1
|
Santoro AM, Persico M, D’Urso A, Cunsolo A, Tkachuk O, Milardi D, Purrello R, Tundo GR, Sbardella D, Osmulski PA, Gaczynska M, Coletta M, Fattorusso C. Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome. J Enzyme Inhib Med Chem 2025; 40:2482892. [PMID: 40192126 PMCID: PMC11980194 DOI: 10.1080/14756366.2025.2482892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Decreased proteasome activity is a hallmark of brain and retinal neurodegenerative diseases (Alzheimer's, Parkinson's diseases, glaucoma) boosting the search for molecules acting as proteasome activators. Based on the hypothesis of an electrostatic key code driving catalytic core particle (20S) activation by regulatory particles (RPs), we identified the tetra-anionic meso-Tetrakis(4-sulphonatophenyl)-porphyrin (H2TPPS) as a new activator of human proteasome. By means of an integrated approach, including bioinformatics, enzymatic kinetic analysis, atomic force microscopy, and dynamic docking simulations, we show how binding of H2TPPS affects the closed/open conformational equilibrium of human 20S to ultimately promote substrate gate opening and proteolytic activity. These outcomes support our hypothesis and pave the way to the rational discovery of new proteasome allosteric modulators able to reproduce the key structural elements of regulatory particles responsible for catalytic activation.
Collapse
Affiliation(s)
- A. M. Santoro
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - M. Persico
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - A. D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - A. Cunsolo
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Epic Sciences, San Diego, California, USA
| | - O. Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - D. Milardi
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - R. Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G. R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | | | - P. A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - M. Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | | | - C. Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| |
Collapse
|
2
|
Tamatta R, Singh AK. Critical role of microRNAs in cellular quality control during brain aging and neurological disorders: Interplay between autophagy and proteostasis. Life Sci 2025; 369:123563. [PMID: 40089100 DOI: 10.1016/j.lfs.2025.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
A decline in cellular quality control mechanisms is one of the processes of brain aging. Autophagy and proteostasis are two regulatory mechanisms that maintain cellular component turnover to preserve cellular homeostasis, optimal function, and neuronal health by eliminating damaged and aggregated proteins and preventing neurodegenerative disorders (NDDs). Impaired autophagy and proteostasis are significant hallmarks of aging and many age-related NDDs. MicroRNAs are noncoding RNA molecules that have recently been shown to be essential for regulating several biological processes, such as autophagy, proteostasis, cellular differentiation, and development by targeting mRNA's 3'untranslated region (3'UTR). During brain aging, miRNAs have been shown to dysregulate proteostasis and autophagy, resulting in abnormal cellular activity and protein aggregation, a characteristic of age-related NDDs. This review highlights the complex interactions of miRNAs in the orchestration of proteostasis and autophagy. This dysregulation impairs autophagic flux and proteostasis and accelerates age-related disorders, neuroinflammation, and neurodegeneration. Understanding the complex interactions among miRNAs, autophagy, and proteostasis in the aging brain is essential for novel therapeutics development for age-related NDDs.
Collapse
Affiliation(s)
- Rajesh Tamatta
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India.
| |
Collapse
|
3
|
Ali TT, Merghani M, Al-Azzani M, Gatzemeier LM, Hoppert M, Kaloyanova D, Outeiro TF, Neumann P, Popova B, Braus GH. Rationally designed peptides inhibit the formation of α-synuclein fibrils and oligomers. Eur J Med Chem 2025; 289:117452. [PMID: 40022877 DOI: 10.1016/j.ejmech.2025.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's Disease (PD) is characterized by the pathological aggregation of α-synuclein (αSyn) into oligomers and amyloid fibrils, making αSyn aggregation a key target for drug development. Peptides have gained recent attention as potential agents to inhibit aggregation. Two previously identified peptide inhibitors, discovered through large-scale yeast screening, were used as templates for in silico mutagenesis aimed at designing novel peptides with improved efficacy in inhibiting αSyn aggregation and cytotoxicity. The newly designed peptides underwent in silico docking analysis, and the most promising candidates were tested in vitro and in cellular models. Peptides T02 and T05 emerged as the most effective inhibitors, with T02 binding αSyn monomers and T05 targeting lower-order oligomers. Both peptides reduce αSyn fibril and oligomer formation in vitro and significantly suppress αSyn aggregation and cytotoxicity in yeast and human H4 cells. These novel peptides represent antagonists of αSyn aggregation with promising potential for therapeutic intervention for PD.
Collapse
Affiliation(s)
- Tariq T Ali
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Madiha Merghani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Luisa Maria Gatzemeier
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dora Kaloyanova
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Feng H, Deng D, Zhu F, Chen S, Geng J, Jiang S, Zhang K, Jiang J, Yin S, Zhang C. Acute exposure to glufosinate-ammonium induces hepatopancreas toxicity in juvenile Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137487. [PMID: 39914334 DOI: 10.1016/j.jhazmat.2025.137487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/19/2025]
Abstract
Glufosinate-ammonium (GLA) is a widely used organophosphorus herbicide, which poses a potential threat to non-target aquatic species. This study aimed to evaluate the toxic effects of acute exposure to GLA on the hepatopancreas of juvenile Eriocheir sinensis, and to preliminarily reveal the toxicity mechanism. The results showed that the 96h-LC50 of GLA on juvenile E. sinensis was 386.61 mg/L. The acute test showed that GLA exposure caused hepatopancreas histological lesions, DNA damage and a higher apoptosis rate. The activities of aspartate aminotransferase and alanine aminotransferase in serum increased significantly and had a concentration-dependent effect. Moreover, GLA exposure resulted in a significant increase in malondialdehyde content, which subsequently activated the antioxidant system and detoxification system, and the related enzyme activities and gene expression levels were significantly increased. In addition, the RNA-Seq analysis showed that the toxic effects of GLA exposure on juvenile crabs may mainly involve physiological pathways such as energy metabolism, protein synthesis and nervous system function. This study highlights the hepatotoxic effects of GLA on aquatic crustaceans and preliminarily reveals the key pathways of action. The results of this study will helpful to provide new insights into the toxic effects and risk assessment of herbicides on non-target organisms.
Collapse
Affiliation(s)
- Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jianbin Jiang
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang L, Xie J, Gong T, Wu H, Tu Y, Peng X, Shang S, Jia X, Ma H, Zou J, Xu S, Zheng X, Zhang D, Liu Y, Zhang C, Luo Y, Huang Z, Shao B, Ying B, Cheng Y, Guo Y, Lai Y, Huang D, Liu J, Wei Y, Sun S, Zhou X, Su Z. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 2025; 388:545-550. [PMID: 40080543 DOI: 10.1126/science.adv3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Homo-oligomerization of biological macromolecules leads to functional assemblies that are critical to understanding various cellular processes. However, RNA quaternary structures have rarely been reported. Comparative genomics analysis has identified RNA families containing hundreds of sequences that adopt conserved secondary structures and likely fold into complex three-dimensional structures. In this study, we used cryo-electron microscopy (cryo-EM) to determine structures from four RNA families, including ARRPOF and OLE forming dimers and ROOL and GOLLD forming hexameric, octameric, and dodecameric nanostructures, at 2.6- to 4.6-angstrom resolutions. These homo-oligomeric assemblies reveal a plethora of structural motifs that contribute to RNA multivalency, including kissing-loop, palindromic base-pairing, A-stacking, metal ion coordination, pseudoknot, and minor-groove interactions. These results provide the molecular basis of intermolecular interactions driving RNA multivalency with potential functional relevance.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Tao Gong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Wu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Yifan Tu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Peng
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sheng Xu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xin Zheng
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong Zhang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cheng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yingqiang Guo
- Cardiovascular Surgery Research Laboratory, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lai
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Torrini F, Gil-Garcia M, Cardellini J, Frigerio R, Basso M, Gori A, Arosio P. Monitoring neurodegeneration through brain-derived extracellular vesicles in biofluids. Trends Pharmacol Sci 2025; 46:468-479. [PMID: 40312189 DOI: 10.1016/j.tips.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 05/03/2025]
Abstract
The identification of neurodegenerative disease (ND) biomarkers in easily accessible body fluids is crucial in the fight against this class of disorders. Brain-derived extracellular vesicles (BDEVs) have gained attention as nanoscale carriers of molecular information and bioactive molecules that reflect the status of their source cells. By crossing the blood-brain barrier (BBB), BDEVs can transfer these biomolecular signatures to peripheral biofluids, setting the scene for their use as ND biomarkers. In this review, we explore the role of BDEVs in liquid biopsy as a promising route for early ND diagnosis, as well as patient stratification and follow-up, with a particular focus on their ability to transport misfolded proteins and protein aggregates, major actors in neurodegeneration development. We also discuss the link between the physicochemical properties of BDEVs and the potential insights gained into NDs, highlighting both challenges and opportunities associated with the use of BDEVs for ND diagnostics.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Marcos Gil-Garcia
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Jacopo Cardellini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Roberto Frigerio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Manuela Basso
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland.
| |
Collapse
|
7
|
Chakroborty A, Ejaz S, Sternburg JO, Asadi Y, Cai M, Dwamena AA, Giri S, Adeniji O, Ahammed MS, Gilstrap EA, Uddin MG, McDowell C, Liu J, Wang H, Wang X. Homeostatic Activation of 26S Proteasomes by Protein Kinase A Protects against Cardiac and Neurobehavior Malfunction in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645869. [PMID: 40236239 PMCID: PMC11996328 DOI: 10.1101/2025.03.28.645869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Alzheimer's Disease (AD) patients often show brain and cardiac malfunction. AD represents a leading cause of morbidity and mortality worldwide, but the demand for effective treatment for AD is far from being met. This is primarily because AD pathogenesis, including brain-heart interaction, is poorly understood. Proteasome functional insufficiency is implicated in AD; as such, proteasome enhancement promises a potentially new strategy to treat AD. The proteasome can be activated by protein kinase A (PKA) via selectively phosphorylating Ser14-RPN6/PSMD11 (p-S14-RPN6); however, whether p-S14-RPN6 is altered and what role p-S14-RPN6 plays in AD remain unclear. Hence, this study was conducted to address these critical gaps. We found that genetic blockade of the homeostatic p-S14-Rpn6 via germline knock-in of Rpn6 S14A (referred to as S14A) significantly reduced proteasome activities in the cerebral cortex but did not discernibly impair learning and memory function in 4-month-old mice or cause cardiac dysfunction before 12 months of age. Increases in Ser14-phosphorylated Rpn6 in the cerebral cortex and markedly elevated Aβ proteins in the myocardium were observed in young 5XFAD mice, a commonly used AD model. When introduced into the 5XFAD mice, S14A significantly aggravated the learning and memory deficits as revealed by the radial arm water maze tests and accelerated cardiac malfunction as measured by serial echocardiography in the same cohort of 5XFAD mice. Thus, the present study establishes for the first time that homeostatic activation of 26S proteasomes by basal p-S14-RPN6 or PKA activity protects against both the brain and heart malfunction in the 5XFAD mice.
Collapse
|
8
|
Herline-Killian K, Pauers MM, Lipponen JE, Zrzavy MA, Gouveia Roque C, McCurdy EP, Chung KM, Hengst U. Modulation of CREB3L2-ATF4 heterodimerization via proteasome inhibition and HRI activation in Alzheimer's disease pathology. Cell Death Dis 2025; 16:225. [PMID: 40164587 PMCID: PMC11958753 DOI: 10.1038/s41419-025-07586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) pathology includes transcriptional changes in the neurons, which are in part caused by the heterodimerization of two stress response transcription factors, CREB3L2 and ATF4. We investigated the role of proteasome inhibition and the eIF2α-kinase HRI in the formation of CREB3L2-ATF4 in neurons exposed to soluble oligomeric Aβ42. While HRI activation increased ATF4 expression, it decreased CREB3L2 and CREB3L2-ATF4 levels. Proteasome inhibition, induced by Aβ42, leads to increased levels of both transcription factors in the nucleus. These findings suggest that CREB3L2 levels are normally kept low due to rapid degradation, but proteasome inhibition in response to Aβ42 disrupts this balance, increasing CREB3L2 and heterodimer levels. Activation of HRI not only reduced CREB3L2 and heterodimer levels but also prevented the transcriptional dysregulation of a CREB3L2-ATF4 target, SNX3. Our results suggest that manipulating the HRI pathway during proteasome inhibition could help restore normal gene expression in the context of AD-related protein accumulation.
Collapse
Affiliation(s)
- Krystal Herline-Killian
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michaela M Pauers
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Jessica E Lipponen
- Graduate Program in Pathobiology and Mechanisms of Disease, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael A Zrzavy
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ethan P McCurdy
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Tang H, Andrikopoulos N, Li Y, Ke S, Sun Y, Ding F, Ke PC. Emerging biophysical origins and pathogenic implications of amyloid oligomers. Nat Commun 2025; 16:2937. [PMID: 40133283 PMCID: PMC11937510 DOI: 10.1038/s41467-025-58335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The amyloid hypothesis has been a leading narrative concerning the pathophysiological foundation of Alzheimer's and Parkinson's disease. At the two ends of the hypothesis lie the functional protein monomers and the pathology-defining amyloid fibrils, while the early stages of protein aggregation are populated by polymorphic, transient and neurotoxic oligomers. As the structure and activity of oligomers are intertwined, here we show oligomers arising from liquid-liquid phase separation and β-barrel formation, their routes to neurodegeneration, and their role in cerebrovascular perturbation. Together, this Perspective converges on the multifaceted oligomer-axis central to the pathological origin and, hence, the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Engineering Mechanics, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Stone Ke
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
10
|
Ahammed MS, Wang X. Promoting proteostasis by cAMP/PKA and cGMP/PKG. Trends Mol Med 2025; 31:224-239. [PMID: 39477759 PMCID: PMC11908951 DOI: 10.1016/j.molmed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
Proteasome functional insufficiency (PFI) is implicated in neurodegeneration and heart failure, where aberrant protein aggregation is common and impairs the ubiquitin (Ub)-proteasome system (UPS), exacerbating increased proteotoxic stress (IPTS) and creating a vicious circle. Breaking this circle represents a key to treating these diseases. Protein kinase (PK)-A and PKG can activate the proteasome and promote proteasomal degradation of misfolded proteins. PKA does so by phosphorylating Ser14-RPN6/PSMD11, but how PKG activates the proteasome remains unknown. Emerging evidence supports a strategy to treat diseases with IPTS by augmenting cAMP/PKA and cGMP/PKG. Conceivably, targeted activation of PKA and PKG at proteasome nanodomains would minimize the undesired effects from their actions on other targets. In this review, we discuss PKA and PKG regulation of proteostasis via the UPS.
Collapse
Affiliation(s)
- Md Salim Ahammed
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| |
Collapse
|
11
|
Zhou Y, Chen Y, Xu M, Zhang Y, Wan X, Xia Y, Wang H, Zeng H. The effect of proteasome in heart transplantation: From mechanisms to therapeutic potential. Life Sci 2025; 364:123446. [PMID: 39920983 DOI: 10.1016/j.lfs.2025.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heart transplantation is a critical treatment for end-stage heart failure. However, its clinical efficacy is hindered by some challenges, such as ischemia-reperfusion injury (IRI) and post-transplant rejection. These complications significantly contribute to graft dysfunction and compromise patient survival. Emerging evidence underscores the involvement of proteasome in the pathophysiology of both IRI and post-transplant rejection. Proteasome inhibition has demonstrated potential in attenuating IRI by limiting oxidative damage and apoptosis while also mitigating rejection through the regulation of adaptive and innate immune responses. Recent advances in the development of proteasome inhibitors, particularly in optimizing specificity and minimizing adverse effects, have further strengthened their prospects for clinical application. This review focuses on the roles of the proteasome and its inhibitors in heart transplantation, with an emphasis on their mechanisms and therapeutic applications in managing IRI and rejection.
Collapse
Affiliation(s)
- Ye Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mengyao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaoning Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yudong Xia
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Witkowska J, Giżyńska M, Karpowicz P, Sowik D, Trepczyk K, Hennenberg F, Chari A, Giełdoń A, Pierzynowska K, Gaffke L, Węgrzyn G, Jankowska E. Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome. ACS Chem Biol 2025; 20:266-280. [PMID: 39907714 PMCID: PMC11851449 DOI: 10.1021/acschembio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.
Collapse
Affiliation(s)
- Julia Witkowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Małgorzata Giżyńska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Przemysław Karpowicz
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Daria Sowik
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Trepczyk
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Fabian Hennenberg
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
| | - Ashwin Chari
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
- Research
Group for Structural Biochemistry and Mechanisms, Max-Planck-Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Artur Giełdoń
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Pierzynowska
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Lidia Gaffke
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Elżbieta Jankowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| |
Collapse
|
13
|
Zhang X, Liu J, Zhong S, Zhang Z, Zhou Q, Yang J, Chang X, Wang H. Exposure to Manganese Induces Autophagy-Lysosomal Pathway Dysfunction-Mediated Tauopathy by Activating the cGAS-STING Pathway in the Brain. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:199-212. [PMID: 40012869 PMCID: PMC11851216 DOI: 10.1021/envhealth.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 02/28/2025]
Abstract
Manganese (Mn) exposure leads to pathological accumulation of Tau-associated neurodegenerative disease and has become a major public health concern. However, the precise mechanism underlying this effect remains unclear. Here, the mechanism by which Mn induces dysfunction of autophagy-lysosomal pathway-mediated tauopathy by activating the cGAS-STING pathway was explored both in vitro and in vivo. Mn exposure induced tauopathy in microglia and in mice while activating the cGAS-STING pathway, inducing type I interferon production, and impairing the degradation function of the autophagy-lysosomal pathway. Importantly, inactivation of the cGAS-STING pathway rescued the degradation activity of the autophagy-lysosomal pathway, while tauopathy was markedly attenuated, as shown in both cGAS-knockout and STING-knockout BV2 microglia and in mice. Moreover, the autophagy inhibitor 3-methyladenine (3-MA) restored the impaired degradation activity of the autophagy-lysosomal pathway by inactivating the cGAS-STING pathway, thereby clearing Tau aggregation. Taken together, these results indicate that Mn exposure induces tauopathy by impairing the function of the autophagy-lysosomal pathway through the activation of the cGAS-STING pathway. Thus, this study identifies a novel mechanism by which Mn exposure induces Tau aggregation, which in turn triggers potential neurotoxicity, providing a foundation for future drug target research.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| |
Collapse
|
14
|
Van Elzen R, Waumans Y, Nath S, Van der Veken P, Kerkhoff S, Van Dijk E, Morawski M, Roßner S, Engelborghs Y, De Meester I, Lambeir AM. The prolyl oligopeptidase and α-synuclein connection revisited. Biochimie 2025; 233:1-13. [PMID: 39984111 DOI: 10.1016/j.biochi.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The aim of this work was to revisit the connection between prolyl oligopeptidase (PREP) and α-synuclein (aSyn) by presenting novel data from cell free and cellular assays and to discuss the results in a contemporary context. The aSyn aggregation process was studied using fluorescence correlation spectroscopy and thioflavin-T fluorescence. Binding sites for PREP on the aSyn sequence were determined using peptide arrays. Subcellular localisation of PREP and stress markers were studied using double staining immunofluorescence microscopy in SH-SY5Y cells with and without overexpression of aSyn and PREP, before and after differentiation, and with or without proteolytic stress induced by proteasome inhibition. The interaction between PREP and aSyn was found to be weak and transient. It promotes the early phases of aggregation but does not affect the rate of β-fibril formation. Moreover, this interaction is not dependent upon the C-terminal prolines of aSyn, but is affected by PREP inhibitors and interferes with PREP substrate binding. Although present in the same cellular compartments, there is little evidence for a strong physical association of PREP with aggresomes and stress markers. Instead, there is colocalization with aSyn in the cell periphery and neurites. There is evidence for a binding site for peptides much longer than the usual PREP substrates. The modular assembly of molecular machines and the observation that PREP's protein-protein interactions are tuneable by active site inhibitors, lead to the hypothesis that this binding site features in the cross-talk between autophagy and neuron-specific pathways involving vesicle transport and protein secretion.
Collapse
Affiliation(s)
- Roos Van Elzen
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Yannick Waumans
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Sangeeta Nath
- Laboratory of Biomolecular Dynamics, KU Leuven, Celestijnenlaan 200G, Leuven, B-3001, Belgium.
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Sonja Kerkhoff
- Biosynth B.V. (formerly Pepscan Therapeutics), Zuidersluisweg 2, 8243 RC, Lelystad, the Netherlands.
| | - Evert Van Dijk
- Biosynth B.V. (formerly Pepscan Therapeutics), Zuidersluisweg 2, 8243 RC, Lelystad, the Netherlands.
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| | - Yves Engelborghs
- Laboratory of Biomolecular Dynamics, KU Leuven, Celestijnenlaan 200G, Leuven, B-3001, Belgium.
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
15
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Davidson K, Bano M, Parker D, Osmulski P, Gaczynska M, Pickering AM. β-Amyloid impairs Proteasome structure and function. Proteasome activation mitigates amyloid induced toxicity and cognitive deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619877. [PMID: 39484574 PMCID: PMC11526959 DOI: 10.1101/2024.10.23.619877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Alzheimer's Disease (AD) is the leading cause of dementia globally, affecting around 50 million people and marked by cognitive decline and the accumulation of β-amyloid plaques and hyperphosphorylated tau. The limited treatment options and numerous failed clinical trials targeting β-amyloid (Aβ) highlight the need for novel approaches. Lowered proteasome activity is a consistent feature in AD, particularly in the hippocampus. Impaired proteasome function in AD is hypothesized to stem from direct inhibition by β-amyloid or hyperphosphorylated tau, disrupting critical neuronal processes such as memory formation and synaptic plasticity. Objectives This study tests the hypothesis that AD related deficits are driven in part by impaired proteasome function as a consequence of inhibition by Aβ. We evaluated how proteasome function is modulated by Aβ and the capacity of two proteasome-activating compounds, TAT1-8,9-TOD and TAT1-DEN to rescue Aβ-induced impairment in vitro, as well as survival deficits in cell culture and Aβ-induced cognitive deficits in Drosophila and mouse models. Results Our study demonstrates that oligomeric β-amyloid binds to the 20S proteasome and impairs its activity and conformational stability. The oligomers also destabilize the 26S proteasome to release the free 20S proteasome. Treatment with proteasome activators TAT1-8,9TOD and TAT1-DEN rescue the 20S proteasome function and reduces cell death caused by Aβ42 toxicity in SK-N-SH cells. In Drosophila models overexpressing Aβ42, oral administration of proteasome agonists delayed mortality and restored cognitive function. Chronic treatment with TAT1-DEN protected against deficits in working memory caused by Aβ42 in mice and in hAPP(J20) mice with established deficits, acute TAT1-DEN treatment significantly improved spatial learning, with treated mice performing comparably to controls. Conclusions Aβ has dual impacts on 20S and 26S proteasome function and stability. Proteasome activation using TAT1-8,9TOD and TAT1-DEN shows promise in mitigating AD-like deficits by protecting against amyloid toxicity and enhancing proteasome function. These findings suggest that targeting proteasome activity could be a viable therapeutic approach for AD, warranting further investigation into the broader impacts of proteasome modulation on AD pathology.
Collapse
|
17
|
Joshi DC, Chavan MB, Gurow K, Gupta M, Dhaliwal JS, Ming LC. The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting. Biomed Pharmacother 2025; 183:117827. [PMID: 39854819 DOI: 10.1016/j.biopha.2025.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Mayuri Bapu Chavan
- TMV's Lokmanya Tilak Institute of Pharmaceutical Sciences, Pune, Maharashtra, India.
| | - Kajal Gurow
- Department of Pharmacology, Gurukul Pharmacy college, Ranpur, Kota, Rajasthan, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India.
| |
Collapse
|
18
|
Sowik D, Giżyńska M, Trepczyk K, Witkowska J, Jankowska E. Activation of the 20S proteasome as a possible strategy to counteract amylin oligomerization in type 2 diabetes. Bioorg Chem 2025; 155:108157. [PMID: 39809118 DOI: 10.1016/j.bioorg.2025.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM. Such therapeutic intervention may be enabled by activation of the 20S proteasome, a proteolytic system responsible for digesting proteins that are damaged or natively exhibit aggregation tendencies. In this work, we showed that in the lag phase of the aggregation process, soluble oligomers of small size (dimer to heptamer) were present alongside the amylin monomer. These oligomers inhibited the activity of the human 20S proteasome (h20S). To counteract this inhibition, we designed two activators that proved to be effective in restoring the peptidase efficiency of h20S to basal levels and even stimulating the enzyme to degrade the fluorogenic substrate more efficiently. They showed this effect both against isolated h20S and in cell lysate.
Collapse
Affiliation(s)
- Daria Sowik
- Department of Biomedical Chemistry Faculty of Chemistry University of Gdansk Wita Stwosza 63 Gdańsk Poland
| | - Małgorzata Giżyńska
- Department of Biomedical Chemistry Faculty of Chemistry University of Gdansk Wita Stwosza 63 Gdańsk Poland
| | - Karolina Trepczyk
- Department of Biomedical Chemistry Faculty of Chemistry University of Gdansk Wita Stwosza 63 Gdańsk Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry Faculty of Chemistry University of Gdansk Wita Stwosza 63 Gdańsk Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry Faculty of Chemistry University of Gdansk Wita Stwosza 63 Gdańsk Poland.
| |
Collapse
|
19
|
Sedlacek J, Smahelova Z, Adamek M, Subova D, Svobodova L, Kadlecova A, Majer P, Machara A, Grantz Saskova K. Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation. Biomed Pharmacother 2025; 183:117864. [PMID: 39884031 DOI: 10.1016/j.biopha.2025.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025] Open
Abstract
Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis. Here, we present a series of small-molecule compounds based on bis(phenylmethylen)cycloalkanones and their heterocyclic analogues, identified via targeted library screening, that can induce NRF1-dependent downstream events, such as proteasome synthesis, heat shock response, and autophagy, in both model cell lines and Caenorhabditis elegans strains. These compounds increase proteasome activity and decrease the size and number of protein aggregates without causing any cellular stress or inhibiting the ubiquitin-proteasome system (UPS). Therefore, our compounds represent a new promising therapeutic approach for various protein conformational diseases, including the most debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Zuzana Smahelova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Dominika Subova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic; First Faculty of Medicine & General University Hospital, Charles University, U Nemocnice 2, Prague 2 12808, Czech Republic
| | - Lucie Svobodova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Organic Chemistry, Charles University, Hlavova 2030/8, Prague 2 12843, Czech Republic
| | - Alena Kadlecova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Ales Machara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic.
| |
Collapse
|
20
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025:10.1038/s41401-024-01455-w. [PMID: 39890942 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
21
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
22
|
Zhang C, Hou J, Li Z, Shen Q, Bai H, Chen L, Shen J, Wang P, Su Y, Li J, Zhang Q, Liu C, Xi X, Qi F, Chen Y, Xie X, Ye AY, Liu X, Plebani R, Church G, Si L. PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins. Nat Chem Biol 2025:10.1038/s41589-024-01813-z. [PMID: 39814992 DOI: 10.1038/s41589-024-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.
Collapse
Affiliation(s)
- Chunhe Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jihuan Hou
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Shen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiqing Bai
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Li Chen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Shen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yinlei Su
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengyao Liu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuetong Xi
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Qi
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuting Chen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Xie
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Roberto Plebani
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Longlong Si
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
24
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Tonelli E, Malecka J, Barberis E, Romano C, Pessolano E, Talmon M, Genazzani AA, Casali C, Biggiogera M, Manfredi M, Tapella L, Lim D, Dematteis G. Remodelling of Cellular Protein Homeostasis by Enhanced ER-Mitochondrial Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329704. [PMID: 40177215 PMCID: PMC11963730 DOI: 10.1177/25152564251329704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Alterations of endoplasmic reticulum (ER)-mitochondrial interaction have been associated with different pathological conditions, including neurodegenerative diseases, characterized by dysregulation of protein homeostasis. However, little is known about how enhanced ER-mitochondrial tethering affects cellular proteostatic machinery. Here, we transiently overexpressed synthetic ER-mitochondrial linkers (EMLs), stabilizing the ER-mitochondrial distance at ≤5 nm (denominated as 5 nm-EML) and ∼10 nm (10 nm-EML), in HeLa cells. No alterations were found in cell growth, although metabolic activity and total ATP were significantly reduced. In EML-expressing cells, global protein synthesis was significantly reduced, accompanied by a reduction of total PERK and eIF2α protein levels, but increased p-eIF2α. Unfolded protein response (UPR) markers ATF4 and ATF6 were upregulated, suggesting that enhanced ER-mitochondrial tethering deranges protein synthesis and induces a low-grade ER stress/UPR. To further investigate ER-mitochondrial tethering-induced protein dyshomeostasis, we performed shotgun mass spectrometry proteomics followed by bioinformatic analysis. Analysis of highly changed proteins and the most significantly overrepresented gene ontology (GO) terms revealed that ≤5 nm tethering preferentially affected the expression of proteins involved in RNA processing and splicing and proteasomal protein degradation, while ∼10 nm tethering preferentially affected protein translation. Both EMLs affected expression of proteins involved in mitochondrial bioenergetics and metabolism, defense against oxidative stress, ER protein homeostasis, signaling and secretion. Finally, lipidomic analysis suggests that 5 nm-EML and 10 nm-EML differentially affect lipid homeostasis. Altogether, our results suggest that enhanced ER-mitochondrial tethering leads to a profound remodeling of cellular protein homeostasis, which may play a key role in pathogenesis of Alzheimer's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Camilla Romano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | | | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
26
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
27
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
28
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Broce KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. PLoS Comput Biol 2024; 20:e1012407. [PMID: 39666759 DOI: 10.1371/journal.pcbi.1012407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/26/2024] [Accepted: 11/03/2024] [Indexed: 12/14/2024] Open
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of Alzheimer's disease with ApoE4 strongly increasing and ApoE2 modestly decreasing risk relative to the control ApoE3. To investigate how ApoE isoforms alter risk, we measured changes in proteome homeostasis in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). The regulation of each protein's homeostasis is observed by measuring turnover rate and abundance for that protein. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, lack of cohesion between mitochondrial membrane and matrix proteins suggests that dysregulation of proteasome and autophagy is reducing protein quality. In ApoE2, proteins of the mitochondrial matrix and the membrane, including oxidative phosphorylation complexes, had a similar increase in degradation which suggests coordinated replacement of the entire organelle. In the liver we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Noah E Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Ariel E A Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jared M Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin S Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Ethan G Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Noah G Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Katie L Broce
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gerome M Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Chad D Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Kimberly B Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Haifa M Almughamsi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - John C Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
29
|
Wang X, Shuai W, Yang P, Liu Y, Zhang Y, Wang G. Targeted protein degradation: expanding the technology to facilitate the clearance of neurotoxic proteins in neurodegenerative diseases. Ageing Res Rev 2024; 102:102584. [PMID: 39551160 DOI: 10.1016/j.arr.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In neurodegenerative diseases (NDDs), disruptions in protein homeostasis hinder the clearance of misfolded proteins, causing the formation of misfolded protein oligomers and multimers. The accumulation of these abnormal proteins results in the onset and progression of NDDs. Removal of non-native protein is essential for cell to maintain proteostasis. In recent years, targeted protein degradation (TPD) technologies have become a novel means of treating NDDs by removing misfolded proteins through the intracellular protein quality control system. The TPD strategy includes the participation of two primary pathways, namely the ubiquitin-proteasome pathway (for instance, PROTAC, molecular glue and hydrophobic tag), and the autophagy-lysosome pathway (such as LYTAC, AUTAC and ATTEC). In this review, we systematically present the mechanisms of various TPD strategies employed for neurotoxic protein degradation in NDDs. The article provides an overview of the design, in vitro and in vivo anti-NDD activities and pharmacokinetic properties of these small-molecular degraders. Finally, the advantages, challenges and perspectives of these TPD technologies in NDDs therapy are discussed, providing ideas for further development of small molecule degraders in the realm of NDDs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yinyang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
31
|
Cankar N, Beschorner N, Tsopanidou A, Qvist FL, Colaço AR, Andersen M, Kjaerby C, Delle C, Lambert M, Mundt F, Weikop P, Jucker M, Mann M, Skotte NH, Nedergaard M. Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model. Cell Rep 2024; 43:114977. [PMID: 39541211 DOI: 10.1016/j.celrep.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Filippa L Qvist
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Proteomics Research Infrastructure, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niels Henning Skotte
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Verma H, Kaur S, Jeeth P, Kumar P, Kadhirvel S, Dhiman M, Mantha AK. Understanding Aβ 25-35 peptide altered exosomal proteome and associated pathways linked with the Alzheimer's disease pathogenesis using human neuroblastoma SH-SY5Y Cells. Metab Brain Dis 2024; 40:25. [PMID: 39565424 DOI: 10.1007/s11011-024-01469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 11/21/2024]
Abstract
The central nervous system (CNS) involves a complex interplay of communications between the neurons and various glial cells, which is crucial for brain functions. The major interactomes are exosomes that transmit sundry molecules (DNA, miRNAs, and proteins) between the cells and thus alter cell physiology. Exosomes can act as neuroprotective or neurodegenerative agents depending on the microenvironment of cells secreting them. Therefore, revealing exosome proteome becomes important to understand donor cells' physiology and its effect on the recipient cell. In this study, oxidative stress was induced by Aβ25-35 in the human neuroblastoma SH-SY5Y cells and the protective effects of phytochemical ferulic acid (FA) were evaluated alone and in combination with Aβ25-35 (pre-treated for 3 h before Aβ25-35 exposure) and proteome of their secreted exosomes was analyzed, which was carried out via a high-resolution LC-MS Triple-ToF and further network-based analysis has been carried out using various bioinformatics tools. The proteomic profiling enlightened the multiple roles of exosomes as proteins associated with the various pathways advocate that exosomes can mediate a wide range of effects, from normal physiological processes like synaptic plasticity, neuronal metabolic support, nerve regeneration, DNA repair, axon guidance, and long-term potentiation (LTP) to abnormal pathological processes like inflammatory responses, oxidative stress, apoptosis, and formation of neutrophil extracellular traps (NETs). On comparison, treatment with Aβ25-35 resulted in a significant modulation of the exosomal proteome, promoting pathways associated with neurodegeneration. Conversely, the phytochemical FA displayed a protective effect by effectively countering Aβ25-35-induced oxidative stress responses linked with neurodegeneration, as seen in Alzheimer's disease (AD). Taken together, this study highlights the dual role of exosomes in physiological and pathophysiological neurodegenerative AD, which intricately depend on the particular cellular milieu.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Priyanka Jeeth
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
33
|
Wang T, Jiang J, Zhang X, Ke X, Qu Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol Med 2024; 30:1061-1075. [PMID: 38851992 DOI: 10.1016/j.molmed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Although it is believed that ubiquitin (Ub) modification is required for protein degradation in the proteasome system (UPS), several proteins are subject to Ub-independent proteasome degradation, and in many cases ubiquitin-like (UBL) modifications, including neddylation, FAT10ylation, SUMOylation, ISGylation, and urmylation, are essential instead. In this Review, we focus on UBL-dependent proteasome degradation (UBLPD), on proteasome regulators especially shuttle factors and receptors, as well as potential competition and coordination with UPS. We propose that there is a distinct UBL-proteasome system (UBLPS) that might be underestimated in protein degradation. Finally, we investigate the association of UBLPD with muscle wasting and neurodegenerative diseases in which the proteasome is abnormally activated and impaired, respectively, and suggest strategies to modulate UBLPD for disease therapy.
Collapse
Affiliation(s)
- Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Jiang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
34
|
Moore SM, Gawron J, Stevens M, Marziali LN, Buys ES, Milne GT, Feltri ML, VerPlank JJS. Pharmacologically increasing cGMP improves proteostasis and reduces neuropathy in mouse models of CMT1. Cell Mol Life Sci 2024; 81:434. [PMID: 39400753 PMCID: PMC11473742 DOI: 10.1007/s00018-024-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Increasing cyclic GMP activates 26S proteasomes via phosphorylation by Protein Kinase G and stimulates the intracellular degradation of misfolded proteins. Therefore, agents that raise cGMP may be useful therapeutics against neurodegenerative diseases and other diseases in which protein degradation is reduced and misfolded proteins accumulate, including Charcot Marie Tooth 1A and 1B peripheral neuropathies, for which there are no treatments. Here we increased cGMP in the S63del mouse model of CMT1B by treating for three weeks with either the phosphodiesterase 5 inhibitor tadalafil, or the brain-penetrant soluble guanylyl cyclase stimulator CYR119. Both molecules activated proteasomes in the affected peripheral nerves, reduced polyubiquitinated proteins, and improved myelin thickness and nerve conduction. CYR119 increased cGMP more than tadalafil in the peripheral nerves of S63del mice and elicited greater biochemical and functional improvements. To determine whether raising cGMP could be beneficial in other neuropathies, we first showed that polyubiquitinated proteins and the disease-causing protein accumulate in the sciatic nerves of the C3 mouse model of CMT1A. Treatment of these mice with CYR119 reduced the levels of polyubiquitinated proteins and the disease-causing protein, presumably by increasing their degradation, and improved myelination, nerve conduction, and motor coordination. Thus, pharmacological agents that increase cGMP are promising treatments for CMT1 neuropathies and may be useful against other proteotoxic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seth M Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mckayla Stevens
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Leandro N Marziali
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Emmanuel S Buys
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - G Todd Milne
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- IRCCS Neurological institute 'Carlo Besta', Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita' degli Studi di Milano, Milano, Italy
| | - Jordan J S VerPlank
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
35
|
Salcedo-Tacuma D, Howells GD, McHose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: a comprehensive database for identifying HbYX motif-containing proteins across the tree of life. BMC Genomics 2024; 25:951. [PMID: 39396964 PMCID: PMC11475706 DOI: 10.1186/s12864-024-10864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were experimentally tested by pulldowns, confirming that they directly interact with the proteasome, with one of them directly activating it. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Giovanni D Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Coleman McHose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
36
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Ueda J, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. Mol Neurodegener 2024; 19:69. [PMID: 39379975 PMCID: PMC11462807 DOI: 10.1186/s13024-024-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Jun Ueda
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Nasiri
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Constantin A Grotmann
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US.
| |
Collapse
|
37
|
Tang Y, Park HJ, Li S, Fitzgerald MC. Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease. J Proteome Res 2024; 23:4443-4456. [PMID: 39292827 DOI: 10.1021/acs.jproteome.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and limited proteolysis (LiP) techniques were used to profile the stability of ∼2500 proteins in hippocampus tissue cell lysates from 2- and 8-months-old wild-type (C57BL/6J; n = 7) and transgenic (5XFAD; n = 7) mice with five Alzheimer's disease (AD)-linked mutations. Approximately 200-500 protein hits with AD-related stability changes were detected by each technique at each age point. The hit overlap from technique to technique was low, and all of the techniques generated protein hits that were more numerous and largely different from those identified in protein expression level analyses, which were also performed here. The hit proteins identified by each technique were enriched in a number of the same pathways and biological processes, many with known connections to AD. The protein stability hits included 25 high-value conformation biomarkers with AD-related stability changes detected using at least 2 techniques at both age points. Also discovered were subunit- and age-specific AD-related stability changes in the proteasome, which had reduced function at both age points. The different folding stability profiles of the proteasome at the two age points are consistent with a different mechanism for proteasome dysfunction at the early and late stages of AD.
Collapse
Affiliation(s)
- Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Shengyu Li
- Department of Computational Biology & Bioinformatics, Duke University, Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
38
|
Kim BY, Sohn E, Lee MY, Jeon WY, Jo K, Kim YJ, Jeong SJ. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173673. [PMID: 38839008 DOI: 10.1016/j.scitotenv.2024.173673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Recently, urban particulate matter (UPM) exposure has been associated with the development of brain disorders. This study uses bioinformatic analyses to elucidate the molecular unexplored mechanisms underlying the effects of UPM exposure on the brain. Mice are exposed to UPM (from 3 days to 20 weeks), and their behavioral patterns measured. We measure pathology and gene expression in the hippocampus and cortical regions of the brain. An integrated interactome of genes is established, which enriches information on metabolic processes. Using this network, we isolate the core genes that are differentially expressed in the samples. We observe cognitive loss and pathological changes in the brains of mice at 16 or 20 weeks of exposure. Through network analysis of core-differential genes and measurement of pathway activity, we identify differences in the response to UPM exposure between the hippocampus and cortex. However, neurodegenerative disease pathways are implicated in both tissues following short-term exposure to UPM. There were also significant changes in metabolic function in both tissues depending on UPM exposure time. Additionally, the cortex of UPM-exposed mice shows more similarities with psychiatric disorders than with neurodegenerative diseases. The connectivity map database is used to isolate genes contributing to changes in expression due to UPM exposure. New approaches for inhibiting or preventing the brain damage caused by UPM exposure can be developed by targeting the functions and selected genes identified in this study.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Eunjin Sohn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Mee-Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
39
|
Eroglu M, Zocher T, McAuley J, Webster R, Xiao MZX, Yu B, Mok C, Derry WB. Noncanonical inheritance of phenotypic information by protein amyloids. Nat Cell Biol 2024; 26:1712-1724. [PMID: 39223373 DOI: 10.1038/s41556-024-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
All known heritable phenotypic information in animals is transmitted by direct inheritance of nucleic acids, their covalent modifications or histone modifications that modulate expression of associated genomic regions. Nonetheless, numerous familial traits and disorders cannot be attributed to known heritable molecular factors. Here we identify amyloid-like protein structures that are stably inherited in wild-type animals and influence traits. Their perturbation by genetic, environmental or pharmacological treatments leads to developmental phenotypes that can be epigenetically passed onto progeny. Injection of amyloids isolated from different phenotypic backgrounds into naive animals recapitulates the associated phenotype in offspring. Genetic and proteomic analyses reveal that the 26S proteasome and its conserved regulators maintain heritable amyloids across generations, which enables proper germ cell sex differentiation. We propose that inheritance of a proteinaceous epigenetic memory coordinates developmental timing and patterning with the environment to confer adaptive fitness.
Collapse
Affiliation(s)
- Matthew Eroglu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Tanner Zocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob McAuley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Webster
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maggie Z X Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Guo X, Prajapati R, Chun J, Byun I, Gebis KK, Wang YZ, Ling K, Dalton C, Blair JA, Hamidianjahromi A, Bachmann G, Rigo F, Jafar-Nejad P, Savas JN, Lee MJ, Sreedharan J, Kalb RG. Reduction of RAD23A extends lifespan and mitigates pathology in TDP-43 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612226. [PMID: 39314471 PMCID: PMC11419047 DOI: 10.1101/2024.09.10.612226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein misfolding and aggregation are cardinal features of neurodegenerative disease (NDD) and they contribute to pathophysiology by both loss-of-function (LOF) and gain-of-function (GOF) mechanisms. This is well exemplified by TDP-43 which aggregates and mislocalizes in several NDDs. The depletion of nuclear TDP-43 leads to reduction in its normal function in RNA metabolism and the cytoplasmic accumulation of TDP-43 leads to aberrant protein homeostasis. A modifier screen found that loss of rad23 suppressed TDP-43 pathology in invertebrate and tissue culture models. Here we show in a mouse model of TDP-43 pathology that genetic or antisense oligonucleotide (ASO)-mediated reduction in rad23a confers benefits on survival and behavior, histological hallmarks of disease and reduction of mislocalized and aggregated TDP-43. This results in improved function of the ubiquitin-proteasome system (UPS) and correction of transcriptomic alterations evoked by pathologic TDP-43. RAD23A-dependent remodeling of the insoluble proteome appears to be a key event driving pathology in this model. As TDP-43 pathology is prevalent in both familial and sporadic NDD, targeting RAD23A may have therapeutic potential.
Collapse
Affiliation(s)
- Xueshui Guo
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Ravindra Prajapati
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Jiyeon Chun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kamil K Gebis
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Casey Dalton
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Jeff A Blair
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Anahid Hamidianjahromi
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | | | - Jeffrey N Savas
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Robert G Kalb
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
41
|
Sánchez-Terrón G, Martínez R, Delgado J, Molina J, Estévez M. Hepatoprotective mechanisms of pomegranate bioactives on a murine models affected by NAFLD as analysed by MS-based proteomics: The mitochondria in the eye of the storm. Food Res Int 2024; 192:114769. [PMID: 39147495 DOI: 10.1016/j.foodres.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the mechanisms underlying the direct association between fructose consumption and the onset and progression of non-alcoholic fatty liver disease (NAFLD), as well as the high prevalence of metabolic syndrome (MetS), is of great importance for adopting potential nutritional strategies. Thus, an evaluation of the impact of sustained high fructose consumption on the liver physiology of Wistar rats was made. Moreover, the effectiveness of a dietary pomegranate-derived supplement (P) at counteracting fructose-induced liver injury was also assessed. For unveiling the underlying mechanisms, an untargeted proteomic analysis of the livers from nineteen Wistar rats fed on a basal commercial feed and supplemented with either drinking water (C) (n = 6), 30 % (w/v) fructose in drinking water (F) (n = 7) or 30 % (w/v) fructose solution plus 0.2 % (w/v) P (F+P) (n = 6) was assessed. Fructose intake severely increased the abundance of several energy-production related-proteins, such as fructose-bisphosphate aldolase or fatty acid synthase, among others, as well as diminished the amount of another ones, such as carnitine O-palmitoyl transferase or different subunits of acyl-coenzyme A oxidase. These changes could facilitate mitochondrial disturbances and oxidative stress. Regarding the hepatic proteome of F, P extract restored mitochondrial homeostasis and strengthened endogenous antioxidant mechanisms diminishing the amount of proteins involved in process that could increase the oxidative status, as well as increasing both the quantity of several proteins involved in proteasome functionality, as expressing changes in the amount of certain RNA-splicing related-proteins, regarding F proteome.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad de Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - Josué Delgado
- HISEALI Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Caceres 10003, Spain
| | - Javier Molina
- Gastroenterology and Hepatology, Hospital Universitario de Cáceres (HUC), Servicio Extremeño de Salud (SES), Junta de Extremadura, Caceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain.
| |
Collapse
|
42
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Brown KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607719. [PMID: 39185235 PMCID: PMC11343127 DOI: 10.1101/2024.08.13.607719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of neurodegenerative disease with the ApoE4 isoform increasing and ApoE2 isoform decreasing risk relative to the 'wild-type control' ApoE3 isoform. To elucidate how ApoE isoforms alter the proteome, we measured relative protein abundance and turnover in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). This data provides insight into how ApoE isoforms affect the in vivo synthesis and degradation of a wide variety of proteins. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, this regulation is not cohesive suggesting that aerobic respiration is impacted by proteasomal and autophagic dysregulation. ApoE2 mice exhibited a matching change in mitochondrial matrix proteins and the membrane which suggests coordinated maintenance of the entire organelle. In the liver, we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R. Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah E. Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ariel E. A. Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Jared M. Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin S. Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ethan G. Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah G. Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Katie L. Brown
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Gerome M. Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Chad D. Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K. Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
43
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
45
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Staerz SD, Anamoah C, Tepe JJ. 20S proteasome enhancers prevent cytotoxic tubulin polymerization-promoting protein induced α-synuclein aggregation. iScience 2024; 27:110166. [PMID: 38974969 PMCID: PMC11225362 DOI: 10.1016/j.isci.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases defined by the presence of α-synuclein inclusions. The location and composition of these α-synuclein inclusions directly correlate to the disease pattern. The inclusions in Multiple System Atrophy are located predominantly in oligodendrocytes and are rich in a second protein, p25α. P25α plays a key role in neuronal myelination by oligodendrocytes. In healthy oligodendrocytes, there is little to no α-synuclein present. If aberrant α-synuclein is present, p25α leaves the myelin sheaths and quickly co-aggregates with α-synuclein, resulting in the disruption of the cellular process and ultimately cell death. Herein, we report that p25α is susceptible for 20S proteasome-mediated degradation and that p25α induces α-synuclein aggregation, resulting in proteasome impairment and cell death. In addition, we identified small molecules 20S proteasome enhancers that prevent p25α induced α-synuclein fibrilization, restore proteasome impairment, and enhance cell viability.
Collapse
Affiliation(s)
- Sophia D. Staerz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Charles Anamoah
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
47
|
Lin NH, Jian WS, Snider N, Perng MD. Glial fibrillary acidic protein is pathologically modified in Alexander disease. J Biol Chem 2024; 300:107402. [PMID: 38782207 PMCID: PMC11259701 DOI: 10.1016/j.jbc.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Here, we describe pathological events potentially involved in the disease pathogenesis of Alexander disease (AxD). This is a primary genetic disorder of astrocyte caused by dominant gain-of-function mutations in the gene coding for an intermediate filament protein glial fibrillary acidic protein (GFAP). Pathologically, this disease is characterized by the upregulation of GFAP and its accumulation as Rosenthal fibers. Although the genetic basis linking GFAP mutations with Alexander disease has been firmly established, the initiating events that promote GFAP accumulation and the role of Rosenthal fibers (RFs) in the disease process remain unknown. Here, we investigate the hypothesis that disease-associated mutations promote GFAP aggregation through aberrant posttranslational modifications. We found high molecular weight GFAP species in the RFs of AxD brains, indicating abnormal GFAP crosslinking as a prominent pathological feature of this disease. In vitro and cell-based studies demonstrate that cystine-generating mutations promote GFAP crosslinking by cysteine-dependent oxidation, resulting in defective GFAP assembly and decreased filament solubility. Moreover, we found GFAP was ubiquitinated in RFs of AxD patients and rodent models, supporting this modification as a critical factor linked to GFAP aggregation. Finally, we found that arginine could increase the solubility of aggregation-prone mutant GFAP by decreasing its ubiquitination and aggregation. Our study suggests a series of pathogenic events leading to AxD, involving interplay between GFAP aggregation and abnormal modifications by GFAP ubiquitination and oxidation. More important, our findings provide a basis for investigating new strategies to treat AxD by targeting abnormal GFAP modifications.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Syuan Jian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
48
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
49
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
50
|
Salazar-Chaparro A, Kragness K, Feleciano D, Trader DJ. AM404 Analogs as Activators of the 20S Isoform of the Human Proteasome. Chembiochem 2024; 25:e202400284. [PMID: 38609329 DOI: 10.1002/cbic.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
The proteasome is a multisubunit protease system responsible for the majority of the protein turnover in eukaryotic organisms. Dysregulation of this enzymatic complex leads to protein accumulation, subsequent aggregation, and ultimately diseased states; for that reason, positive modulation of its activity has been recently investigated as a therapeutic strategy for neurodegenerative and age-related diseases. The small molecule AM404 was recently identified as an activator of the 20S isoform of the proteasome and further exploration of the scaffold revealed the importance of the polyunsaturated fatty acid chain to elicit activity. Herein, we report the investigation of the aromatic region of the scaffold and the evaluation of the small molecules in a variety of proteasome activity and protein degradation assays. We found that derivatives A22 and A23, compared to AM404, exhibit enhanced proteasome activity in biochemical and cellular proteasome assays and more favorable cellular viability profiles. Additionally, these compounds demonstrate the ability to degrade intrinsically disordered proteins, regardless of their molecular weight, and the ability to restore the proteasome activity in the presence of toxic oligomeric α-Syn species in a biochemical setting.
Collapse
Affiliation(s)
- Andres Salazar-Chaparro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana, 47907, United States
| | - Kate Kragness
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana, 47907, United States
- Department of Pharmaceutical Sciences, University of California - Irvine, 856 Health Sciences Way, Irvine, CA, 92697, United States
| | | | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana, 47907, United States
- Department of Pharmaceutical Sciences, University of California - Irvine, 856 Health Sciences Way, Irvine, CA, 92697, United States
| |
Collapse
|