1
|
Lucas MC, Keßler T, Scharf F, Steinke-Lange V, Klink B, Laner A, Holinski-Feder E. A series of reviews in familial cancer: genetic cancer risk in context variants of uncertain significance in MMR genes: which procedures should be followed? Fam Cancer 2025; 24:42. [PMID: 40317406 DOI: 10.1007/s10689-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Interpreting variants of uncertain significance (VUS) in mismatch repair (MMR) genes remains a major challenge in managing Lynch syndrome and other hereditary cancer syndromes. This review outlines recommended VUS classification procedures, encompassing foundational and specialized methodologies tailored for MMR genes by expert organizations, including InSiGHT and ClinGen's Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Key approaches include: (1) functional data, encompassing direct assays measuring MMR proficiency such as in vitro MMR assays, deep mutational scanning, and MMR cell-based assays, as well as techniques like methylation-tolerant assays, proteomic-based approaches, and RNA sequencing, all of which provide critical functional evidence supporting variant pathogenicity; (2) computational data/tools, including in silico meta-predictors and models, which contribute to robust VUS classification when integrated with experimental evidence; and (3) enhanced variant detection to identify the actual causal variant through whole-genome sequencing and long-read sequencing to detect pathogenic variants missed by traditional methods. These strategies improve diagnostic precision, support clinical decision-making for Lynch syndrome, and establish a flexible framework that can be applied to other OMIM-listed genes.
Collapse
Affiliation(s)
- Morghan C Lucas
- MGZ- Medical Genetics Center, Munich, Germany.
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany.
| | | | | | - Verena Steinke-Lange
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | - Barbara Klink
- MGZ- Medical Genetics Center, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | | | - Elke Holinski-Feder
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| |
Collapse
|
2
|
Otsuka Y, Yano M. FAM136A depletion induces mitochondrial stress and reduces mitochondrial membrane potential and ATP production. FEBS Open Bio 2025; 15:738-753. [PMID: 39821719 PMCID: PMC12051016 DOI: 10.1002/2211-5463.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
FAM136A deficiency has been associated with Ménière's disease. However, the underlying mechanism of action of this protein remains unclear. We hypothesized that FAM136A functions in maintaining mitochondria, even in HepG2 cells. To better characterize FAM136A function, we analyzed the cellular response caused by its depletion. FAM136A depletion induced reactive oxygen species (ROS) and reduced both mitochondrial membrane potential and ATP production. However, cleaved caspase-9 levels did not increase significantly. We next investigated why the depletion of FAM136A reduced the mitochondrial membrane potential and ATP production but did not lead to apoptosis. Depletion of FAM136A induced the mitochondrial unfolded protein response (UPRmt) and the expression levels of gluconeogenic phosphoenolpyruvate carboxykinases (PCK1 and PCK2) and ketogenic 3-hydroxy-3-methylglutaryl-CoA synthases (HMGCS1 and HMGCS2) were upregulated. Furthermore, depletion of FAM136A reduced accumulation of holocytochrome c synthase (HCCS), a FAM136A interacting enzyme that combines heme to apocytochrome c to produce holocytochrome c. Notably, the amount of heme in cytochrome c did not change significantly with FAM136A depletion, although the amount of total cytochrome c protein increased significantly. This observation suggests that greater amounts of cytochrome c remain unbound to heme in FAM136A-depleted cells.
Collapse
Affiliation(s)
- Yushi Otsuka
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityKumamotoJapan
| | - Masato Yano
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityKumamotoJapan
| |
Collapse
|
3
|
Keskitalo S, Seppänen MRJ, Del Sol A, Varjosalo M. From rare to more common: The emerging role of omics in improving understanding and treatment of severe inflammatory and hyperinflammatory conditions. J Allergy Clin Immunol 2025; 155:1435-1450. [PMID: 39978687 DOI: 10.1016/j.jaci.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Inflammation is a pathogenic driver of many diseases, including atherosclerosis and rheumatoid arthritis. Hyperinflammation can be seen as any inflammatory response that is deleterious to the host, regardless of cause. In medicine, hyperinflammation is defined as severe, deleterious, and fluctuating systemic or local inflammation with presence of a cytokine storm. It has been associated with rare autoinflammatory disorders. However, advances in omics technologies, including genomics, proteomics, and metabolomics, have revealed it to be more common, occurring in sepsis and severe coronavirus disease 2019. With a focus on proteomics, this review highlights the key role of omics in this shift. Through an exploration of research, we present how omics technologies have contributed to improved diagnostics, prognostics, and targeted therapeutics in the field of hyperinflammation. We also discuss the integration of advanced technologies, multiomics approaches, and artificial intelligence in analyzing complex datasets to develop targeted therapies, and we address their potential for revolutionizing the clinical aspects of hyperinflammation. We emphasize personalized medicine approaches for effective treatments and outline challenges, including the need for standardized methodologies, robust bioinformatics tools, and ethical considerations regarding data privacy. This review aims to provide a comprehensive overview of the molecular mechanisms underpinning hyperinflammation and underscores the potential of omics technologies in enabling successful clinical management.
Collapse
Affiliation(s)
- Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mikko R J Seppänen
- Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; European Reference Network Rare Immunodeficiency Autoinflammatory and Autoimmune Diseases Network (ERN RITA) Core Center, Helsinki, The Netherlands
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Computational Biology Group, Basque Research and Technology Alliance (CIC bioGUNE-BRTA), Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Daddali R, Kettunen K, Turunen T, Knox AVC, Laine P, Chowdhury I, Vänttinen M, Mamia N, Stiegler AL, Boggon TJ, Kere J, Romberg N, Seppänen MRJ, Varjosalo M, Martelius T, Grönholm J. Novel heterozygous SPI1c.538C>T p.(Leu180Phe) variant causes PU.1 haploinsufficiency leading to agammaglobulinemia. Clin Immunol 2025; 277:110503. [PMID: 40294836 DOI: 10.1016/j.clim.2025.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
PU.1 is an Ets family transcription factor crucial for hematopoietic cell fate. Complete PU.1 deficiency lethally arrests lympho- and myelopoiesis in mice. Individuals with SPI1 heterozygous loss-of-function variants exhibit disrupted gene expression patterns associated with B cell development. We identified the vertical transmission of a heterozygous SPI1c.538C>T p.(L180F) variant in a Finnish family. The index patient and his mother had severe bacterial infections, agammaglobulinemia, and low myeloid and plasmacytoid dendritic cell counts. The variant carrier sister had slightly reduced B cell counts, isolated IgA deficiency, and reduced dendritic cell counts. All individuals had diminished PU.1 protein expression in monocytes. In vitro studies showed that PU.1 L180F variant is less expressed and predominantly located in the cytoplasm. PU.1 WT mainly interacts with chromatin and centrosome-associated proteins, while the L180F variant showed fewer interactions. Our findings describe a novel PU.1 variant leading to agammaglobulinemia with variable penetrance.
Collapse
Affiliation(s)
- Ravindra Daddali
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Kaisa Kettunen
- Laboratory of Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tanja Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ainsley V C Knox
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Markku Vänttinen
- Department of Medicine, Unit of Infectious Diseases and Hospital Hygiene, Kuopio University Hospital, Kuopio, Wellbeing services county of North Savo, Finland
| | - Nanni Mamia
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, United States of America; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States of America
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, United States of America; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mikko R J Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; European Reference Network Rare Immunodeficiency Autoinflammatory and Autoimmune Diseases Network (ERN RITA) Core Center, Utrecht 3584, CX, Netherlands
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timi Martelius
- European Reference Network Rare Immunodeficiency Autoinflammatory and Autoimmune Diseases Network (ERN RITA) Core Center, Utrecht 3584, CX, Netherlands; Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Grönholm
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; European Reference Network Rare Immunodeficiency Autoinflammatory and Autoimmune Diseases Network (ERN RITA) Core Center, Utrecht 3584, CX, Netherlands; Division of Hematology, Oncology, and Stem Cell Transplantation, New Children's Hospital, HUS Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
5
|
Bremer HJ, Pflum MKH. Chemoproteomic Profiling of PKA Substrates with Kinase-catalyzed Crosslinking and Immunoprecipitation (K-CLIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644825. [PMID: 40166339 PMCID: PMC11957104 DOI: 10.1101/2025.03.23.644825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Phosphorylation is a highly regulated protein post-translational modification catalyzed by kinases. Kinases and phosphorylated proteins are key players in a myriad of cellular events, including cell signaling. When cell signaling networks are improperly regulated by kinases, various pathologies can arise, such as cancers and neurodegenerative disease. With critical roles in normal and disease biology, kinase-substrate interactions must be thoroughly characterized. Previously, the chemoproteomic method, kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP), was developed to identify the kinases of a phosphoprotein substrate of interest. Here, K-CLIP was modified to profile the substrates of a kinase of interest. Specifically, the substrate profile of cAMP-dependent protein kinase (PKA) was studied with K-CLIP using a new ATP analog, ATP-alkyne aryl azide. Kinase-focused K-CLIP discovered SMC3 as a PKA substrate. With versatility for any kinase or phosphoprotein substrate of interest, K-CLIP will expand our understanding of kinase-mediated cell biology in healthy and diseased states.
Collapse
|
6
|
Xu X, Brasier AR. SMARCA4 regulates inducible BRD4 genomic redistribution coupling intrinsic immunity and plasticity in epithelial injury-repair. Nucleic Acids Res 2025; 53:gkaf211. [PMID: 40131774 PMCID: PMC11934928 DOI: 10.1093/nar/gkaf211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Coordinated expression of differentiation and innate pathways is essential for successful mucosal injury-repair. Previously, we discovered that the core SWI/SNF complex ATPase, SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4)/Brg1, maintains tumor protein 63 + basal progenitor cells in an epithelial-committed state. In response to viral injury, SMARCA4 complexes BRD4 to activate innate inflammation and promote mesenchymal transition/plasticity. To investigate how innate inflammation couples with plasticity, Cleavage Under Targets and Release Using Nuclease of BRD4 binding was applied to wild type and SMARCA4 knockdown (KD) in mock- or respiratory syncytial virus (RSV)-infected basal cells. In mock-infected cells, BRD4 binds 4017 high-confidence peaks within gene bodies controlling mesenchymal transition pathways. By contrast, RSV replication repositions 2339 BRD4 peaks to open chromatin regions upstream of the genes controlling inducible cytokine, cell adherence, and antiviral programs. Also, we note RSV redistributes BRD4 into super enhancers regulating immune response-associated long noncoding (lnc)RNAs. In SMARCA4 KD cells, BRD4 distribution is reduced on 739 peaks after RSV infection. The boundaries of nucleosome-free regions are reduced by SMARCA4 KD, suggesting its role in maintaining open chromatin of super enhancers. Specifically, SMARCA4-BRD4 enhancer controls lncRNAs important in interferon response factor 1 autoregulation. These data indicate how SWI/SNF ATPases couple BRD4 to lncRNA expression controlling cell state and intrinsic immunity in epithelial injury-repair.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
7
|
Yuan J, Yang M, Wu Z, Wu J, Zheng K, Wang J, Zeng Q, Chen M, Lv T, Shi Y, Yang J, Yang J. The Lactate-Primed KAT8‒PCK2 Axis Exacerbates Hepatic Ferroptosis During Ischemia/Reperfusion Injury by Reprogramming OXSM-Dependent Mitochondrial Fatty Acid Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414141. [PMID: 39853940 PMCID: PMC11923996 DOI: 10.1002/advs.202414141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI. Lactate-primed lysine acetyltransferase 8 (KAT8) is determined to directly lactylate mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) at Lys100 and augments PCK2 kinase activity. By using gene-edited mice, evidence indicating that PCK2 exacerbates hepatic ferroptosis during IRI is generated. Mechanistically, PCK2 lactylate at Lys100 acts as a critical inducer of ferroptosis during IRI by competitively inhibiting the Parkin-mediated polyubiquitination of 3-oxoacyl-ACP synthase (OXSM), thereby leading to metabolic remodeling of mitochondrial fatty acid synthesis (mtFAS) and the potentiation of oxidative phosphorylation and the tricarboxylic acid cycle. More importantly, targeting PCK2 is demonstrated to markedly ameliorate hyperlactatemia-mediated ferroptosis during hepatic IRI. Collectively, the findings support the use of therapeutics targeting PCK2 to suppress hepatic ferroptosis and IRI in patients with hyperlactatemia during LT.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Mingyang Yang
- Department of Emergency and Critical Care MedicineWest China School of Public HealthWest China Fourth HospitalSichuan UniversityChengdu610041China
| | - Zhenru Wu
- Institute of Clinical PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Wu
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Kejie Zheng
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - JiaGuo Wang
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Qiwen Zeng
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Menglin Chen
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Tao Lv
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Yujun Shi
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Jiayin Yang
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| | - Jian Yang
- Liver Transplant CenterTransplant CenterWest China HospitalSichuan UniversityChengdu610041China
- Institute of Organ TransplantationFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
- Key Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
8
|
Lima de Souza S, Asano T, Glumoff V, Keskitalo S, Pikkarainen K, Martelius T, Kaustio M, Saarela J, Kuismin O, Lappi-Blanco E, Jartti A, Yannopoulos F, Tiitto L, Seppänen MRJ, Boisson B, Casanova JL, Varjosalo M, Hautala T, Chen Z. Pulmonary Aspergillosis and Low HIES Score in a Family with STAT3 N-Terminal Domain Mutation. J Clin Immunol 2025; 45:73. [PMID: 39928202 PMCID: PMC11811237 DOI: 10.1007/s10875-025-01867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a key role in leukocytic and non-leukocytic cells. Germ line mutations in STAT3, which are mainly found in the SH2, DNA binding and transactivation domains, can be loss- or gain-of-function (LOF and GOF). STAT3 N-terminal domain (NTD) mutations are rare, and their biological effects remain incompletely understood. We explored the significance of STAT3 NTD p.Trp37* variant in a patient with chronic pulmonary aspergillosis and a low Hyper-IgE syndrome (HIES) score. In cell culture models, the expression of full-length p.Trp37* allele showed shorter STAT3 protein expression suggesting a re-initiation (Met99 or Met143). STAT3 activity using luciferase reporter assay showed a twofold-increased activity of the STAT3 p.Trp37* STAT3 protein compared with WT STAT3 at basal level and upon IL-6 stimulation. In contrast, the activity of the short pTrp37* peptide (amino acids 1 to 37) was amorphic but without dominant negative (DN) effect on transcriptional activity or STAT3 Tyr705 phosphorylation. The proteins initiated at Met99 and Met143 were surprisingly hypermorphic. In carriers' peripheral blood mononuclear cells (PBMCs), both WT and mutated STAT3 mRNA were equally present and the global amount of STAT3 protein was not significantly reduced. In stimulated heterozygous carriers' PBMCs, however, STAT3 Tyr705 phosphorylation and Th17 were reduced but not completely abolished. This suggests a DN effect of an unknown product of the p.Trp37* allele. Transcriptomics analysis of PBMCs from the index revealed selectively distinct gene expression. We conclude that heterozygosity for the NTD p.Trp37* STAT3 mutation defines a novel allelic form of STAT3 deficiency, associated with a chronic pulmonary aspergillosis and minor signs of HIES.
Collapse
Affiliation(s)
- Suiane Lima de Souza
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu, Finland
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Virpi Glumoff
- Research Unit of Internal Medicine and Biomedicine, University of Oulu, Aapistie 5, Oulu, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Keela Pikkarainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu, Finland
| | - Timi Martelius
- Inflammation Center, Infectious Diseases, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland HiLIFE, University of Helsinki, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland HiLIFE, University of Helsinki, Helsinki, Finland
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, Kajaanintie 50, 90220, Oulu, Finland
| | | | - Airi Jartti
- Department of Radiology, Oulu University Hospital, Kajaanintie 50, 90220, Oulu, Finland
| | - Fredrik Yannopoulos
- Department of Cardiothoracic Surgery, Oulu University Hospital, Oulu, Finland
| | - Leena Tiitto
- Pulmonary Unit, Department of Medicine, Oulu University Hospital, University of Oulu, 90220, Oulu, Finland
| | - Mikko R J Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Pediatric Research Center New Children's Hospital, University of Helsinki and, HUS Helsinki University Hospital, Helsinki, Finland
- Rare Diseases Center and Pediatric Research Center New Children's Hospital, University of Helsinki and, HUS Helsinki University Hospital, Helsinki, Finland
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| | - Markku Varjosalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, University of Oulu, Aapistie 5, Oulu, Finland.
- Infectious Diseases, Oulu University Hospital, Oulu, Finland.
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu, Finland.
| |
Collapse
|
9
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation. Nat Commun 2025; 16:1176. [PMID: 39885126 PMCID: PMC11782603 DOI: 10.1038/s41467-025-56303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Conducting SEC-MX on HEK293 and HCT116 cells, we generate a proof-of-concept dataset, mapping thousands of phosphopeptides and their assembly states. Our analysis reveals intricate relationships between phosphorylation events and assembly states and generates testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
Affiliation(s)
- Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed A Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Li Z, Weller CA, Shah S, Johnson NL, Hao Y, Jarreau PB, Roberts J, Guha D, Bereda C, Klaisner S, Machado P, Zanovello M, Prudencio M, Oskarsson B, Staff NP, Dickson DW, Fratta P, Petrucelli L, Narayan P, Cookson MR, Ward ME, Singleton AB, Nalls MA, Qi YA. ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae083. [PMID: 39576693 PMCID: PMC11842048 DOI: 10.1093/gpbjnl/qzae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/27/2024]
Abstract
Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, with personalized medicine, systems biology, and biomedical applications. The application of MS-based proteomics advances our understanding of protein function, cellular signaling, and complex biological systems. MS data analysis is a critical process that includes identifying and quantifying proteins and peptides and then exploring their biological functions in downstream analyses. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets with DIA-NN preinstalled. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analyses. ProtPipe provides downstream analyses, including protein and peptide differential abundance identification, pathway enrichment analysis, protein-protein interaction analysis, and major histocompatibility complex (MHC)-peptide binding affinity analysis. ProtPipe generates annotated tables and visualizations by performing statistical post-processing and calculating fold changes between predefined pairwise conditions in an experimental design. It is an open-source, well-documented tool available at https://github.com/NIH-CARD/ProtPipe, with a user-friendly web interface.
Collapse
Affiliation(s)
- Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20812, USA
| | - Cory A Weller
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20812, USA
| | - Syed Shah
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20812, USA
| | - Nicholas L Johnson
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20812, USA
| | - Ying Hao
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paige B Jarreau
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Roberts
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deyaan Guha
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen Bereda
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney Klaisner
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro Machado
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Björn Oskarsson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Priyanka Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E Ward
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike A Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20812, USA
| | - Yue A Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Wu S, Zhang S, Liu CM, Fernie AR, Yan S. Recent Advances in Mass Spectrometry-Based Protein Interactome Studies. Mol Cell Proteomics 2025; 24:100887. [PMID: 39608603 PMCID: PMC11745815 DOI: 10.1016/j.mcpro.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
The foundation of all biological processes is the network of diverse and dynamic protein interactions with other molecules in cells known as the interactome. Understanding the interactome is crucial for elucidating molecular mechanisms but has been a longstanding challenge. Recent developments in mass spectrometry (MS)-based techniques, including affinity purification, proximity labeling, cross-linking, and co-fractionation mass spectrometry (MS), have significantly enhanced our abilities to study the interactome. They do so by identifying and quantifying protein interactions yielding profound insights into protein organizations and functions. This review summarizes recent advances in MS-based interactomics, focusing on the development of techniques that capture protein-protein, protein-metabolite, and protein-nucleic acid interactions. Additionally, we discuss how integrated MS-based approaches have been applied to diverse biological samples, focusing on significant discoveries that have leveraged our understanding of cellular functions. Finally, we highlight state-of-the-art bioinformatic approaches for predictions of interactome and complex modeling, as well as strategies for combining experimental interactome data with computation methods, thereby enhancing the ability of MS-based techniques to identify protein interactomes. Indeed, advances in MS technologies and their integrations with computational biology provide new directions and avenues for interactome research, leveraging new insights into mechanisms that govern the molecular architecture of living cells and, thereby, our comprehension of biological processes.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
13
|
Malaymar Pinar D, Göös H, Tan Z, Kumpula EP, Chowdhury I, Wang Z, Zhang Q, Salokas K, Keskitalo S, Wei GH, Kumbasar A, Varjosalo M. Nuclear Factor I Family Members are Key Transcription Factors Regulating Gene Expression. Mol Cell Proteomics 2025; 24:100890. [PMID: 39617063 PMCID: PMC11775196 DOI: 10.1016/j.mcpro.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The Nuclear Factor I (NFI) family of transcription factors (TFs) plays key roles in cellular differentiation, proliferation, and homeostasis. As such, NFI family members engage in a large number of interactions with other proteins and chromatin. However, despite their well-established significance, the NFIs' interactomes, their dynamics, and their functions have not been comprehensively examined. Here, we employed complementary omics-level techniques, i.e. interactomics (affinity purification mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID)), and chromatin immunoprecipitation sequencing (ChIP-Seq), to obtain a comprehensive view of the NFI proteins and their interactions in different cell lines. Our analyses included all four NFI family members, and a less-studied short isoform of NFIB (NFIB4), which lacks the DNA binding domain. We observed that, despite exhibiting redundancy, each family member had unique high-confidence interactors and target genes, suggesting distinct roles within the transcriptional regulatory networks. The study revealed that NFIs interact with other TFs to co-regulate a broad range of regulatory networks and cellular processes. Notably, time-dependent proximity-labeling unveiled a highly dynamic nature of NFI protein-protein interaction networks and hinted at the temporal modulation of NFI interactions. Furthermore, gene ontology (GO) enrichment analysis of NFI interactome and targetome revealed the involvement of NFIs in transcriptional regulation, chromatin organization, cellular signaling pathways, and pathways related to cancer. Additionally, we observed that NFIB4 engages with proteins associated with mRNA regulation, which suggests that NFIs have roles beyond traditional DNA binding and transcriptional modulation. We propose that NFIs may function as potential pioneering TFs, given their role in regulating the DNA binding ability of other TFs and their interactions with key chromatin remodeling complexes, thereby influencing a wide range of cellular processes. These insights into NFI protein-protein interactions and their dynamic, context-dependent nature provide a deeper understanding of gene regulation mechanisms and hint at the role of NFIs as master regulators.
Collapse
Affiliation(s)
- Dicle Malaymar Pinar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Helka Göös
- iCell, Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Zenglai Tan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qin Zhang
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Vukić D, Cherian A, Keskitalo S, Bong YT, Marônek M, Yadav L, Keegan LP, Varjosalo M, O'Connell MA. Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction. Nucleic Acids Res 2024; 52:14184-14204. [PMID: 39673305 DOI: 10.1093/nar/gkae1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is essential for correct functioning of innate immune responses. The ADAR1p110 isoform is mainly nuclear and ADAR1p150, which is interferon (IFN) inducible, is predominately cytoplasmic. Using three different methods - co-immunoprecipitation (co-IP) of endogenous ADAR1, Strep-tag co-IP and BioID with individual ADAR1 isoforms - a comprehensive interactome was generated during both homeostasis and the IFN response. Both known and novel interactors as well as editing regulators were identified. Nuclear proteins were detected as stable interactors with both ADAR1 isoforms. In contrast, BioID identified distinct protein networks for each ADAR1 isoform, with nuclear components observed with ADAR1p110 and components of cytoplasmic cellular condensates with ADAR1p150. RNase A digestion distinguished between distal and proximal interactors, as did a double-stranded RNA (dsRNA)-binding mutant of ADAR1 which demonstrated the importance of dsRNA binding for ADAR1 interactions. IFN treatment did not affect the core ADAR1 interactomes but resulted in novel interactions, the majority of which are proximal interactions retained after RNase A treatment. Short treatment with high molecular weight poly(I:C) during the IFN response resulted in dsRNA-binding-dependent changes in the proximal protein network of ADAR1p110 and association of the ADAR1p150 proximal protein network with some components of antiviral stress granules.
Collapse
Affiliation(s)
- Dragana Vukić
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
- NationalCentre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Anna Cherian
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
- NationalCentre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Salla Keskitalo
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Yih Tyng Bong
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Martin Marônek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Leena Yadav
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| | - Markku Varjosalo
- Institute of Biotechnology, HelsinkiInstitute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 62500, Czechia
| |
Collapse
|
15
|
Huuskonen S, Liu X, Pöhner I, Redchuk T, Salokas K, Lundberg R, Maljanen S, Belik M, Reinholm A, Kolehmainen P, Tuhkala A, Tripathi G, Laine P, Belanov S, Auvinen P, Vartiainen M, Keskitalo S, Österlund P, Laine L, Poso A, Julkunen I, Kakkola L, Varjosalo M. The comprehensive SARS-CoV-2 'hijackome' knowledge base. Cell Discov 2024; 10:125. [PMID: 39653747 PMCID: PMC11628605 DOI: 10.1038/s41421-024-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sini Huuskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Taras Redchuk
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Antti Tuhkala
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Garima Tripathi
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sergei Belanov
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Yin H, Duo H, Li S, Qin D, Xie L, Xiao Y, Sun J, Tao J, Zhang X, Li Y, Zou Y, Yang Q, Yang X, Hao Y, Li B. Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. J Adv Res 2024:S2090-1232(24)00560-5. [PMID: 39647635 DOI: 10.1016/j.jare.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Identifying differentially expressed genes (DEGs) is a core task of transcriptome analysis, as DEGs can reveal the molecular mechanisms underlying biological processes. However, interpreting the biological significance of large DEG lists is challenging. Currently, gene ontology, pathway enrichment and protein-protein interaction analysis are common strategies employed by biologists. Additionally, emerging analytical strategies/approaches (such as network module analysis, knowledge graph, drug repurposing, cell marker discovery, trajectory analysis, and cell communication analysis) have been proposed. Despite these advances, comprehensive guidelines for systematically and thoroughly mining the biological information within DEGs remain lacking. AIM OF REVIEW This review aims to provide an overview of essential concepts and methodologies for the biological interpretation of DEGs, enhancing the contextual understanding. It also addresses the current limitations and future perspectives of these approaches, highlighting their broad applications in deciphering the molecular mechanism of complex diseases and phenotypes. To assist users in extracting insights from extensive datasets, especially various DEG lists, we developed DEGMiner (https://www.ciblab.net/DEGMiner/), which integrates over 300 easily accessible databases and tools. KEY SCIENTIFIC CONCEPTS OF REVIEW This review offers strong support and guidance for exploring DEGs, and also will accelerate the discovery of hidden biological insights within genomes.
Collapse
Affiliation(s)
- Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China; Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China; Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China
| | - Dan Qin
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Lingling Xie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yingxue Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yue Zou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xian Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
17
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
18
|
Turkki P, Chowdhury I, Öhman T, Azizi L, Varjosalo M, Hytönen VP. Tensin-2 interactomics reveals interaction with GAPDH and a phosphorylation-mediated regulatory role in glycolysis. Sci Rep 2024; 14:19862. [PMID: 39191795 PMCID: PMC11350193 DOI: 10.1038/s41598-024-65787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Integrin adaptor proteins, like tensin-2, are crucial for cell adhesion and signaling. However, the function of tensin-2 beyond localizing to focal adhesions remain poorly understood. We utilized proximity-dependent biotinylation and Strep-tag affinity proteomics to identify interaction partners of tensin-2 in Flp-In 293 T-REx cells. Interactomics linked tensin-2 to known focal adhesion proteins and the dystrophin glycoprotein complex, while also uncovering novel interaction with the glycolytic enzyme GAPDH. We demonstrated that Y483-phosphorylation of tensin-2 regulates the glycolytic rate in Flp-In 293 T-REx and MEF cells and found that pY483 tensin-2 is enriched in adhesions in MEF cells. Our study unveils novel interaction partners for tensin-2 and further solidifies its speculated role in cell energy metabolism. These findings shed fresh insight on the functions of tensin-2, highlighting its potential as a therapeutic target for diseases associated with impaired cell adhesion and metabolism.
Collapse
Affiliation(s)
- Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | | | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
19
|
Stockhammer A, Spalt C, Klemt A, Benz LS, Harel S, Natalia V, Wiench L, Freund C, Kuropka B, Bottanelli F. When less is more - a fast TurboID knock-in approach for high-sensitivity endogenous interactome mapping. J Cell Sci 2024; 137:jcs261952. [PMID: 39056144 PMCID: PMC11385326 DOI: 10.1242/jcs.261952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Although physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the adaptor protein (AP)-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI strategy to compare the interactome of the different AP complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.
Collapse
Affiliation(s)
- Alexander Stockhammer
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Carissa Spalt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Antonia Klemt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Laila S Benz
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Shelly Harel
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Vini Natalia
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lukas Wiench
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Benno Kuropka
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Francesca Bottanelli
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
20
|
Issa A, Schlotter F, Flayac J, Chen J, Wacheul L, Philippe M, Sardini L, Mostefa L, Vandermoere F, Bertrand E, Verheggen C, Lafontaine DL, Massenet S. The nucleolar phase of signal recognition particle assembly. Life Sci Alliance 2024; 7:e202402614. [PMID: 38858088 PMCID: PMC11165425 DOI: 10.26508/lsa.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The signal recognition particle is essential for targeting transmembrane and secreted proteins to the endoplasmic reticulum. Remarkably, because they work together in the cytoplasm, the SRP and ribosomes are assembled in the same biomolecular condensate: the nucleolus. How important is the nucleolus for SRP assembly is not known. Using quantitative proteomics, we have investigated the interactomes of SRP components. We reveal that SRP proteins are associated with scores of nucleolar proteins important for ribosome biogenesis and nucleolar structure. Having monitored the subcellular distribution of SRP proteins upon controlled nucleolar disruption, we conclude that an intact organelle is required for their proper localization. Lastly, we have detected two SRP proteins in Cajal bodies, which indicates that previously undocumented steps of SRP assembly may occur in these bodies. This work highlights the importance of a structurally and functionally intact nucleolus for efficient SRP production and suggests that the biogenesis of SRP and ribosomes may be coordinated in the nucleolus by common assembly factors.
Collapse
Affiliation(s)
- Amani Issa
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | | | - Jing Chen
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | | | | | | | | | | | | - Denis Lj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | |
Collapse
|
21
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. A Multiplexed SEC-MS Approach to Systematically Study the Interplay Between Protein Assembly-States and Phosphorylation Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523793. [PMID: 36711903 PMCID: PMC9882152 DOI: 10.1101/2023.01.12.523793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly-states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly-states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Applying SEC-MX to HEK293 and HCT116 cells, we generated a proof-of-concept dataset mapping thousands of phosphopeptides and their assembly-states. Our analysis revealed intricate relationships between phosphorylation events and assembly-states and generated testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
|
22
|
Delhaye L, Moschonas GD, Fijalkowska D, Verhee A, De Sutter D, Van de Steene T, De Meyer M, Grzesik H, Van Moortel L, De Bosscher K, Jacobs T, Eyckerman S. Leveraging a self-cleaving peptide for tailored control in proximity labeling proteomics. CELL REPORTS METHODS 2024; 4:100818. [PMID: 38986614 PMCID: PMC11294833 DOI: 10.1016/j.crmeth.2024.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.
Collapse
Affiliation(s)
- Louis Delhaye
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; OncoRNALab, Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hanna Grzesik
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Thomas Jacobs
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
24
|
Zhang P, Zhang W, Wang X, Li L, Lin Y, Wu N, Mao R, Lin J, Kang M, Ding C. BCLAF1 drives esophageal squamous cell carcinoma progression through regulation of YTHDF2-dependent SIX1 mRNA degradation. Cancer Lett 2024; 591:216874. [PMID: 38636894 DOI: 10.1016/j.canlet.2024.216874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Esophageal cancer ranks among the most prevalent malignant tumors, and esophageal squamous cell carcinoma (ESCC) constitutes its predominant histological form. Despite its impact, a thorough insight into the molecular intricacies of ESCC's development is still incomplete, which hampers the advancement of targeted molecular diagnostics and treatments. Recently, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has come under investigation for its potential involvement in tumor biology, yet its specific role and mechanism in ESCC remain unclear. In this study, we observed a marked increase in BCLAF1 expression in ESCC tissues, correlating with advanced tumor stages and inferior patient outcomes. Our comprehensive in vitro and in vivo studies show that BCLAF1 augments glycolytic activity and the proliferation, invasion, and spread of ESCC cells. By employing mass spectrometry, we identified YTHDF2 as a key protein interacting with BCLAF1 in ESCC, with further validation provided by colocalization, co-immunoprecipitation, and GST pull-down assay. Further investigations involving MeRIP-seq and RIP-seq, alongside transcriptomic analysis, highlighted SIX1 mRNA as a molecule significantly upregulated and modified by N6-methyladenosine (m6A) in BCLAF1 overexpressing cells. BCLAF1 was found to reduce the tumor-suppressive activities of YTHDF2, and its effects on promoting glycolysis and cancer progression were shown to hinge on SIX1 expression. This research establishes that BCLAF1 fosters glycolysis and tumor progression in ESCC through the YTHDF2-SIX1 pathway in an m6A-specific manner, suggesting a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoqing Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ye Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ningzi Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Renyan Mao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian, 351100, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Laulumaa S, Kumpula EP, Huiskonen JT, Varjosalo M. Structure and interactions of the endogenous human Commander complex. Nat Struct Mol Biol 2024; 31:925-938. [PMID: 38459129 PMCID: PMC11189303 DOI: 10.1038/s41594-024-01246-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
The Commander complex, a 16-protein assembly, plays multiple roles in cell homeostasis, cell cycle and immune response. It consists of copper-metabolism Murr1 domain proteins (COMMD1-10), coiled-coil domain-containing proteins (CCDC22 and CCDC93), DENND10 and the Retriever subcomplex (VPS26C, VPS29 and VPS35L), all expressed ubiquitously in the body and linked to various diseases. Here, we report the structure and key interactions of the endogenous human Commander complex by cryogenic-electron microscopy and mass spectrometry-based proteomics. The complex consists of a stable core of COMMD1-10 and an effector containing DENND10 and Retriever, scaffolded together by CCDC22 and CCDC93. We establish the composition of Commander and reveal major interaction interfaces. These findings clarify its roles in intracellular transport, and uncover a strong association with cilium assembly, and centrosome and centriole functions.
Collapse
Affiliation(s)
- Saara Laulumaa
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
27
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Jiao D, Sun H, Zhao X, Chen Y, Lv Z, Shi Q, Li Y, Wang C, Gao K. mTORC1/S6K1 signaling promotes sustained oncogenic translation through modulating CRL3 IBTK-mediated ubiquitination of eIF4A1 in cancer cells. eLife 2024; 12:RP92236. [PMID: 38738857 PMCID: PMC11090508 DOI: 10.7554/elife.92236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.
Collapse
Affiliation(s)
- Dongyue Jiao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Huiru Sun
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yingji Chen
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
29
|
Pham AH, Emori C, Ishikawa-Yamauchi Y, Tokuhiro K, Kamoshita M, Fujihara Y, Ikawa M. Thirteen Ovary-Enriched Genes Are Individually Not Essential for Female Fertility in Mice. Cells 2024; 13:802. [PMID: 38786026 PMCID: PMC11119756 DOI: 10.3390/cells13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Infertility is considered a global health issue as it currently affects one in every six couples, with female factors reckoned to contribute to partly or solely 50% of all infertility cases. Over a thousand genes are predicted to be highly expressed in the female reproductive system and around 150 genes in the ovary. However, some of their functions in fertility remain to be elucidated. In this study, 13 ovary and/or oocyte-enriched genes (Ccdc58, D930020B18Rik, Elobl, Fbxw15, Oas1h, Nlrp2, Pramel34, Pramel47, Pkd1l2, Sting1, Tspan4, Tubal3, Zar1l) were individually knocked out by the CRISPR/Cas9 system. Mating tests showed that these 13 mutant mouse lines were capable of producing offspring. In addition, we observed the histology section of ovaries and performed in vitro fertilization in five mutant mouse lines. We found no significant anomalies in terms of ovarian development and fertilization ability. In this study, 13 different mutant mouse lines generated by CRISPR/Cas9 genome editing technology revealed that these 13 genes are individually not essential for female fertility in mice.
Collapse
Affiliation(s)
- Anh Hoang Pham
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
| | - Yu Ishikawa-Yamauchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0027, Japan;
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1191, Japan;
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. Proc Natl Acad Sci U S A 2024; 121:e2319476121. [PMID: 38621120 PMCID: PMC11047089 DOI: 10.1073/pnas.2319476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Cristian Rocha-Roa
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Stefano Vanni
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
32
|
Nurmi K, Silventoinen K, Keskitalo S, Rajamäki K, Kouri VP, Kinnunen M, Jalil S, Maldonado R, Wartiovaara K, Nievas EI, Denita-Juárez SP, Duncan CJA, Kuismin O, Saarela J, Romo I, Martelius T, Parantainen J, Beklen A, Bilicka M, Matikainen S, Nordström DC, Kaustio M, Wartiovaara-Kautto U, Kilpivaara O, Klein C, Hauck F, Jahkola T, Hautala T, Varjosalo M, Barreto G, Seppänen MRJ, Eklund KK. Truncating NFKB1 variants cause combined NLRP3 inflammasome activation and type I interferon signaling and predispose to necrotizing fasciitis. Cell Rep Med 2024; 5:101503. [PMID: 38593810 PMCID: PMC11031424 DOI: 10.1016/j.xcrm.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1β secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-β (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1β and/or IFN-I signaling could represent a therapeutic approach for these patients.
Collapse
Affiliation(s)
- Katariina Nurmi
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Kristiina Silventoinen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Salla Keskitalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, RPU, UH, 00014 Helsinki, Finland
| | - Vesa-Petteri Kouri
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Matias Kinnunen
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Sami Jalil
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Rocio Maldonado
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | - Kirmo Wartiovaara
- Clinical Genetics UH and Helsinki University Hospital (HUH), 00014 Helsinki, Finland
| | | | | | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 4HH, UK
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital (OUH), 90014 Oulu, Finland; PEDEGO Research Unit and Medical Research Center Oulu, OUH and University of Oulu (OU), 90014 Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland; Centre for Molecular Medicine Norway, University of Oslo, 0313 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Inka Romo
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Timi Martelius
- Inflammation Center, Department of Infectious Disease, HUH, 00029 Helsinki, Finland
| | - Jukka Parantainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Arzu Beklen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Marcelina Bilicka
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Sampsa Matikainen
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Dan C Nordström
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Internal Medicine and Rehabilitation, HUH and UH, 00029 Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland, HiLIFE, UH, 00014 Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, HUH, Comprehensive Cancer Center, UH, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, RPU, Faculty of Medicine, UH, 00014 Helsinki, Finland; Department of Medical and Clinical Genetics/Medicum, Faculty of Medicine, UH, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, UH, 00014 Helsinki, Finland; HUS Diagnostic Center, HUSLAB Laboratory of Genetics, HUH, 00029 Helsinki, Finland
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Tiina Jahkola
- Department of Plastic Surgery, HUH, 00029 Helsinki, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, OU, and Infectious Diseases Clinic, OUH, 90014 Oulu, Finland
| | - Markku Varjosalo
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, Institute of Biotechnology, HiLIFE, UH, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, HUH and UH, 00029 Helsinki, Finland; Rare Disease Center, Children and Adolescents, HUH and UH, 00029 Helsinki, Finland.
| | - Kari K Eklund
- Faculty of Medicine, Clinicum, Translational Immunology Research Program, Research Program Unit (RPU), University of Helsinki (UH), 00014 Helsinki, Finland; Department of Rheumatology, HUH and UH, 00029 Helsinki, Finland; Orton Orthopaedic Hospital, 00280 Helsinki, Finland.
| |
Collapse
|
33
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
34
|
Cronan JE. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation. Proteins 2024; 92:435-448. [PMID: 37997490 PMCID: PMC10932917 DOI: 10.1002/prot.26642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
35
|
Chen HH, Yu HI, Chang JJS, Li CW, Yang MH, Hung MC, Tarn WY. DDX3 regulates cancer immune surveillance via 3' UTR-mediated cell-surface expression of PD-L1. Cell Rep 2024; 43:113937. [PMID: 38489268 DOI: 10.1016/j.celrep.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Programmed death-1 (PD-1)/PD ligand-1 (PD-L1)-mediated immune escape contributes to cancer development and has been targeted as an anti-cancer strategy. Here, we show that inhibition of the RNA helicase DDX3 increased CD8+ T cell infiltration in syngeneic oral squamous cell carcinoma tumors. DDX3 knockdown compromised interferon-γ-induced PD-L1 expression and, in particular, reduced the level of cell-surface PD-L1. DDX3 promoted surface PD-L1 expression by recruiting the adaptor protein 2 (AP2) complex to the 3' UTR of PD-L1 mRNA. DDX3 depletion or 3' UTR truncation increased the binding of the coatomer protein complexes to PD-L1, leading to its intracellular accumulation. Therefore, this 3' UTR-dependent mechanism may counteract cellular negative effects on surface trafficking of PD-L1. Finally, pharmaceutic disruption of DDX3's interaction with AP2 reduced surface PD-L1 expression, supporting that the DDX3-AP2 pathway routes PD-L1 to the cell surface. Targeting DDX3 to modulate surface trafficking of immune checkpoint proteins may provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chao-Tung University, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Gawriyski L, Tan Z, Liu X, Chowdhury I, Malaymar Pinar D, Zhang Q, Weltner J, Jouhilahti EM, Wei GH, Kere J, Varjosalo M. Interaction network of human early embryonic transcription factors. EMBO Rep 2024; 25:1589-1622. [PMID: 38297188 PMCID: PMC10933267 DOI: 10.1038/s44319-024-00074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaonan Liu
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
| | | | - Dicle Malaymar Pinar
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Qin Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Markku Varjosalo
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
37
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
38
|
Sottnik JL, Shackleford MT, Robinson SK, Villagomez FR, Bahnassy S, Oesterreich S, Hu J, Madak-Erdogan Z, Riggins RB, Corr BR, Cook LS, Treviño LS, Bitler BG, Sikora MJ. WNT4 Regulates Cellular Metabolism via Intracellular Activity at the Mitochondria in Breast and Gynecologic Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:134-151. [PMID: 38112643 PMCID: PMC10793200 DOI: 10.1158/2767-9764.crc-23-0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Wnt ligand WNT4 is critical in female reproductive tissue development, with WNT4 dysregulation linked to related pathologies including breast cancer (invasive lobular carcinoma, ILC) and gynecologic cancers. WNT4 signaling in these contexts is distinct from canonical Wnt signaling yet inadequately understood. We previously identified atypical intracellular activity of WNT4 (independent of Wnt secretion) regulating mitochondrial function, and herein examine intracellular functions of WNT4. We further examine how convergent mechanisms of WNT4 dysregulation impact cancer metabolism. In ILC, WNT4 is co-opted by estrogen receptor α (ER) via genomic binding in WNT4 intron 1, while in gynecologic cancers, a common genetic polymorphism (rs3820282) at this ER binding site alters WNT4 regulation. Using proximity biotinylation (BioID), we show canonical Wnt ligand WNT3A is trafficked for secretion, but WNT4 is localized to the cytosol and mitochondria. We identified DHRS2, mTOR, and STAT1 as putative WNT4 cytosolic/mitochondrial signaling partners. Whole metabolite profiling, and integrated transcriptomic data, support that WNT4 mediates metabolic reprogramming via fatty acid and amino acid metabolism. Furthermore, ovarian cancer cell lines with rs3820282 variant genotype are WNT4 dependent and have active WNT4 metabolic signaling. In protein array analyses of a cohort of 103 human gynecologic tumors enriched for patient diversity, germline rs3820282 genotype is associated with metabolic remodeling. Variant genotype tumors show increased AMPK activation and downstream signaling, with the highest AMPK signaling activity in variant genotype tumors from non-White patients. Taken together, atypical intracellular WNT4 signaling, in part via genetic dysregulation, regulates the distinct metabolic phenotypes of ILC and gynecologic cancers. SIGNIFICANCE WNT4 regulates breast and gynecologic cancer metabolism via a previously unappreciated intracellular signaling mechanism at the mitochondria, with WNT4 mediating metabolic remodeling. Understanding WNT4 dysregulation by estrogen and genetic polymorphism offers new opportunities for defining tumor biology, precision therapeutics, and personalized cancer risk assessment.
Collapse
Affiliation(s)
- Joseph L. Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Sydney K. Robinson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junxiao Hu
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bradley R. Corr
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Linda S. Cook
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, Colorado
| | - Lindsey S. Treviño
- Depratment of Population Sciences, Division of Health Equities, City of Hope, Duarte, California
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
39
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
40
|
Zilocchi M, Rahmatbakhsh M, Moutaoufik MT, Broderick K, Gagarinova A, Jessulat M, Phanse S, Aoki H, Aly KA, Babu M. Co-fractionation-mass spectrometry to characterize native mitochondrial protein assemblies in mammalian neurons and brain. Nat Protoc 2023; 18:3918-3973. [PMID: 37985878 DOI: 10.1038/s41596-023-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 11/22/2023]
Abstract
Human mitochondrial (mt) protein assemblies are vital for neuronal and brain function, and their alteration contributes to many human disorders, e.g., neurodegenerative diseases resulting from abnormal protein-protein interactions (PPIs). Knowledge of the composition of mt protein complexes is, however, still limited. Affinity purification mass spectrometry (MS) and proximity-dependent biotinylation MS have defined protein partners of some mt proteins, but are too technically challenging and laborious to be practical for analyzing large numbers of samples at the proteome level, e.g., for the study of neuronal or brain-specific mt assemblies, as well as altered mtPPIs on a proteome-wide scale for a disease of interest in brain regions, disease tissues or neurons derived from patients. To address this challenge, we adapted a co-fractionation-MS platform to survey native mt assemblies in adult mouse brain and in human NTERA-2 embryonal carcinoma stem cells or differentiated neuronal-like cells. The workflow consists of orthogonal separations of mt extracts isolated from chemically cross-linked samples to stabilize PPIs, data-dependent acquisition MS to identify co-eluted mt protein profiles from collected fractions and a computational scoring pipeline to predict mtPPIs, followed by network partitioning to define complexes linked to mt functions as well as those essential for neuronal and brain physiological homeostasis. We developed an R/CRAN software package, Macromolecular Assemblies from Co-elution Profiles for automated scoring of co-fractionation-MS data to define complexes from mtPPI networks. Presently, the co-fractionation-MS procedure takes 1.5-3.5 d of proteomic sample preparation, 31 d of MS data acquisition and 8.5 d of data analyses to produce meaningful biological insights.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | | | - Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
41
|
Wang L, Hilander T, Liu X, Tsang HY, Eriksson O, Jackson CB, Varjosalo M, Zhao H. GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation. Cell Mol Life Sci 2023; 80:361. [PMID: 37971521 PMCID: PMC10654211 DOI: 10.1007/s00018-023-05014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.
Collapse
Affiliation(s)
- Liang Wang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, West China, Chengdu, 610041, China
| | - Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
42
|
Kiss RS, Chicoine J, Khalil Y, Sladek R, Chen H, Pisaturo A, Martin C, Dale JD, Brudenell TA, Kamath A, Kyei-Boahen J, Hafiane A, Daliah G, Alecki C, Hopes TS, Heier M, Aligianis IA, Lebrun JJ, Aspden J, Paci E, Kerksiek A, Lütjohann D, Clayton P, Wills JC, von Kriegsheim A, Nilsson T, Sheridan E, Handley MT. Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis. J Biol Chem 2023; 299:105295. [PMID: 37774976 PMCID: PMC10641524 DOI: 10.1016/j.jbc.2023.105295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023] Open
Abstract
Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.
Collapse
Affiliation(s)
- Robert S Kiss
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Jarred Chicoine
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Youssef Khalil
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Robert Sladek
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - He Chen
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Pisaturo
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cyril Martin
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jessica D Dale
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Tegan A Brudenell
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Archith Kamath
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Kyei-Boahen
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Anouar Hafiane
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Girija Daliah
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Célia Alecki
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Tayah S Hopes
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Heier
- Department of Clinical Neuroscience for Children, Oslo University Hospital, Oslo, Norway
| | - Irene A Aligianis
- Medical and Developmental Genetics, Medical Research Council Human Genetics Unit, Edinburgh, United Kingdom
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Julie Aspden
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter Clayton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jimi C Wills
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Firefinch Software Ltd, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tommy Nilsson
- Cancer Research Program (CRP), Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Mark T Handley
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom; Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
43
|
Liu Y, Chen W, Li C, Li L, Yang M, Jiang N, Luo S, Xi Y, Liu C, Han Y, Zhao H, Zhu X, Yuan S, Xiao L, Sun L. DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol 2023; 66:102855. [PMID: 37597421 PMCID: PMC10458997 DOI: 10.1016/j.redox.2023.102855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
44
|
Guo J, Guo S, Lu S, Gong J, Wang L, Ding L, Chen Q, Liu W. The development of proximity labeling technology and its applications in mammals, plants, and microorganisms. Cell Commun Signal 2023; 21:269. [PMID: 37777761 PMCID: PMC10544124 DOI: 10.1186/s12964-023-01310-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023] Open
Abstract
Protein‒protein, protein‒RNA, and protein‒DNA interaction networks form the basis of cellular regulation and signal transduction, making it crucial to explore these interaction networks to understand complex biological processes. Traditional methods such as affinity purification and yeast two-hybrid assays have been shown to have limitations, as they can only isolate high-affinity molecular interactions under nonphysiological conditions or in vitro. Moreover, these methods have shortcomings for organelle isolation and protein subcellular localization. To address these issues, proximity labeling techniques have been developed. This technology not only overcomes the limitations of traditional methods but also offers unique advantages in studying protein spatial characteristics and molecular interactions within living cells. Currently, this technique not only is indispensable in research on mammalian nucleoprotein interactions but also provides a reliable approach for studying nonmammalian cells, such as plants, parasites and viruses. Given these advantages, this article provides a detailed introduction to the principles of proximity labeling techniques and the development of labeling enzymes. The focus is on summarizing the recent applications of TurboID and miniTurbo in mammals, plants, and microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Shuang Guo
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Siao Lu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Long Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Qingjie Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| | - Wu Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| |
Collapse
|
45
|
Li C, Furth EE, Rustgi AK, Klein PS. When You Come to a Fork in the Road, Take It: Wnt Signaling Activates Multiple Pathways through the APC/Axin/GSK-3 Complex. Cells 2023; 12:2256. [PMID: 37759479 PMCID: PMC10528086 DOI: 10.3390/cells12182256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The Wnt signaling pathway is a highly conserved regulator of metazoan development and stem cell maintenance. Activation of Wnt signaling is an early step in diverse malignancies. Work over the past four decades has defined a "canonical" Wnt pathway that is initiated by Wnt proteins, secreted glycoproteins that bind to a surface receptor complex and activate intracellular signal transduction by inhibiting a catalytic complex composed of the classical tumor suppressor Adenomatous Polyposis Coli (APC), Axin, and Glycogen Synthase Kinase-3 (GSK-3). The best characterized effector of this complex is β-catenin, which is stabilized by inhibition of GSK-3, allowing β-catenin entrance to the nucleus and activation of Wnt target gene transcription, leading to multiple cancers when inappropriately activated. However, canonical Wnt signaling through the APC/Axin/GSK-3 complex impinges on other effectors, independently of β-catenin, including the mechanistic Target of Rapamycin (mTOR), regulators of protein stability, mitotic spindle orientation, and Hippo signaling. This review focuses on these alternative effectors of the canonical Wnt pathway and how they may contribute to cancers.
Collapse
Affiliation(s)
- Chenchen Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Peter S. Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555937. [PMID: 37693532 PMCID: PMC10491306 DOI: 10.1101/2023.09.01.555937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases". These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit-card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place, and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
47
|
Kinnunen M, Liu X, Niemelä E, Öhman T, Gawriyski L, Salokas K, Keskitalo S, Varjosalo M. The Impact of ETV6-NTRK3 Oncogenic Gene Fusions on Molecular and Signaling Pathway Alterations. Cancers (Basel) 2023; 15:4246. [PMID: 37686522 PMCID: PMC10486691 DOI: 10.3390/cancers15174246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.
Collapse
Affiliation(s)
- Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Niemelä
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci 2023; 136:jcs260468. [PMID: 37232246 PMCID: PMC10323252 DOI: 10.1242/jcs.260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.
Collapse
Affiliation(s)
- Beverley Wilson
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chloe Flett
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jakub Gemperle
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Hartshorn
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Eleanor Hinde
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Tess Harrison
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Megan Chastney
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Taylor
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jennifer Allen
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas Zacharchenko
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
49
|
Smith CM, Grow EJ, Shadle SC, Cairns BR. Multiple repeat regions within mouse DUX recruit chromatin regulators to facilitate an embryonic gene expression program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534786. [PMID: 37034731 PMCID: PMC10081216 DOI: 10.1101/2023.03.29.534786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The embryonic transcription factor DUX regulates chromatin opening and gene expression in totipotent cleavage-stage mouse embryos, and its expression in embryonic stem cells promotes their conversion to 2-cell embryo-like cells (2CLCs) with extraembryonic potential. However, little is known regarding which domains within mouse DUX interact with particular chromatin and transcription regulators. Here, we reveal that the C-terminus of mouse DUX contains five uncharacterized ~100 amino acid (aa) repeats followed by an acidic 14 amino acid tail. Unexpectedly, structure-function approaches classify two repeats as 'active' and three as 'inactive' in cleavage/2CLC transcription program enhancement, with differences narrowed to a key 6 amino acid section. Our proximity dependent biotin ligation (BioID) approach identified factors selectively associated with active DUX repeat derivatives (including the 14aa 'tail'), including transcription and chromatin factors such as SWI/SNF (BAF) complex, as well as nucleolar factors that have been previously implicated in regulating the Dux locus. Finally, our mechanistic studies reveal cooperativity between DUX active repeats and the acidic tail in cofactor recruitment, DUX target opening, and transcription. Taken together, we provide several new insights into DUX structure-function, and mechanisms of chromatin and gene regulation.
Collapse
Affiliation(s)
- Christina M. Smith
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Edward J. Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C. Shadle
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Leblanc S, Brunet MA, Jacques JF, Lekehal AM, Duclos A, Tremblay A, Bruggeman-Gascon A, Samandi S, Brunelle M, Cohen AA, Scott MS, Roucou X. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:515-534. [PMID: 36183975 PMCID: PMC10787177 DOI: 10.1016/j.gpb.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recent proteogenomic approaches have led to the discovery that regions of the transcriptome previously annotated as non-coding regions [i.e., untranslated regions (UTRs), open reading frames overlapping annotated coding sequences in a different reading frame, and non-coding RNAs] frequently encode proteins, termed alternative proteins (altProts). This suggests that previously identified protein-protein interaction (PPI) networks are partially incomplete because altProts are not present in conventional protein databases. Here, we used the proteogenomic resource OpenProt and a combined spectrum- and peptide-centric analysis for the re-analysis of a high-throughput human network proteomics dataset, thereby revealing the presence of 261 altProts in the network. We found 19 genes encoding both an annotated (reference) and an alternative protein interacting with each other. Of the 117 altProts encoded by pseudogenes, 38 are direct interactors of reference proteins encoded by their respective parental genes. Finally, we experimentally validate several interactions involving altProts. These data improve the blueprints of the human PPI network and suggest functional roles for hundreds of altProts.
Collapse
Affiliation(s)
- Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Amina M Lekehal
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Andréa Duclos
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexia Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexis Bruggeman-Gascon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sondos Samandi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Mylène Brunelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Alan A Cohen
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|