1
|
Hu ZF, Wang L, Wang H, Wang HY. Interlayer Coherent Dipole-Dipole Coupling Facilitates Charge Transfer in Multilayer Transition Metal Dichalcogenide Heterostructures. NANO LETTERS 2025; 25:4743-4750. [PMID: 40071536 DOI: 10.1021/acs.nanolett.4c06143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Inserting intermediate layers in transition metal dichalcogenide heterostructures (TMD HSs) has become an efficient approach to modulating interlayer charge transfer rates. However, it could not only modify the distance of charge transfer but also potentially alter the interlayer coupling strength within HSs, which would profoundly influence the charge transfer rate in the opposite direction. Here, to gain insight into the dual roles of inserted intermediate layers in multilayer TMD HSs, MoS2-nL WSe2-MoSe2 (n = 1-3) HSs were designed and systemically investigated. Different from the electron tunneling model following exponential behavior, we demonstrate that the coherent dipole-dipole coupling between 2L WSe2 and MoSe2 occurs, facilitating the averaged electron transfer rate (1/0.21 ps-1) from MoSe2 to MoS2. This is 3.7 times (an order of magnitude) faster than that of 1/0.77 ps-1 (1/2.08 ps-1) in the MoS2-1L WSe2-MoSe2 HS (MoS2-3L WSe2-MoSe2 HS), emphasizing its importance in multilayer TMD HS device design.
Collapse
Affiliation(s)
- Zi-Fan Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Zhang X, Zhang L, Zhu J, Qin T, Huang H, Xiang B, Liu H, Xiong Q. Ultrafast chirality-dependent dynamics from helicity-resolved transient absorption spectroscopy. NANOSCALE 2025; 17:4175-4194. [PMID: 39815723 DOI: 10.1039/d4nr03682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing. Despite these advancements, the fundamental mechanisms underlying the generation, propagation, and amplification of chirality in low-dimensional chiral materials and architectures remain largely unexplored. To tackle these challenges, we focus on employing ultrafast spectroscopy to investigate the dynamics of chirality evolution, with the aim of attaining a more profound understanding of the microscopic mechanisms governing chirality generation and amplification. This review thus provides a comprehensive overview of the chiral micro-/nano-materials, including two-dimensional transition metal dichalcogenides (TMDs), chiral halide perovskites, and chiral metasurfaces, with a particular emphasis on the physical mechanism. This review further explores the advancements made by ultrafast chiral spectroscopy research, thereby paving the way for innovative devices in chiral photonics and optoelectronics.
Collapse
Affiliation(s)
- Xiu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Junzhi Zhu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Tingxiao Qin
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Haiyun Huang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Baixu Xiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, P.R. China
| |
Collapse
|
3
|
Zhao S, Sun C, Xiang G, Zhang Y, He S, Li S, Jin Y, Zhang D, Zhu H. Efficient Near-Infrared to Blue Photon Upconversion by Ultrafast Spin Flip and Triplet Energy Transfer at Organic/2D Semiconductor Interface. Angew Chem Int Ed Engl 2025; 64:e202420070. [PMID: 39523701 DOI: 10.1002/anie.202420070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Solid state photon upconversion by triplet-triplet annihilation (TTA), particularly near-infrared (NIR)-to-blue upconversion, holds instant promise for enhancing optoelectronic and photochemical applications. Despite extensive studies, NIR-to-blue upconversion has remained particularly challenging and elusive due to inherent multiple energy-downhill processes in TTA upconversion. In this study, using atomically thin two dimensional (2D) monolayer semiconductor as a triplet sensitizer, we demonstrate an efficient and robust solid-state NIR-to-blue photon upconversion system. The ultrathin and flexible organic/2D bilayer heterostructure exhibits a NIR-to-blue upconversion with high quantum yield (ΦUC=1.2 %, out of 50 %), low threshold power density (Ith=110 mW/cm2) and a record-high apparent anti-Stokes shift of 1.12 eV. Further spin- and time-resolved spectroscopy reveals an ultrafast (<500 fs) electron spin flip to triplet-like excitons in semiconductor sensitizer and subsequent picosecond (~6×1010 s-1) interfacial Dexter energy transfer to annihilator molecules. The triplet energy transfer rate and efficiency depend strongly on driving force, exhibiting Marcus normal region behavior. This work demonstrates 2D monolayer semiconductor as a superior ultrathin light harvesting and triplet sensitization layer and reveals the key knob to overcome the compromise between upconversion efficiency and energy loss, offering a viable pathway to efficient solid state NIR-to-blue photon upconversion and implementation.
Collapse
Affiliation(s)
- Shuo Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Cheng Sun
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Guoyu Xiang
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Yongqing Zhang
- Interdisciplinary Center for Quantum Information, Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Siyu He
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuangshuang Li
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Yizheng Jin
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haiming Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
4
|
Sharma S, Gill D, Krishna J, Dewhurst JK, Shallcross S. Direct coupling of light to valley current. Nat Commun 2024; 15:7579. [PMID: 39217163 PMCID: PMC11365965 DOI: 10.1038/s41467-024-51968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The coupling of circularly polarized light to local band structure extrema ("valleys") in two dimensional semiconductors promises a new electronics based on the valley degree of freedom. Such pulses, however, couple only to valley charge and not to the valley current, precluding lightwave manipulation of this second vital element of valleytronic devices. Contradicting this established wisdom, we show that the few cycle limit of circularly polarized light is imbued with an emergent vectorial character that allows direct coupling to the valley current. The underlying physical mechanism involves the emergence of a momentum space valley dipole, the orientation and magnitude of which allows complete control over the direction and magnitude of the valley current. We demonstrate this effect via minimal tight-binding models both for the visible spectrum gaps of the transition metal dichalcogenides (generation time ~ 1 fs) as well as the infrared gaps of biased bilayer graphene ( ~ 14 fs); we further verify our findings with state-of-the-art time-dependent density functional theory incorporating transient excitonic effects. Our findings both mark a striking example of emergent physics in the ultrafast limit of light-matter coupling, as well as allowing the creation of valley currents on time scales that challenge quantum decoherence in matter.
Collapse
Affiliation(s)
- S Sharma
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
- Institute for theoretical solid-state physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - D Gill
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J Krishna
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J K Dewhurst
- Max-Planck-Institut für Mikrostrukturphysik Weinberg 2, D-06120, Halle, Germany
| | - S Shallcross
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Timmer D, Gittinger M, Quenzel T, Cadore AR, Rosa BLT, Li W, Soavi G, Lünemann DC, Stephan S, Silies M, Schulz T, Steinhoff A, Jahnke F, Cerullo G, Ferrari AC, De Sio A, Lienau C. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS 2. NANO LETTERS 2024; 24:8117-8125. [PMID: 38901032 PMCID: PMC11229071 DOI: 10.1021/acs.nanolett.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Moritz Gittinger
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Quenzel
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Alisson R. Cadore
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Barbara L. T. Rosa
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Wenshan Li
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Giancarlo Soavi
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Daniel C. Lünemann
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Sven Stephan
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Martin Silies
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Tommy Schulz
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Alexander Steinhoff
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Frank Jahnke
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Antonietta De Sio
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| | - Christoph Lienau
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Kim J, Park J, Choi H, Kim T, Cha S, Lee Y, Watanabe K, Taniguchi T, Kim J, Jo MH, Choi H. Correlation-driven nonequilibrium exciton site transition in a WSe 2/WS 2 moiré supercell. Nat Commun 2024; 15:3312. [PMID: 38632336 PMCID: PMC11024152 DOI: 10.1038/s41467-024-47768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Moiré superlattices of transition metal dichalcogenides offer a unique platform to explore correlated exciton physics with optical spectroscopy. Whereas the spatially modulated potentials evoke that the exciton resonances are distinct depending on a site in a moiré supercell, there have been no clear demonstration how the moiré excitons trapped in different sites dynamically interact with the doped carriers; so far the exciton-electron dynamic interactions were presumed to be site-dependent. Thus, the transient emergence of nonequilibrium correlations are open questions, but existing studies are limited to steady-state optical measurements. Here we report experimental fingerprints of site-dependent exciton correlations under continuous-wave as well as ultrashort optical excitations. In near-zero angle-aligned WSe2/WS2 heterobilayers, we observe intriguing polarization switching and strongly enhanced Pauli blocking near the Mott insulating state, dictating the dominant correlation-driven effects. When the twist angle is near 60°, no such correlations are observed, suggesting the strong dependence of atomic registry in moiré supercell configuration. Our studies open the door to largely unexplored nonequilibrium correlations of excitons in moiré superlattices.
Collapse
Affiliation(s)
- Jinjae Kim
- Department of Physics, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jiwon Park
- Department of Physics, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Hyojin Choi
- Department of Physics, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Taeho Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Soonyoung Cha
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Yewon Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jonghwan Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Hyunyong Choi
- Department of Physics, Seoul National University, Seoul, 08826, Korea.
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Hu Z, Wang H, Wang L, Wang H. A new charge transfer pathway in the MoSe 2-WSe 2 heterostructure under the conditions of B-excitons being resonantly pumped. Phys Chem Chem Phys 2024; 26:9424-9431. [PMID: 38446138 DOI: 10.1039/d3cp05282f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Most transition metal dichalcogenide (TMD) heterostructures (HSs) exhibit a type II band alignment, leading to a charge transfer process accompanied by the transfer of spin-valley polarization and spontaneous formation of interlayer excitons. This unique band structure facilitates achieving a longer exciton lifetime and extended spin-valley polarization lifetime. However, the mechanism of charge transfer in type II TMD HSs is not fully comprehended. Here, the ultrafast charge transfer process is studied in MoSe2-WSe2 HS via valley-solved broadband pump-probe spectroscopy. Under the conditions of B-excitons of WSe2 and MoSe2 being resonantly pumped, a new charge transfer pathway through the higher energy state associated with the B-exciton is found. Meanwhile, the holes (electrons) in the WSe2 (MoSe2) layer of MoSe2-WSe2 HS produce obvious spin-valley polarization even under the condition of B-exciton of WSe2 (MoSe2) being resonantly pumped, and the lifetime can reach tens of ps, which is in stark contrast to the absence of A-exciton spin-valley polarization in monolayer WSe2 (MoSe2) under the same pumping condition. The results deepen the insight into the charge transfer process in type II TMD HSs and show the great potential of TMD HSs in the application of spin-valley electronics devices.
Collapse
Affiliation(s)
- Zifan Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Haiyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Dutta S, Husain S, Kumar P, Gupta NK, Chaudhary S, Svedlindh P, Barman A. Manipulating ultrafast magnetization dynamics of ferromagnets using the odd-even layer dependence of two-dimensional transition metal di-chalcogenides. NANOSCALE 2024; 16:4105-4113. [PMID: 38349614 DOI: 10.1039/d3nr06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have drawn immense interest due to their strong spin-orbit coupling and unique layer number dependence in response to spin-valley coupling. This leads to the possibility of controlling the spin degree of freedom of the ferromagnet (FM) in thin film heterostructures and may prove to be of interest for next-generation spin-based devices. Here, we experimentally demonstrate the odd-even layer dependence of WS2 nanolayers by measurements of the ultrafast magnetization dynamics in WS2/Co3FeB thin film heterostructures by using time-resolved Kerr magnetometry. The fluence (photon energy per unit area) dependent magnetic damping (α) reveals the existence of broken symmetry and the dominance of inter- and intraband scattering for odd and even layers of WS2, respectively. The higher demagnetization time, τm, in 3 and 5 layers of WS2 is indicative of the interaction between spin-orbit and spin-valley coupling due to the broken symmetry. The lower τm in even layers as compared to the bare FM layer suggests the presence of a spin transport. By correlating τm and α, we pinpointed the dominant mechanisms of ultrafast demagnetization. The mechanism changes from spin transport to spin-flip scattering for even layers of WS2 with increasing fluence. A fundamental understanding of the two-dimensional material and its odd-even layer dependence at ultrashort timescales provides valuable information for designing next-generation spin-based devices.
Collapse
Affiliation(s)
- Soma Dutta
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
| | - Sajid Husain
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Prabhat Kumar
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Nanhe Kumar Gupta
- Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujeet Chaudhary
- Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
| |
Collapse
|
9
|
Sharma S, Dewhurst JK, Shallcross S. Light-Shaping of Valley States. NANO LETTERS 2023; 23:11533-11539. [PMID: 38100087 DOI: 10.1021/acs.nanolett.3c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The established paradigm to create valley states, excitations at local band extrema ("valleys"), is through selective occupation of specific valleys via circularly polarized laser pulses. Here we show a second way exists to create valley states, not by valley population imbalance but by "light-shaping" in momentum space, i.e. controlling the shape of the distribution of excited charge at each valley. While noncontrasting in valley charge, such valley states are instead characterized by a valley current, identically zero at one valley and finite and large at the other. We demonstrate that these (i) are robust to quantum decoherence, (ii) allow lossless toggling of the valley state with successive femtosecond laser pulses, and (iii) permit valley contrasting excitation both with and without a gap. Our findings open a route to robust ultrafast and switchable valleytronics in a wide scope of 2d materials, bringing closer the promise of valley-based electronics.
Collapse
Affiliation(s)
- Sangeeta Sharma
- Max-Born-Institute for Non-linear Optics and Short Pulse Spectroscopy, Max-Born Strasse 2A, 12489 Berlin, Germany
- Institute for theoretical solid-state physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - John Kay Dewhurst
- Max-Planck-Institut fur Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - Samuel Shallcross
- Max-Born-Institute for Non-linear Optics and Short Pulse Spectroscopy, Max-Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
10
|
Zheng SW, Wang HY, Wang H, Wang L. Excitonic Effect Drives Ultrafast Transition in Two-Dimensional Transition Metal Dichalcogenides. J Phys Chem Lett 2023; 14:9200-9206. [PMID: 37801730 DOI: 10.1021/acs.jpclett.3c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are ideal platforms for exploring excitonic physics because of the tightly bound excitons. In this work, we observed the onset of band-edge exciton formation in monolayer MoS2 (WS2) and bilayer MoS2-WS2 by measuring the transient optical response upon excitation with ultrashort laser pulses. In addition to wavelength dependence on excitation under nonresonant excitation, we found that the onset of band-edge exciton formation in monolayer MoS2 (WS2) pumped in the exciton state is significantly faster than that with pumping in the nonexciton state, which could be attributed to the effective transition between exciton states induced by the excitonic effect. Besides, the onset of band-edge exciton formation in van der Waals heterostructures is similar to that for monolayer TMDCs regardless of charge transfer at the interface. Our work contributes to a better understanding of exciton dynamics in 2D TMDCs, providing a solid basis of the rational design of the 2D optoelectronic applications based on TMDCs.
Collapse
Affiliation(s)
- Shu-Wen Zheng
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications School of Physics, Henan Normal University, 46 Jianshe Road, Xinxiang 453007, China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
11
|
Sharma S, Elliott P, Shallcross S. THz induced giant spin and valley currents. SCIENCE ADVANCES 2023; 9:eadf3673. [PMID: 36921048 PMCID: PMC10017034 DOI: 10.1126/sciadv.adf3673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Spin and valley indices represent the key quantum labels of quasi-particles in a wide class of two-dimensional materials and form the foundational elements of the fields of spintronics and valleytronics. Control over these degrees of freedom, therefore, remains the central challenge in these fields. Here, we show that femtosecond laser light combining optical frequency circularly polarized pulse and a terahertz (THz) frequency linearly polarized pulse, a so-called "hencomb" pulse, can generate precisely tailored and 90% pure spin currents for the dichalcogenide WSe2 and >75% pure valley currents for bilayer graphene with gaps greater than 120 millielectron volts (dephasing time, 20 femtoseconds). The frequency of the circular light component and the polarization vector of the THz light component are shown to represent the key control parameters of these pulses. Our results thus open a route toward light control over spin/valley current states at ultrafast times.
Collapse
|
12
|
Kunin A, Chernov S, Bakalis J, Li Z, Cheng S, Withers ZH, White MG, Schönhense G, Du X, Kawakami RK, Allison TK. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS_{2}. PHYSICAL REVIEW LETTERS 2023; 130:046202. [PMID: 36763432 DOI: 10.1103/physrevlett.130.046202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sergey Chernov
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Bakalis
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shuyu Cheng
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary H Withers
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael G White
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Gerd Schönhense
- Johannes Gutenberg-Universität, Institut für Physik, D-55099 Mainz, Germany
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
13
|
Usman A, Adel Aly M, Masenda H, Thompson JJP, Gunasekera SM, Mucha-Kruczyński M, Brem S, Malic E, Koch M. Enhanced excitonic features in an anisotropic ReS 2/WSe 2 heterostructure. NANOSCALE 2022; 14:10851-10861. [PMID: 35838641 DOI: 10.1039/d2nr01973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have opened new horizons for future optoelectronic applications through efficient light-matter and many-body interactions at quantum level. Anisotropic 2D materials like rhenium disulphide (ReS2) present a new class of materials with polarized excitonic resonances. Here, we demonstrate a WSe2/ReS2 heterostructure which exhibits a significant photoluminescence quenching at room temperature as well as at low temperatures. This indicates an efficient charge transfer due to the electron-hole exchange interaction. The band alignment of two materials suggests that electrons optically injected into WSe2 are transferred to ReS2. Polarization resolved luminescence measurements reveal two additional polarization-sensitive exciton peaks in ReS2 in addition to the two conventional exciton resonances X1 and X2. Furthermore, for ReS2 we observe two charged excitons (trions) with binding energies of 18 meV and 15 meV, respectively. The bi-excitons of WSe2 become polarization sensitive and inherit polarizing properties from the underlying ReS2 layers, which act as patterned substrates for top layer. Overall, our findings provide a better understanding of optical signatures in 2D anisotropic materials.
Collapse
Affiliation(s)
- Arslan Usman
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
- Department of Physics, COMSATS University Islamabad-Lahore-Campus, Pakistan
| | - M Adel Aly
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
- Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Hilary Masenda
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
- School of Physics, University of the Witwatersrand, 2050 Johannesburg, South Africa
| | - Joshua J P Thompson
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
| | | | - Marcin Mucha-Kruczyński
- Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Samuel Brem
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
| | - Ermin Malic
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
| | - Martin Koch
- Department of Physics and Materials Sciences Centre, Philipps-Universität Marburg, Marburg 35032, Germany.
| |
Collapse
|
14
|
Zheng SW, Wang D, Wang HY, Wang H, Chen X, Zhao LY, Wang L, Li XB, Sun HB. Spin-Valley Depolarization in van der Waals Heterostructures. J Phys Chem Lett 2022; 13:5501-5507. [PMID: 35695739 DOI: 10.1021/acs.jpclett.2c01414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The appearance of van der Waals heterostructures offers a new solution to valleytronics. Here, we observe the spin-valley depolarization process of electrons and holes in type-II MoS2-WSe2 heterostructures simultaneously for the first time by valley-resolved broad-band femtosecond pump-probe experiments. The different depolarization paths between electrons and holes make them have different spin-valley polarization lifetimes. The spin-valley depolarization pathway of holes is mainly dominated by a phonon-assisted intervalley scattering process, while intra- and intervalley coupling can trigger additional depolarization pathways for electrons. The hole polarization lifetime can be further prolonged to more than three times in trilayer heterostructure 2MoS2-WSe2. For MoS2-WS2 that has strong orbital hybridization of Mo and W atoms, both electrons and holes lose the spin-valley polarization extremely soon after charge separation, behaving similarly to intraexcitons in a monolayer. Our work advances the basic understanding of spin-valley depolarization of van der Waals heterostructures and facilitates the effort toward longer lifetime valleytronic devices for information transfer and storage applications.
Collapse
Affiliation(s)
- Shu-Wen Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dan Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Le-Yi Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
15
|
Katznelson S, Cohn B, Sufrin S, Amit T, Mukherjee S, Kleiner V, Mohapatra P, Patsha A, Ismach A, Refaely-Abramson S, Hasman E, Koren E. Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. MATERIALS HORIZONS 2022; 9:1089-1098. [PMID: 35083477 DOI: 10.1039/d1mh01186c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D-semiconductors with strong light-matter interaction are attractive materials for integrated and tunable optical devices. Here, we demonstrate room-temperature wavelength multiplexing of the two-primary bright excitonic channels (Ab-, Bb-) in monolayer transition metal dichalcogenides (TMDs) arising from a dark exciton mediated transition. We present how tuning dark excitons via an out-of-plane electric field cedes the system equilibrium from one excitonic channel to the other, encoding the field polarization into wavelength information. In addition, we demonstrate how such exciton multiplexing is dictated by thermal-scattering by performing temperature dependent photoluminescence measurements. Finally, we demonstrate experimentally and theoretically how excitonic mixing can explain preferable decay through dark states in MoX2 in comparison with WX2 monolayers. Such field polarization-based manipulation of excitonic transitions can pave the way for novel photonic device architectures.
Collapse
Affiliation(s)
- Shaul Katznelson
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shmuel Sufrin
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tomer Amit
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Subhrajit Mukherjee
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Vladimir Kleiner
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Pranab Mohapatra
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Avinash Patsha
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Ariel Ismach
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Hasman
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elad Koren
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
16
|
Chen X, Zheng S, Wang XP, Wang HY. Ultrafast dynamics of spin relaxation in monolayer WSe2 and WSe2/graphene heterojunction. Phys Chem Chem Phys 2022; 24:16538-16544. [DOI: 10.1039/d2cp02105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitonic devices based on two-dimensional (2D) transition metal dichalcogenides (TMDCs) can combine spintronics with valleytronics due to its special energy band structure. In this work, we studied the generation and...
Collapse
|
17
|
Wu YC, Taniguchi T, Watanabe K, Yan J. Negative valley polarization in doped monolayer MoSe 2. Phys Chem Chem Phys 2021; 24:191-196. [PMID: 34878442 DOI: 10.1039/d1cp03490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monolayer molybdenum di-selenide (1L-MoSe2) stands out in the transition metal dichalcogenide family of materials as an outlier where optical generation of valley polarization is inefficient. Here we show that using charge doping in conjunction with an external magnetic field, the valley polarization of 1L-MoSe2 can be controlled effectively. Most remarkably, the valley polarization can be tuned to negative values, where the higher energy Zeeman mode emission is more intense than the lower energy one. Our experimental observations are interpreted with valley-selective exciton-charge dressing that manifests when gate induced doping populates predominantly one valley in the presence of Zeeman splitting.
Collapse
Affiliation(s)
- Yueh-Chun Wu
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Yan
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
18
|
Thompson JJP, Brem S, Fang H, Antón-Solanas C, Han B, Shan H, Dash SP, Wieczorek W, Schneider C, Malic E. Valley-exchange coupling probed by angle-resolved photoluminescence. NANOSCALE HORIZONS 2021; 7:77-84. [PMID: 34796891 DOI: 10.1039/d1nh00302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The optical properties of monolayer transition metal dichalcogenides are dominated by tightly-bound excitons. They form at distinct valleys in reciprocal space, and can interact via the valley-exchange coupling, modifying their dispersion considerably. Here, we predict that angle-resolved photoluminescence can be used to probe the changes of the excitonic dispersion. The exchange-coupling leads to a unique angle dependence of the emission intensity for both circularly and linearly-polarised light. We show that these emission characteristics can be strongly tuned by an external magnetic field due to the valley-specific Zeeman-shift. We propose that angle-dependent photoluminescence measurements involving both circular and linear optical polarisation as well as magnetic fields should act as strong verification of the role of valley-exchange coupling on excitonic dispersion and its signatures in optical spectra.
Collapse
Affiliation(s)
- Joshua J P Thompson
- Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, Renthof 7, Marburg 35032, Germany
| | - Hanlin Fang
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | - Bo Han
- Institute of Physics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Hangyong Shan
- Institute of Physics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Witlef Wieczorek
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | - Ermin Malic
- Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden.
- Department of Physics, Philipps-Universität Marburg, Renthof 7, Marburg 35032, Germany
| |
Collapse
|
19
|
Rosati R, Wagner K, Brem S, Perea-Causín R, Ziegler JD, Zipfel J, Taniguchi T, Watanabe K, Chernikov A, Malic E. Non-equilibrium diffusion of dark excitons in atomically thin semiconductors. NANOSCALE 2021; 13:19966-19972. [PMID: 34821228 DOI: 10.1039/d1nr06230a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atomically thin semiconductors provide an excellent platform to study intriguing many-particle physics of tightly-bound excitons. In particular, the properties of tungsten-based transition metal dichalcogenides are determined by a complex manifold of bright and dark exciton states. While dark excitons are known to dominate the relaxation dynamics and low-temperature photoluminescence, their impact on the spatial propagation of excitons has remained elusive. In our joint theory-experiment study, we address this intriguing regime of dark state transport by resolving the spatio-temporal exciton dynamics in hBN-encapsulated WSe2 monolayers after resonant excitation. We find clear evidence of an unconventional, time-dependent diffusion during the first tens of picoseconds, exhibiting strong deviation from the steady-state propagation. Dark exciton states are initially populated by phonon emission from the bright states, resulting in creation of hot (unequilibrated) excitons whose rapid expansion leads to a transient increase of the diffusion coefficient by more than one order of magnitude. These findings are relevant for both fundamental understanding of the spatio-temporal exciton dynamics in atomically thin materials as well as their technological application by enabling rapid diffusion.
Collapse
Affiliation(s)
- Roberto Rosati
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
| | - Koloman Wagner
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
| | - Raül Perea-Causín
- Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden
| | - Jonas D Ziegler
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jonas Zipfel
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Alexey Chernikov
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
- Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Giant Photoluminescence Enhancement and Carrier Dynamics in MoS 2 Bilayers with Anomalous Interlayer Coupling. NANOMATERIALS 2021; 11:nano11081994. [PMID: 34443826 PMCID: PMC8398585 DOI: 10.3390/nano11081994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Fundamental researches and explorations based on transition metal dichalcogenides (TMDCs) mainly focus on their monolayer counterparts, where optical densities are limited owing to the atomic monolayer thickness. Photoluminescence (PL) yield in bilayer TMDCs is much suppressed owing to indirect-bandgap properties. Here, optical properties are explored in artificially twisted bilayers of molybdenum disulfide (MoS2). Anomalous interlayer coupling and resultant giant PL enhancement are firstly observed in MoS2 bilayers, related to the suspension of the top layer material and independent of twisted angle. Moreover, carrier dynamics in MoS2 bilayers with anomalous interlayer coupling are revealed with pump-probe measurements, and the secondary rising behavior in pump-probe signal of B-exciton resonance, originating from valley depolarization of A-exciton, is firstly reported and discussed in this work. These results lay the groundwork for future advancement and applications beyond TMDCs monolayers.
Collapse
|
21
|
Goswami T, Bhatt H, Babu KJ, Kaur G, Ghorai N, Ghosh HN. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS 2. J Phys Chem Lett 2021; 12:6526-6534. [PMID: 34242025 DOI: 10.1021/acs.jpclett.1c01627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High energy (C and D) excitons possess extraordinary influence over the optical properties of atomically thin transition metal dichalcogenides (TMDCs), and the comprehensive understanding of these would play a pivotal role in advancing research on 2D optoelectronics. Herein, we employed transient absorption spectroscopy to monitor the underlying photophysical processes involved with different excitonic features in few layer WS2, modeled as a TMDC representative. We observed a strong intervalley coupling across the momentum space and proposed the most plausible relaxation pathway for different excitons in few layer scenario. C and D exciton dynamics were significantly slower as compared to canonical A and B excitons, as a consequence of the indirect Λ-Γ relaxation in C and D and direct K-K combination in A and B. Most importantly, all four excitons emerge in the system and influence each other irrespective of the incident photon energy, which would be extremely impactful in fabricating wide range photonic devices.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Nandan Ghorai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
22
|
Lloyd LT, Wood RE, Mujid F, Sohoni S, Ji KL, Ting PC, Higgins JS, Park J, Engel GS. Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS 2 Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS NANO 2021; 15:10253-10263. [PMID: 34096707 DOI: 10.1021/acsnano.1c02381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The valley pseudospin at the K and K' high-symmetry points in monolayer transition metal dichalcogenides (TMDs) has potential as an optically addressable degree of freedom in next-generation optoelectronics. However, intervalley scattering and relaxation of charge carriers leads to valley depolarization and limits practical applications. In addition, enhanced Coulomb interactions lead to pronounced excitonic effects that dominate the optical response and initial valley depolarization dynamics but complicate the interpretation of ultrafast spectroscopic experiments at short time delays. Employing broadband helicity-resolved two-dimensional electronic spectroscopy (2DES), we observe ultrafast (∼10 fs) intervalley coupling between all A and B valley exciton states that results in a complete breakdown of the valley index in large-area monolayer MoS2 films. These couplings and subsequent dynamics exhibit minimal excitation fluence or temperature dependence and are robust toward changes in sample grain size and inherent strain. Our observations strongly suggest that this direct intervalley coupling on the time scale of optical excitation is an inherent property of large-area MoS2 distinct from dynamic carrier or exciton scattering, phonon-driven processes, and multiexciton effects. This ultrafast intervalley coupling poses a fundamental challenge for exciton-based valleytronics in monolayer TMDs and must be overcome to fully realize large-area valleytronic devices.
Collapse
Affiliation(s)
- Lawson T Lloyd
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ryan E Wood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Fauzia Mujid
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Karen L Ji
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob S Higgins
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiwoong Park
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Policht V, Russo M, Liu F, Trovatello C, Maiuri M, Bai Y, Zhu X, Dal Conte S, Cerullo G. Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2021; 21:4738-4743. [PMID: 34037406 PMCID: PMC8289282 DOI: 10.1021/acs.nanolett.1c01098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS2/MoS2 have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS2/MoS2 HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT.
Collapse
Affiliation(s)
| | - Mattia Russo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Fang Liu
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chiara Trovatello
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Margherita Maiuri
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Yusong Bai
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoyang Zhu
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Stefano Dal Conte
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
24
|
Abstract
The coupled nonequilibrium dynamics of electrons and phonons in monolayer MoS2 is investigated by combining first-principles calculations of the electron-phonon and phonon-phonon interactions with the time-dependent Boltzmann equation. Strict phase-space constraints in the electron-phonon scattering are found to influence profoundly the decay path of excited electrons and holes, restricting the emission of phonons to crystal momenta close to a few high-symmetry points in the Brillouin zone. As a result of momentum selectivity in the phonon emission, the nonequilibrium lattice dynamics is characterized by the emergence of a highly anisotropic population of phonons in reciprocal space, which persists for up to 10 ps until thermal equilibrium is restored by phonon-phonon scattering. Achieving control of the nonequilibrium dynamics of the lattice may provide unexplored opportunities to selectively enhance the phonon population of two-dimensional crystals and, thereby, transiently tailor electron-phonon interactions over subpicosecond time scales.
Collapse
Affiliation(s)
- Fabio Caruso
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
25
|
Khani H, Piri Pishekloo S. Gate-controlled spin-valley-layer locking in bilayer transition-metal dichalcogenides. NANOSCALE 2020; 12:22281-22288. [PMID: 33146202 DOI: 10.1039/d0nr04630b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interplay between various internal degrees of freedom of electrons is of fundamental importance for designing high performance electronic devices. A particular instance of this interplay can be observed in bilayer TMDs due to the combined effect of spin-orbit and interlayer couplings. We study the transport of spin, valley and layer pseudospin, generally, through a magnetoelectric barrier in AB-stacked bilayer TMDs and demonstrate an electrically controllable platform for multifunctional and ultra-high-speed logic devices. Perfect spin and valley polarizations as well as good layer localization of electrons occur in a rather large range of Fermi energies for moderate electric and magnetic fields. Any number of these polarizations can be inverted by adjusting the two potential gates on the two layers. Furthermore, the conditions for the excellent polarizations are determined for the spin, valley and layer degrees of freedom, in terms of the adjustable system parameters. We discuss the individual electric and magnetic barriers and show that the single electric barrier acts as a bipolar pseudospin semiconductor with opposite polarizations for the conduction and valence bands. The results of this study pave the way for multifunctional pseudospintronic applications based on 2D materials.
Collapse
Affiliation(s)
- H Khani
- Department of Physics, Kharazmi University, 31979-37551, Tehran, Iran.
| | | |
Collapse
|
26
|
Xu S, Zheng H, Ma R, Wu D, Pan Y, Yin C, Gao M, Wang W, Li W, Liu S, Chai Z, Li R. Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nat Commun 2020; 11:3484. [PMID: 32661253 PMCID: PMC7359333 DOI: 10.1038/s41467-020-17300-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 06/23/2020] [Indexed: 01/30/2023] Open
Abstract
Sustainable developments of nanotechnology necessitate the exploration of structure-activity relationships (SARs) at nano-bio interfaces. While ferroptosis may contribute in the developments of some severe diseases (e.g., Parkinson's disease, stroke and tumors), the cellular pathways and nano-SARs are rarely explored in diseases elicited by nano-sized ferroptosis inducers. Here we find that WS2 and MoS2 nanosheets induce an iron-dependent cell death, ferroptosis in epithelial (BEAS-2B) and macrophage (THP-1) cells, evidenced by the suppression of glutathione peroxidase 4 (GPX4), oxygen radical generation and lipid peroxidation. Notably, nano-SAR analysis of 20 transition metal dichalcogenides (TMDs) disclosures the decisive role of surface vacancy in ferroptosis. We therefore develop methanol and sulfide passivation as safe design approaches for TMD nanosheets. These findings are validated in animal lungs by oropharyngeal aspiration of TMD nanosheets. Overall, our study highlights the key cellular events as well as nano-SARs in TMD-induced ferroptosis, which may facilitate the safe design of nanoproducts.
Collapse
Affiliation(s)
- Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
27
|
Wood RE, Lloyd LT, Mujid F, Wang L, Allodi MA, Gao H, Mazuski R, Ting PC, Xie S, Park J, Engel GS. Evidence for the Dominance of Carrier-Induced Band Gap Renormalization over Biexciton Formation in Cryogenic Ultrafast Experiments on MoS 2 Monolayers. J Phys Chem Lett 2020; 11:2658-2666. [PMID: 32168454 DOI: 10.1021/acs.jpclett.0c00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transition-metal dichalcogenides (TMDs) such as MoS2 display promising electrical and optical properties in the monolayer limit. Due to strong quantum confinement, TMDs provide an ideal environment for exploring excitonic physics using ultrafast spectroscopy. However, the interplay between collective excitation effects on single excitons such as band gap renormalization/exciton binding energy (BGR/EBE) change and multiexciton effects such biexciton formation remains poorly understood. Using two-dimensional electronic spectroscopy, we observe the dominance of single-exciton BGR/EBE signals over optically induced biexciton formation. We make this determination based on a lack of strong PIA features at T = 0 fs in the cryogenic spectra. By means of nodal line slope analysis, we determine that spectral diffusion occurs faster than BGR/EBE change, indicative of distinct processes. These results indicate that at higher sub-Mott limit fluences, collective effects on single excitons dominate biexciton formation.
Collapse
|
28
|
Dal Conte S, Trovatello C, Gadermaier C, Cerullo G. Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2019.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Beyer H, Rohde G, Grubišić Čabo A, Stange A, Jacobsen T, Bignardi L, Lizzit D, Lacovig P, Sanders CE, Lizzit S, Rossnagel K, Hofmann P, Bauer M. 80% Valley Polarization of Free Carriers in Singly Oriented Single-Layer WS_{2} on Au(111). PHYSICAL REVIEW LETTERS 2019; 123:236802. [PMID: 31868459 DOI: 10.1103/physrevlett.123.236802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
We employ time- and angle-resolved photoemission spectroscopy to study the spin- and valley-selective photoexcitation and dynamics of free carriers at the K[over ¯] and K[over ¯]^{'} points in singly oriented single-layer WS_{2}/Au(111). Our results reveal that in the valence band maximum an ultimate valley polarization of free holes of 84% can be achieved upon excitation with circularly polarized light at room temperature. Notably, we observe a significantly smaller valley polarization for the photoexcited free electrons in the conduction band minimum. Clear differences in the carrier dynamics between electrons and holes imply intervalley scattering processes into dark states being responsible for the efficient depolarization of the excited electron population.
Collapse
Affiliation(s)
- H Beyer
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - G Rohde
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - A Grubišić Čabo
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - A Stange
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - T Jacobsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - L Bignardi
- Department of Physics, University of Trieste, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - D Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - P Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - C E Sanders
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell OX11 0QX, United Kingdom
| | - S Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - K Rossnagel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, 24098 Kiel und 22607 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - P Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - M Bauer
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
30
|
Ye J, Li Y, Yan T, Zhai G, Zhang X. Ultrafast Dynamics of Spin Generation and Relaxation in Layered WSe 2. J Phys Chem Lett 2019; 10:2963-2970. [PMID: 31084014 DOI: 10.1021/acs.jpclett.9b01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the build-up and relaxation processes of spin-polarized A- and B-exciton dynamics in monolayer, bilayer, and bulk WSe2 using helicity-resolved two-color pump-probe spectroscopy. Substantial spin polarization was confirmed in bulk crystals, though the spin polarization degree of A excitons decreased from monolayer to bulk. However, the spin polarization of A excitons almost vanished in all different layered-flakes when resonantly pumping the B-exciton transition, owing to the dominant role of interexciton transfer. When resonantly pumping the A-exciton transition, the spin polarization of the up-converted B excitons was inverted in all layers because of the efficient Dexter-like coupling and phonon-assisted scattering. The same short spin relaxation time (1.8 ± 0.2 ps) of A excitons was found for all studied flakes in the subsequent spin depolarization processes, which was ascribed to the active electron-phonon scattering resulting from the intrinsic small conduction-band spin-orbit coupling splitting in layered WSe2.
Collapse
Affiliation(s)
- Jialiang Ye
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ying Li
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Tengfei Yan
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P.R. China
| | - Guihao Zhai
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xinhui Zhang
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
31
|
Zhang Y, Guo B, Zhai F, Jiang W. Multiple harmonics control of edge pseudomagnetoplasmons in strained grapheme. OPTICS EXPRESS 2018; 26:33453-33462. [PMID: 30645497 DOI: 10.1364/oe.26.033453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Valley-resolved edge plasmons are relevant to nano-optics at subwavelength scales. However, less attention has been paid to their tunable properties in time domain. In this work we investigate edge pseudomagnetoplasmons in a strained graphene modulated by multiple harmonics with frequency in the THz regime. The edge plasmon is described by a set of nonlinear hydrodynamic equations, which are self-consistently solved by the flux-corrected transport method. Without the applied voltage, there exist two unidirectional-propagating edge-plasmon modes with weak valley polarization P. It is demonstrated that by varying the amplitude of multiple harmonics one can alter both the amplitude and the polarity of the valley polarization in the edge plasmon. One can achieve a full valley polarization P=1 at the instant of half cycle of the multiple harmonics and P=-1 at the instant of one cycle. The edge-plasmon density and the transverse velocity vanish for the frozen valley.
Collapse
|
32
|
Wang Z, Molina-Sánchez A, Altmann P, Sangalli D, De Fazio D, Soavi G, Sassi U, Bottegoni F, Ciccacci F, Finazzi M, Wirtz L, Ferrari AC, Marini A, Cerullo G, Dal Conte S. Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS 2. NANO LETTERS 2018; 18:6882-6891. [PMID: 30264571 DOI: 10.1021/acs.nanolett.8b02774] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In monolayer (1L) transition metal dichalcogenides (TMDs) the valence and conduction bands are spin-split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark excitons, consisting of electrons and holes with opposite spin orientation, have lower energy than A excitons. The transition from bright to dark excitons involves the scattering of electrons from the upper to the lower conduction band at the K point of the Brillouin zone, with detrimental effects for the optoelectronic response of 1L-TMDs, since this reduces their light emission efficiency. Here, we exploit the valley selective optical selection rules and use two-color helicity-resolved pump-probe spectroscopy to directly measure the intravalley spin-flip relaxation dynamics in 1L-WS2. This occurs on a sub-ps time scale, and it is significantly dependent on temperature, indicative of phonon-assisted relaxation. Time-dependent ab initio calculations show that intravalley spin-flip scattering occurs on significantly longer time scales only at the K point, while the occupation of states away from the minimum of the conduction band significantly reduces the scattering time. Our results shed light on the scattering processes determining the light emission efficiency in optoelectronic and photonic devices based on 1L-TMDs.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Alejandro Molina-Sánchez
- Institute of Materials Science (ICMUV) , University of Valencia , Catedrático Beltrán 2 , E-46980 Valencia , Spain
| | - Patrick Altmann
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Davide Sangalli
- CNR-ISM, Division of Ultrafast Process in Materials (FLASHit) , Area della Ricerca di Roma 1 , Monterotondo Scalo , Italy
| | - Domenico De Fazio
- Cambridge Graphene Centre , University of Cambridge , 9 JJ Thomson Avenue , Cambridge CB3 0FA , U.K
| | - Giancarlo Soavi
- Cambridge Graphene Centre , University of Cambridge , 9 JJ Thomson Avenue , Cambridge CB3 0FA , U.K
| | - Ugo Sassi
- Cambridge Graphene Centre , University of Cambridge , 9 JJ Thomson Avenue , Cambridge CB3 0FA , U.K
| | - Federico Bottegoni
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Franco Ciccacci
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Marco Finazzi
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Ludger Wirtz
- Université du Luxembourg , 162 A, avenue de la Faencerie , Luxembourg City L-1511 , Luxembourg
| | - Andrea C Ferrari
- Cambridge Graphene Centre , University of Cambridge , 9 JJ Thomson Avenue , Cambridge CB3 0FA , U.K
| | - Andrea Marini
- CNR-ISM, Division of Ultrafast Process in Materials (FLASHit) , Area della Ricerca di Roma 1 , Monterotondo Scalo , Italy
| | - Giulio Cerullo
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
- IFN-CNR , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Stefano Dal Conte
- Department of Physics , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| |
Collapse
|