | - C Rödel
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| | - M Roth
- Institute of Nuclear Physics, Technical University of Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
| |
Collapse
|
43
|
Shen XF, Qiao B, Pukhov A, Kar S, Zhu SP, Borghesi M, He XT. Scaling laws for laser-driven ion acceleration from nanometer-scale ultrathin foils. Phys Rev E 2021; 104:025210. [PMID: 34525575 DOI: 10.1103/physreve.104.025210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 08/12/2021] [Indexed: 11/07/2022]
Abstract
Laser-driven ion acceleration has attracted global interest for its potential towards the development of a new generation of compact, low-cost accelerators. Remarkable advances have been seen in recent years with a substantial proton energy increase in experiments, when nanometer-scale ultrathin foil targets and high-contrast intense lasers are applied. However, the exact acceleration dynamics and particularly the ion energy scaling laws in this novel regime are complex and still unclear. Here, we derive a scaling law for the attainable maximum ion energy from such laser-irradiated nanometer-scale foils based on analytical theory and multidimensional particle-in-cell simulations, and further show that this scaling law can be used to accurately describe experimental data over a large range of laser and target parameters on different facilities. This provides crucial references for parameter design and experimentation of the future laser devices towards various potential applications.
Collapse
Affiliation(s)
- X F Shen
- Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871, China.,Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - B Qiao
- Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - A Pukhov
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S Kar
- Center for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - S P Zhu
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - M Borghesi
- Center for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - X T He
- Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| |
Collapse
|
44
|
Li XF, Gibbon P, Hützen A, Büscher M, Weng SM, Chen M, Sheng ZM. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas. Phys Rev E 2021; 104:015216. [PMID: 34412274 DOI: 10.1103/physreve.104.015216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
Collapse
Affiliation(s)
- X F Li
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - P Gibbon
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - A Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - M Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S M Weng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
He Y, Hong W, Hua J, Qi W, Zhang Z, Li G, Cui B, Lu F, Deng Z, He S, Su J, Zhou W, Lu W, Gu Y. Measuring fluence distribution of intense short laser based on the radiochromic effect. OPTICS LETTERS 2021; 46:2795-2798. [PMID: 34061116 DOI: 10.1364/ol.424698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
This Letter demonstrates a novel, to the best of our knowledge, method to measure the fluence distribution of an intense short laser pulse based on the radiochromic effect. We discovered that an intense short laser pulse can induce the color reaction with a radiochromic film (RCF). Further, the net optical density of an irradiated RCF is proportional to the fluence of the incident laser pulse in a large range (${2 {-} 120}\;{{{\rm mJ}/{\rm cm}}^2}$). This method supports a large detection area up to near square-meter scale by splicing multi-pieces of RCFs (${8} \times 10\;{{\rm inch}^2}$ each). The spatial resolution reaches as high as 60 lines/mm. It offers a thin-film (${\sim}{100}\;{\unicode{x00B5}{\rm m}}$ thick), flexible, vacuum-compatible solution to intense short laser measurements, especially to laser facilities above petawatt, with beam sizes up to near square-meter scale, e.g., extreme light infrastructure.
Collapse
|
46
|
Kumar R, Sakawa Y, Sano T, Döhl LNK, Woolsey N, Morace A. Ion acceleration at two collisionless shocks in a multicomponent plasma. Phys Rev E 2021; 103:043201. [PMID: 34005941 DOI: 10.1103/physreve.103.043201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Intense laser-plasma interactions are an essential tool for the laboratory study of ion acceleration at a collisionless shock. With two-dimensional particle-in-cell calculations of a multicomponent plasma we observe two electrostatic collisionless shocks at two distinct longitudinal positions when driven with a linearly polarized laser at normalized laser vector potential a_{0} that exceeds 10. Moreover, these shocks, associated with protons and carbon ions, show a power-law dependence on a_{0} and accelerate ions to different velocities in an expanding upstream with higher flux than in a single-component hydrogen or carbon plasma. This results from an electrostatic ion two-stream instability caused by differences in the charge-to-mass ratio of different ions. Particle acceleration in collisionless shocks in multicomponent plasma are ubiquitous in space and astrophysics, and these calculations identify the possibility for studying these complex processes in the laboratory.
Collapse
Affiliation(s)
- Rajesh Kumar
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Youichi Sakawa
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayoshi Sano
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Leonard N K Döhl
- York Plasma Institute, Department of Physics, University of York, Heslington, York YO10-5DD, United Kingdom
| | - Nigel Woolsey
- York Plasma Institute, Department of Physics, University of York, Heslington, York YO10-5DD, United Kingdom
| | - Alessio Morace
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Proton beam quality enhancement by spectral phase control of a PW-class laser system. Sci Rep 2021; 11:7338. [PMID: 33795713 PMCID: PMC8017008 DOI: 10.1038/s41598-021-86547-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Abstract
We report on experimental investigations of proton acceleration from solid foils irradiated with PW-class laser-pulses, where highest proton cut-off energies were achieved for temporal pulse parameters that varied significantly from those of an ideally Fourier transform limited (FTL) pulse. Controlled spectral phase modulation of the driver laser by means of an acousto-optic programmable dispersive filter enabled us to manipulate the temporal shape of the last picoseconds around the main pulse and to study the effect on proton acceleration from thin foil targets. The results show that applying positive third order dispersion values to short pulses is favourable for proton acceleration and can lead to maximum energies of 70 MeV in target normal direction at 18 J laser energy for thin plastic foils, significantly enhancing the maximum energy compared to ideally compressed FTL pulses. The paper further proves the robustness and applicability of this enhancement effect for the use of different target materials and thicknesses as well as laser energy and temporal intensity contrast settings. We demonstrate that application relevant proton beam quality was reliably achieved over many months of operation with appropriate control of spectral phase and temporal contrast conditions using a state-of-the-art high-repetition rate PW laser system.
Collapse
|
48
|
Apiñaniz JI, Malko S, Fedosejevs R, Cayzac W, Vaisseau X, de Luis D, Gatti G, McGuffey C, Bailly-Grandvaux M, Bhutwala K, Ospina-Bohorquez V, Balboa J, Santos JJ, Batani D, Beg F, Roso L, Perez-Hernandez JA, Volpe L. A quasi-monoenergetic short time duration compact proton source for probing high energy density states of matter. Sci Rep 2021; 11:6881. [PMID: 33767262 PMCID: PMC7994565 DOI: 10.1038/s41598-021-86234-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
We report on the development of a highly directional, narrow energy band, short time duration proton beam operating at high repetition rate. The protons are generated with an ultrashort-pulse laser interacting with a solid target and converted to a pencil-like narrow-band beam using a compact magnet-based energy selector. We experimentally demonstrate the production of a proton beam with an energy of 500 keV and energy spread well below 10[Formula: see text], and a pulse duration of 260 ps. The energy loss of this beam is measured in a 2 [Formula: see text]m thick solid Mylar target and found to be in good agreement with the theoretical predictions. The short time duration of the proton pulse makes it particularly well suited for applications involving the probing of highly transient plasma states produced in laser-matter interaction experiments. This proton source is particularly relevant for measurements of the proton stopping power in high energy density plasmas and warm dense matter.
Collapse
Affiliation(s)
- J I Apiñaniz
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain.
| | - S Malko
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain
| | - R Fedosejevs
- Department of Electrical and Computing Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - W Cayzac
- CEA, DAM, DIF, 91297, Arpajon, France
| | | | - D de Luis
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain
| | - G Gatti
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain
| | - C McGuffey
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - M Bailly-Grandvaux
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - K Bhutwala
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - V Ospina-Bohorquez
- University of Salamanca, Salamanca, Spain.,CEA, DAM, DIF, 91297, Arpajon, France.,CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, University of Bordeaux, 33405, Talence, France
| | - J Balboa
- University of Salamanca, Salamanca, Spain
| | - J J Santos
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, University of Bordeaux, 33405, Talence, France
| | - D Batani
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, University of Bordeaux, 33405, Talence, France
| | - F Beg
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - L Roso
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain
| | - J A Perez-Hernandez
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain
| | - L Volpe
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185, Villamayor, Salamanca, Spain.,Laser-Plasma Chair at the University of Salamanca, Salamanca, Spain.,Instituto Universitario Física Fundamental y Matemáticas, 37008, Salamanca, Spain
| |
Collapse
|
49
|
Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep 2021; 11:3071. [PMID: 33542470 PMCID: PMC7862373 DOI: 10.1038/s41598-021-82655-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Time-Of-Flight (TOF) methods are very effective to detect particles accelerated in laser-plasma interactions, but they show significant limitations when used in experiments with high energy and intensity lasers, where both high-energy ions and remarkable levels of ElectroMagnetic Pulses (EMPs) in the radiofrequency-microwave range are generated. Here we describe a novel advanced diagnostic method for the characterization of protons accelerated by intense matter interactions with high-energy and high-intensity ultra-short laser pulses up to the femtosecond and even future attosecond range. The method employs a stacked diamond detector structure and the TOF technique, featuring high sensitivity, high resolution, high radiation hardness and high signal-to-noise ratio in environments heavily affected by remarkable EMP fields. A detailed study on the use, the optimization and the properties of a single module of the stack is here described for an experiment where a fast diamond detector is employed in an highly EMP-polluted environment. Accurate calibrated spectra of accelerated protons are presented from an experiment with the femtosecond Flame laser (beyond 100 TW power and ~ 1019 W/cm2 intensity) interacting with thin foil targets. The results can be readily applied to the case of complex stack configurations and to more general experimental conditions.
Collapse
|
50
|
High energy implementation of coil-target scheme for guided re-acceleration of laser-driven protons. Sci Rep 2021; 11:699. [PMID: 33436708 PMCID: PMC7804017 DOI: 10.1038/s41598-020-77997-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Developing compact ion accelerators using intense lasers is a very active area of research, motivated by a strong applicative potential in science, industry and healthcare. However, proposed applications in medical therapy, as well as in nuclear and particle physics demand a strict control of ion energy, as well as of the angular and spectral distribution of ion beam, beyond the intrinsic limitations of the several acceleration mechanisms explored so far. Here we report on the production of highly collimated (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 0.2^{\circ }$$\end{document}∼0.2∘ half angle divergence), high-charge (10s of pC) and quasi-monoenergetic proton beams up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼ 50 MeV, using a recently developed method based on helical coil targetry. In this concept, ions accelerated from a laser-irradiated foil are post-accelerated and conditioned in a helical structure positioned at the rear of the foil. The pencil beam of protons was produced by guided post-acceleration at a rate of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼ 2 GeV/m, without sacrificing the excellent beam emittance of the laser-driven proton beams. 3D particle tracing simulations indicate the possibility of sustaining high acceleration gradients over extended helical coil lengths, thus maximising the gain from such miniature accelerating modules.
Collapse
|