1
|
An L, Geng B, An L, Wang Y, Zhang Z, Fu X, Chen J, Ma J. Low molecular weight protein tyrosine phosphatase: A driver of lipid metabolic remodeling in Caenorhabditis elegans. Int J Biol Macromol 2025; 306:141332. [PMID: 39988157 DOI: 10.1016/j.ijbiomac.2025.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
As a member of the class II cysteine-based protein tyrosine phosphatases, low molecular weight protein tyrosine phosphatase (LMWPTP) plays a pivotal role in animal physiology, particularly in signaling transduction, but its specific function in lipid metabolism remains poorly understood. Herein, the structure and metabolic functions of LMWPTP were investigated using the Caenorhabditis elegans (C. elegans) as a convenient model. The nematode LMWPTP was found to be highly conserved in sequence, functional domains, and tertiary structure compared to its mammalian homologs. Through RNA interference (RNAi) targeting lmwptp, we observed a modest increase in lipid accumulation in nematodes, evidenced by higher triglyceride levels, enlarged lipid droplets, and an increase in total fatty acid content, despite no changes in body size. Mechanistically, lmwptp RNAi promoted adipogenesis by modulating the insulin-like growth factor 1 signaling pathway, facilitating the nuclear translocation of DAF-16, which in turn upregulated fat-7 expression. Furthermore, increased ROS levels were associated with enhanced lipogenesis. The knockdown of lmwptp also attenuated lipolysis and lipophagy via modulation of the AMPK pathway. Despite these alterations, key physiological functions related to energy metabolism were preserved, and lifespan was extended with delayed aging markers. These findings highlight LMWPTP's significant role in lipid regulation, offering new insights and potential therapeutic targets for human lipid metabolism disorders.
Collapse
Affiliation(s)
- Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bingyu Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lin An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhixia Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jing Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Hall AN, Morton EA, Walters R, Cuperus JT, Queitsch C. Phenotypic tolerance for rDNA copy number variation within the natural range of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644675. [PMID: 40196474 PMCID: PMC11974728 DOI: 10.1101/2025.03.21.644675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The genes for ribosomal RNA (rRNA) are encoded by ribosomal DNA (rDNA), whose structure is notable for being present in arrays of tens to thousands of tandemly repeated copies in eukaryotic genomes. The exact number of rDNA copies per genome is highly variable within a species, with differences between individuals measuring in potentially hundreds of copies and megabases of DNA. The extent to which natural variation in rDNA copy number impacts whole-organism phenotypes such as fitness and lifespan is poorly understood, in part due to difficulties in manipulating such large and repetitive tracts of DNA even in model organisms. Here, we used the natural resource of copy number variation in C. elegans wild isolates to generate new tools and investigated the phenotypic consequences of this variation. Specifically, we generated a panel of recombinant inbred lines (RILs) using a laboratory strain derivative with ∼130 haploid rDNA copies and a wild isolate with ∼417 haploid rDNA copies, one of the highest validated C. elegans rDNA copy number arrays. We find that rDNA copy number is stable in the RILs, rejecting prior hypotheses that predicted copy number instability and copy number reversion. To isolate effects of rDNA copy number on phenotype, we produced a series of near isogenic lines (NILs) with rDNA copy numbers representing the high and low end of the rDNA copy number spectrum in C. elegans wild isolates. We find no correlation between rDNA copy number and phenotypes of rRNA abundance, competitive fitness, early life fertility, lifespan, or global transcriptome under standard laboratory conditions. These findings demonstrate a remarkable ability of C. elegans to tolerate substantial variation in a locus critical to fundamental cell function. Our study provides strain resources for future investigations into the boundaries of this tolerance.
Collapse
|
3
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Ouyang B, Shan C, Shen S, Dai X, Chen Q, Su X, Cao Y, Qin X, He Y, Wang S, Xu R, Hu R, Shi L, Lu T, Yang W, Peng S, Zhang J, Wang J, Li D, Pang Z. AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer. Nat Commun 2024; 15:7560. [PMID: 39215014 PMCID: PMC11364624 DOI: 10.1038/s41467-024-51980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.
Collapse
Affiliation(s)
- Boshu Ouyang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Caihua Shan
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Shun Shen
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, P. R. China
| | - Xinnan Dai
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaomin Su
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Yongbin Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xifeng Qin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ying He
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Siyu Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruizhe Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Tun Lu
- School of Computer Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University); Zhuhai, Guangdong, 519000, P. R. China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| | - Dongsheng Li
- Microsoft Research Asia, Shanghai, 200232, P. R. China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
5
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
6
|
Sun W, Cai B, Zhao Z, Li S, He Y, Xie S. Redirecting Tumor Evolution with Nanocompiler Precision for Enhanced Therapeutic Outcomes. Adv Healthc Mater 2024:e2400366. [PMID: 39039965 DOI: 10.1002/adhm.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/16/2024] [Indexed: 07/24/2024]
Abstract
Precisely programming the highly plastic tumor expression profile to render it devoid of drug resistance and metastatic potential presents immense challenges. Here, a transformative nanocompiler designed to reprogram and stabilize the mutable state of tumor cells is introduced. This nanocompiler features a trio of components: 2-deoxy-d-glucose-modified lipid nanoparticles to inhibit glucose uptake, iron oxide nanoparticles to induce oxidative stress, and a deubiquitinase inhibitor to block adaptive protein profile changes in tumor cells. By specifically targeting the hypermetabolic nature of tumors, this approach disrupted their energy production, ultimately fostering a state of vulnerability and impeding their ability to adapt and resist. The results of this study indicate a substantial reduction in tumor growth and metastasis, thus demonstrating the potential of this strategy to manipulate tumor protein expression and fate. This proactive nanocompiler approach promises to steer cancer therapy toward more effective and lasting outcomes.
Collapse
Affiliation(s)
- Wenshe Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, 250117, China
| | - Biao Cai
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zejun Zhao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shilun Li
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yutian He
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
7
|
Fu L, Zhang J, Wang Y, Wu H, Xu X, Li C, Li J, Liu J, Wang H, Jiang X, Li Z, He Y, Liu P, Wu Y, Zou X, Liang B. LET-767 determines lipid droplet protein targeting and lipid homeostasis. J Cell Biol 2024; 223:e202311024. [PMID: 38551495 PMCID: PMC10982117 DOI: 10.1083/jcb.202311024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.
Collapse
Affiliation(s)
- Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingjing Zhang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yanli Wang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Huiyin Wu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiumei Xu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Chunxia Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jirong Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jing Liu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Zhihao Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yaomei He
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Wu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
8
|
Bai X, Smith HE, Golden A. Identification of genetic suppressors for a BSCL2 lipodystrophy pathogenic variant in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050524. [PMID: 38454882 PMCID: PMC11051982 DOI: 10.1242/dmm.050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Gao Q, Xu G, Wang G, Wang W, Zhu C, Shi Y, Guo C, Cong J, Ming H, Su D, Ma X. RNA-seq analysis-based study on the effects of gestational diabetes mellitus on macrosomia. Front Endocrinol (Lausanne) 2024; 15:1330704. [PMID: 38660519 PMCID: PMC11039845 DOI: 10.3389/fendo.2024.1330704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Both the mother and the infant are negatively impacted by macrosomia. Macrosomia is three times as common in hyperglycemic mothers as in normal mothers. This study sought to determine why hyperglycemic mothers experienced higher macrosomia. Methods: Hematoxylin and Eosin staining was used to detect the placental structure of normal mother(NN), mothers who gave birth to macrosomia(NM), and mothers who gave birth to macrosomia and had hyperglycemia (DM). The gene expressions of different groups were detected by RNA-seq. The differentially expressed genes (DEGs) were screened with DESeq2 R software and verified by qRT-PCR. The STRING database was used to build protein-protein interaction networks of DEGs. The Cytoscape was used to screen the Hub genes of the different group. Results The NN group's placental weight differed significantly from that of the other groups. The structure of NN group's placenta is different from that of the other group, too. 614 and 3207 DEGs of NM and DM, respectively, were examined in comparison to the NN group. Additionally, 394 DEGs of DM were examined in comparison to NM. qRT-PCR verified the results of RNA-seq. Nucleolar stress appears to be an important factor in macrosomia, according on the results of KEGG and GO analyses. The results revealed 74 overlapped DEGs that acted as links between hyperglycemia and macrosomia, and 10 of these, known as Hub genes, were key players in this process. Additionally, this analysis believes that due of their close connections, non-overlapping Hubs shouldn't be discounted. Conclusion In diabetic mother, ten Hub genes (RPL36, RPS29, RPL8 and so on) are key factors in the increased macrosomia in hyperglycemia. Hyperglycemia and macrosomia are linked by 74 overlapping DEGs. Additionally, this approach contends that non-overlapping Hubs shouldn't be ignored because of their tight relationships.
Collapse
Affiliation(s)
- Qianqian Gao
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Released Preparations, Dezhou, Shandong, China
- Omics Technologies and Health Engineering Research Center, Dezhou, Shandong, China
- College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Guanying Xu
- Department of Obsterics and Gynecology, Dezhou Maternal and Child Health Hospital, Dezhou, China
| | - Guijie Wang
- Department of Obsterics and Gynecology, Dezhou Maternal and Child Health Hospital, Dezhou, China
| | - Wei Wang
- Department of Ecology and Environmental Protection, Linyi Vocational College of Science and Technology, Linyi, China
| | - Chao Zhu
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Released Preparations, Dezhou, Shandong, China
- Omics Technologies and Health Engineering Research Center, Dezhou, Shandong, China
- College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Yang Shi
- Department of Obsterics and Gynecology, Dezhou Maternal and Child Health Hospital, Dezhou, China
| | | | - Jing Cong
- Department of Obsterics and Gynecology, Dezhou Maternal and Child Health Hospital, Dezhou, China
| | - Hongxia Ming
- College of Ecology, Resources and Environment, Dezhou, China
| | - Dongmei Su
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Genetics, Key Laboratory of Reproductive Health Engineering Technology Research of China’s National Health Commission, Beijing, China
| | - Xu Ma
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Genetics, Key Laboratory of Reproductive Health Engineering Technology Research of China’s National Health Commission, Beijing, China
| |
Collapse
|
10
|
Das A, Gkoutos GV, Acharjee A. Analysis of translesion polymerases in colorectal cancer cells following cetuximab treatment: A network perspective. Cancer Med 2024; 13:e6945. [PMID: 39102671 PMCID: PMC10809876 DOI: 10.1002/cam4.6945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes. METHODS In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model. RESULTS Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the "blue" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7. CONCLUSION We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
Collapse
Affiliation(s)
- Anubrata Das
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
- NIHR Experimental Cancer Medicine CentreBirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
11
|
Zhang H, Zeng W, Zhao MM, Wang J, Wang Q, Chen T, Zhang Y, Lee W, Chen S, Zhang Y, Lan X, Xiang Y. Caenorhabditis elegans LIN-24, a homolog of bacterial pore-forming toxin, protects the host from microbial infection. FASEB J 2023; 37:e23162. [PMID: 37682220 DOI: 10.1096/fj.202300063r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex βγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.
Collapse
Affiliation(s)
- Huijie Zhang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Weirong Zeng
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Ming-Ming Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Ting Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yuyan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wenhui Lee
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Shenghan Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| |
Collapse
|
12
|
Bai X, Smith HE, Golden A. Identification of Genetic Suppressors for a Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2) Pathogenic Variant in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559059. [PMID: 37790539 PMCID: PMC10542546 DOI: 10.1101/2023.09.22.559059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Maintaining the metabolic homeostasis of fatty acids is crucial for human health. Excess fatty acids are stored in lipid droplets (LDs), the primary energy reservoir that helps regulate fat and lipid homeostasis in nearly all cell types. Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in LD biogenesis and regulating LD morphology. Pathogenic variants of seipin are associated with multiple human genetic diseases, including Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2). However, the cellular and molecular mechanisms by which dysfunctional seipin leads to these diseases remain unclear. To model BSCL2 disease, we generated an orthologous BSCL2 pathogenic variant seip-1(A185P) using CRISPR/Cas9 genome editing in Caenorhabditis elegans . This variant led to severe developmental and cellular defects, including embryonic lethality, impaired eggshell formation, and abnormally enlarged LDs. We set out to identify genetic determinants that could suppress these defective phenotypes in the seip-1(A185P) mutant background. To this end, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P) , including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, R05D3.2 (renamed as lmbr-1 ), which is an ortholog of human LMBR1 (limb development membrane protein 1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(Ser647Phe) and lmbr-1(Pro314Leu) , both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
|
13
|
Wang Y, Hua X, Wang D. Exposure to 6-PPD quinone enhances lipid accumulation through activating metabolic sensors of SBP-1 and MDT-15 in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121937. [PMID: 37307863 DOI: 10.1016/j.envpol.2023.121937] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Although it has been shown that exposure to 6-PPDQ can cause toxicity on environmental organisms, its possible effects on metabolic state remain largely unclear. We here determined the effect of 6-PPDQ exposure on lipid accumulation in Caenorhabditis elegans. We observed increase in triglyceride content, enhancement in lipid accumulation, and increase in size of lipid droplets in 6-PPDQ (1-10 μg/L) exposed nematodes. This detected lipid accumulation was associated with both increase in fatty acid synthesis reflected by increased expressions of fasn-1 and pod-2 and inhibition in mitochondrial and peroxisomal fatty acid β-oxidation indicated by decreased expressions of acs-2, ech-2, acs-1, and ech-3. The observed lipid accumulation in 6-PPDQ (1-10 μg/L) exposed nematodes was also related to the increase in synthesis of monounsaturated fatty acylCoAs reflected by altered expressions of fat-5, fat-6, and fat-7. Exposure to 6-PPDQ (1-10 μg/L) further increased expressions of sbp-1 and mdt-15 encoding two metabolic sensors to initiate the lipid accumulation and to regulate the lipid metabolism. Moreover, the observed increase in triglyceride content, enhancement in lipid accumulation, and alterations in fasn-1, pod-2, acs-2, and fat-5 expressions in 6-PPDQ exposed nematodes were obviously inhibited by sbp-1 and mdt-15 RNAi. Our observations demonstrated the risk of 6-PPDQ at environmentally relevant concentration in affecting lipid metabolic state in organisms.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
14
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Puri D, Sharma S, Samaddar S, Ravivarma S, Banerjee S, Ghosh-Roy A. Muscleblind-1 interacts with tubulin mRNAs to regulate the microtubule cytoskeleton in C. elegans mechanosensory neurons. PLoS Genet 2023; 19:e1010885. [PMID: 37603562 PMCID: PMC10470942 DOI: 10.1371/journal.pgen.1010885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (β tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Dharmendra Puri
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sunanda Sharma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sarbani Samaddar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sruthy Ravivarma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sourav Banerjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
16
|
van den Berg L, Kokki K, Wowro SJ, Petricek KM, Deniz O, Stegmann CA, Robciuc M, Teesalu M, Melvin RG, Nieminen AI, Schupp M, Hietakangas V. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep 2023; 42:112739. [PMID: 37405919 DOI: 10.1016/j.celrep.2023.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.
Collapse
Affiliation(s)
- Linda van den Berg
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sylvia J Wowro
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Konstantin M Petricek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Onur Deniz
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Catrin A Stegmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Mari Teesalu
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Richard G Melvin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3083, Australia
| | - Anni I Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
17
|
Xu T, Liao S, Huang M, Zhu C, Huang X, Jin Q, Xu D, Fu C, Chen X, Feng X, Guang S. A ZTF-7/RPS-2 complex mediates the cold-warm response in C. elegans. PLoS Genet 2023; 19:e1010628. [PMID: 36763670 PMCID: PMC9949642 DOI: 10.1371/journal.pgen.1010628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/23/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Temperature greatly affects numerous biological processes in all organisms. How multicellular organisms respond to and are impacted by hypothermic stress remains elusive. Here, we found that cold-warm stimuli induced depletion of the RNA exosome complex in the nucleoli but enriched it in the nucleoplasm. To further understand the function and mechanism of cold-warm stimuli, we conducted forward genetic screening and identified ZTF-7, which is required for RNA exosome depletion from nucleoli upon transient cold-warm exposure in C. elegans. ZTF-7 is a putative ortholog of human ZNF277 that may contribute to language impairments. Immunoprecipitation followed by mass spectrometry (IP-MS) found that ZTF-7 interacted with RPS-2, which is a ribosomal protein of the small subunit and participates in pre-rRNA processing. A partial depletion of RPS-2 and other proteins of the small ribosomal subunit blocked the cold-warm stimuli-induced reduction of exosome subunits from the nucleoli. These results established a novel mechanism by which C. elegans responds to environmental cold-warm exposure.
Collapse
Affiliation(s)
- Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Meng Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanhai Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (XC); (XF); (SG)
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (XC); (XF); (SG)
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui, China
- * E-mail: (XC); (XF); (SG)
| |
Collapse
|
18
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
19
|
Lim CY, Lin HT, Kumsta C, Lu TC, Wang FY, Kang YH, Hansen M, Ching TT, Hsu AL. SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to mediate dietary restriction-induced autophagy and longevity. Autophagy 2023; 19:224-240. [PMID: 35503435 PMCID: PMC9809948 DOI: 10.1080/15548627.2022.2068267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dietary restriction (DR) is known to promote autophagy to exert its longevity effect. While SAMS-1 (S-adenosyl methionine synthetase-1) has been shown to be a key mediator of the DR response, little is known about the roles of S-adenosyl methionine (SAM) and SAM-dependent methyltransferase in autophagy and DR-induced longevity. In this study, we show that DR and SAMS-1 repress the activity of SET-2, a histone H3K4 methyltransferase, by limiting the availability of SAM. Consequently, the reduced H3K4me3 levels promote the expression and activity of two transcription factors, HLH-30/TFEB and PHA-4/FOXA, which both regulate the transcription of autophagy-related genes. We then find that HLH-30/TFEB and PHA-4/FOXA act collaboratively on their common target genes to mediate the transcriptional response of autophagy-related genes and consequently the lifespan of the animals. Our study thus shows that the SAMS-1-SET-2 axis serves as a nutrient-sensing module to epigenetically coordinate the activation of HLH-30/TFEB and PHA-4/FOXA transcription factors to control macroautophagy/autophagy and longevity in response to DR.Abbreviations: ChIP: chromatin immunoprecipitation; ChIP-seq: chromatin immuno precipitation-sequencing; COMPASS: complex of proteins associated with Set1; DR: dietary restriction; GO: gene ontology; SAM: S-adenosyl methionine; SAMS-1: S-adenosyl methionine synthetase-1; TSS: transcription start site; WT: wild-type.
Collapse
Affiliation(s)
- Chiao-Yin Lim
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huan-Ting Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Caroline Kumsta
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tzu-Chiao Lu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yung Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Hsuan Kang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Malene Hansen
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ao-Lin Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Bai X, Ma J, Wu X, Qiu L, Huang R, Zhang H, Huang H, Chen X. Impact of Visceral Obesity on Structural and Functional Alterations of Gut Microbiota in Polycystic Ovary Syndrome (PCOS): A Pilot Study Using Metagenomic Analysis. Diabetes Metab Syndr Obes 2023; 16:1-14. [PMID: 36760592 PMCID: PMC9843473 DOI: 10.2147/dmso.s388067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE We aimed to identify structural and functional alterations of gut microbiota associated with visceral obesity in adult women with polycystic ovary syndrome (PCOS). METHODS Twenty-seven adults with PCOS underwent stool and fasting blood collection, oral glucose tolerance testing, and visceral fat area (VFA) measurement via dual-bioimpedance technique. Metagenomic analysis was used to analyze gut microbiota. RESULTS PCOS patients were divided into three groups: visceral obesity group (PCOS-VO, n=9, age 28.33±5.68 years, BMI 37.06±4.27 kg/m2, VFA 128.67±22.45 cm2), non-visceral obesity group (PCOS-NVO, n=10, age 25.40±4.53, BMI 30.74±3.95, VFA 52.00±24.04), normal BMI group (PCOS-NB, n=8, age 27.88±2.53, BMI 21.56±2.20, VFA 27.00±21.18), with no statistical difference in age (P>0.05) and significantly statistical differences in BMI and VFA (P<0.05). The groups showed a significant difference in microbial β-diversity between PCOS-VO and PCOS-NVO (P=0.002) and no difference between PCOS-NVO and PCOS-NB (P=0.177). Bacteroidetes was the phylum with the highest relative abundance among all patients, followed by Firmicutes. Those with visceral obesity had a higher abundance of Prevotella, Megamonas, and Dialister genera, positively correlated with metabolic markers (r>0.4, P<0.05), and lower abundance of Phascolarctobacterium and Neisseria genera, negatively correlated with metabolic markers (r<-0.4, P<0.05). Functional annotation analysis showed significant differences in relative abundance of ribosome pathway, fatty acid biosynthesis pathway, and sphingolipid signaling pathway between groups, affecting lipid homeostasis and visceral fat accumulation. CONCLUSION Alteration in β-diversity of gut microbiota exists in PCOS with visceral obesity versus those without visceral obesity and relates to functional differences in ribosomes, fatty acid biosynthesis, and sphingolipid signaling pathways.
Collapse
Affiliation(s)
- Xuefeng Bai
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Jiangxin Ma
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Xiaohong Wu
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Lingling Qiu
- Department of Reproductive Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Rongfu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Haibin Zhang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Huibin Huang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
- Correspondence: Huibin Huang; Xiaoyu Chen, Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou City, Fujian Province, 362000, People’s Republic of China, Tel +86-13313872001; +86-13600739755, Email ;
| | - Xiaoyu Chen
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| |
Collapse
|
21
|
Lu R, Chen J, Wang F, Wang L, Liu J, Lin Y. Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans. Mol Cells 2022; 45:649-659. [PMID: 36058890 PMCID: PMC9448645 DOI: 10.14348/molcells.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.
Collapse
Affiliation(s)
- Rui Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
22
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|
23
|
Wang Y, Li C, Zhang J, Xu X, Fu L, Xu J, Zhu H, Hu Y, Li C, Wang M, Wu Y, Zou X, Liang B. Polyunsaturated fatty acids promote the rapid fusion of lipid droplets in Caenorhabditis elegans. J Biol Chem 2022; 298:102179. [PMID: 35752365 PMCID: PMC9352923 DOI: 10.1016/j.jbc.2022.102179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal β-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal β-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element-binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal β-oxidation-defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.
Collapse
Affiliation(s)
- Yanli Wang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Chunxia Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Xiumei Xu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jie Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, CAS, Kunming, Yunnan, China
| | - Hong Zhu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Ying Hu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Mengjie Wang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, Liaoning, China.
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
24
|
Li N, Hua B, Chen Q, Teng F, Ruan M, Zhu M, Zhang L, Huo Y, Liu H, Zhuang M, Shen H, Zhu H. A sphingolipid-mTORC1 nutrient-sensing pathway regulates animal development by an intestinal peroxisome relocation-based gut-brain crosstalk. Cell Rep 2022; 40:111140. [PMID: 35905721 DOI: 10.1016/j.celrep.2022.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The mTOR-dependent nutrient-sensing and response machinery is the central hub for animals to regulate their cellular and developmental programs. However, equivalently pivotal nutrient and metabolite signals upstream of mTOR and developmental-regulatory signals downstream of mTOR are not clear, especially at the organism level. We previously showed glucosylceramide (GlcCer) acts as a critical nutrient and metabolite signal for overall amino acid levels to promote development by activating the intestinal mTORC1 signaling pathway. Here, through a large-scale genetic screen, we find that the intestinal peroxisome is critical for antagonizing the GlcCer-mTORC1-mediated nutrient signal. Mechanistically, GlcCer deficiency, inactive mTORC1, or prolonged starvation relocates intestinal peroxisomes closer to the apical region in a kinesin- and microtubule-dependent manner. Those apical accumulated peroxisomes further release peroxisomal-β-oxidation-derived glycolipid hormones that target chemosensory neurons and downstream nuclear hormone receptor DAF-12 to arrest the animal development. Our data illustrate a sophisticated gut-brain axis that predominantly orchestrates nutrient-sensing-dependent development in animals.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Beilei Hua
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinbo Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Shen
- Institutes of Biomedical Sciences, Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
25
|
Kumar AV, Kang T, Thakurta TG, Ng C, Rogers AN, Larsen MR, Lapierre LR. Exportin 1 modulates life span by regulating nucleolar dynamics via the autophagy protein LGG-1/GABARAP. SCIENCE ADVANCES 2022; 8:eabj1604. [PMID: 35363528 PMCID: PMC10938577 DOI: 10.1126/sciadv.abj1604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Altered nucleolar and ribosomal dynamics are key hallmarks of aging, but their regulation remains unclear. Building on the knowledge that the conserved nuclear export receptor Exportin 1 (XPO-1/XPO1) modulates proteostasis and life span, we systematically analyzed the impact of nuclear export on protein metabolism. Using transcriptomic and subcellular proteomic analyses in nematodes, we demonstrate that XPO-1 modulates the nucleocytoplasmic distribution of key proteins involved in nucleolar dynamics and ribosome function, including fibrillarin (FIB-1/FBL) and RPL-11 (RPL11). Silencing xpo-1 led to marked reduction in global translation, which was accompanied by decreased nucleolar size and lower fibrillarin levels. A targeted screen of known proteostatic mediators revealed that the autophagy protein LGG-1/GABARAP modulates nucleolar size by regulating RPL-11 levels, linking specific protein degradation to ribosome metabolism. Together, our study reveals that nucleolar size and life span are regulated by LGG-1/GABARAP via ribosome protein surveillance.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tara G. Thakurta
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Aric N. Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
26
|
Hou X, Zhu C, Xu M, Chen X, Sun C, Nashan B, Guang S, Feng X. The SNAPc complex mediates starvation-induced trans-splicing in Caenorhabditis elegans. J Genet Genomics 2022; 49:952-964. [DOI: 10.1016/j.jgg.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
|
27
|
Xie K, Liu Y, Li X, Zhang H, Zhang S, Mak HY, Liu P. Dietary S. maltophilia induces supersized lipid droplets by enhancing lipogenesis and ER-LD contacts in C. elegans. Gut Microbes 2022; 14:2013762. [PMID: 35112996 PMCID: PMC8816401 DOI: 10.1080/19490976.2021.2013762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, Caenorhabditis elegans (C. elegans) has been chosen as a model organism to study interspecies interaction. Here, we demonstrate that feeding C. elegans with an opportunistic pathogenic bacterium Stenotrophomonas maltophilia (S. maltophilia) retards growth and promotes excessive neutral lipid storage. Gene expression analysis reveals that dietary S. maltophilia induces a lipogenic transcriptional response that includes the SREBP ortholog SBP-1, and fatty acid desaturases FAT-6 and FAT-7. Live imaging and ultrastructural analysis suggest that excess neutral lipid is stored in greatly expanded lipid droplets (LDs), as a result of enhanced endoplasmic reticulum (ER)-LD interaction. We also report that loss of function mutations in dpy-9 in C. elegans confers resistance to S. maltophilia. Dietary S. maltophilia induces supersized LDs by enhancing lipogenesis and ER-LD contacts in C. elegans. This work delineates a new model for understanding microbial regulation of metazoan physiology.
Collapse
Affiliation(s)
- Kang Xie
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yangli Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xixia Li
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Pingsheng Liu National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
28
|
Yang R, Li Y, Wang Y, Zhang J, Fan Q, Tan J, Li W, Zou X, Liang B. NHR-80 senses the mitochondrial UPR to rewire citrate metabolism for lipid accumulation in Caenorhabditis elegans. Cell Rep 2022; 38:110206. [PMID: 35021096 DOI: 10.1016/j.celrep.2021.110206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.
Collapse
Affiliation(s)
- Rendan Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jianlin Tan
- Yunnan Institute of Product Quality Supervision and Inspection and National Agricultural and Sideline Products Quality Supervision and Inspection Center, Kunming 650223, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
29
|
Zhang J, Hu Y, Wang Y, Fu L, Xu X, Li C, Xu J, Li C, Zhang L, Yang R, Jiang X, Wu Y, Liu P, Zou X, Liang B. mmBCFA C17iso ensures endoplasmic reticulum integrity for lipid droplet growth. J Cell Biol 2021; 220:e202102122. [PMID: 34623380 PMCID: PMC8563294 DOI: 10.1083/jcb.202102122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/22/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
In eukaryote cells, lipid droplets (LDs) are key intracellular organelles that dynamically regulate cellular energy homeostasis. LDs originate from the ER and continuously contact the ER during their growth. How the ER affects LD growth is largely unknown. Here, we show that RNAi knockdown of acs-1, encoding an acyl-CoA synthetase required for the biosynthesis of monomethyl branched-chain fatty acids C15iso and C17iso, remarkably prevented LD growth in Caenorhabditis elegans. Dietary C17iso, or complex lipids with C17iso including phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol, could fully restore the LD growth in the acs-1RNAi worms. Mechanistically, C17iso may incorporate into phospholipids to ensure the membrane integrity of the ER so as to maintain the function of ER-resident enzymes such as SCD/stearoyl-CoA desaturase and DGAT2/diacylglycerol acyltransferase for appropriate lipid synthesis and LD growth. Collectively, our work uncovers a unique fatty acid, C17iso, as the side chain of phospholipids for determining the ER homeostasis for LD growth in an intact organism, C. elegans.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ying Hu
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiumei Xu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chunxia Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rendan Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences. Jinan, Shandong, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
30
|
Novel Functions of the Fatty Acid and Retinol Binding Protein (FAR) Gene Family Revealed by Fungus-Mediated RNAi in the Parasitic Nematode, Aphelenchoides besseyi. Int J Mol Sci 2021; 22:ijms221810057. [PMID: 34576221 PMCID: PMC8471444 DOI: 10.3390/ijms221810057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool for the analysis of gene function in nematodes. Fatty acid and retinol binding protein (FAR) is a protein that only exists in nematodes and plays an important role in their life activities. The rice white-tip nematode (RWTN), Aphelenchoides besseyi, is a migratory endoparasitic plant nematode that causes serious damage in agricultural production. In this study, the expression levels of eight RWTN genes were effectively decreased when RWTN was fed Ab-far-n (n: 1–8) hairpin RNA transgenic Botrytis cinerea (ARTBn). These functions of the far gene family were identified to be consistent and diverse through phenotypic changes after any gene was silenced. Such consistency indicates that the body lengths of the females were significantly shortened after silencing any of the eight Ab-far genes. The diversities were mainly manifested as follows: (1) Reproduction of nematodes was clearly inhibited after Ab-far-1 to Ab-far-4 were silenced. In addition, silencing Ab-far-2 could inhibit the pathogenicity of nematodes to Arabidopsis; (2) gonad length of female nematodes was significantly shortened after Ab-far-2 and Ab-far-4 were silenced; (3) proportion of male nematodes significantly increased in the adult population after Ab-far-1, Ab-far-3, and Ab-far-5 were silenced, whereas the proportion of adult nematodes significantly decreased in the nematode population after Ab-far-4 were silenced. (4) Fat storage of nematodes significantly decreased after Ab-far-3, Ab-far-4, and Ab-far-7 were silenced. To our knowledge, this is the first study to demonstrate that Ab-far genes affect sex formation and lipid metabolism in nematodes, which provides valuable data for further study and control of RWTNs.
Collapse
|
31
|
Hu Y, Wang Y, Wang X, Wu X, Fu L, Liu X, Wen Y, Sheng J, Zhang J. The Role of Cation Diffusion Facilitator CDF-1 in Lipid Metabolism in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6237889. [PMID: 33871589 PMCID: PMC8495940 DOI: 10.1093/g3journal/jkab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
Zinc is one of the most important trace elements as it plays a vital role in many biological processes. As well, aberrant zinc metabolism has been implicated in lipid-related metabolic diseases. Previously, we showed that zinc antagonizes iron to regulate sterol regulatory element-binding proteins and the stearoyl-CoA desaturase (SREBP-SCD) pathway in lipid metabolism in the model organism Caenorhabditis elegans. In this study, we present the identification of another cation diffusion facilitator, CDF-1, which regulates lipid metabolism along with SUR-7 in response to zinc. Inactivation of SBP-1, the only homolog of SREBPs, leads to an increased zinc level but decreased lipid accumulation. However, either the cdf-1(n2527) or sur-7(tm6523) mutation could successfully restore the altered fatty acid profile, fat content, and zinc level of the sbp-1(ep79) mutant. Furthermore, we found that CDF-1/SUR-7 may functionally bypass SBP-1 to directly affect the conversion activity of SCD in the biosynthesis of unsaturated fatty acids and lipid accumulation. Collectively, these results consistently support the link between zinc homeostasis and lipid metabolism via the SREBP-SCD axis by the cation diffusion facilitators CDF-1 and SUR-7.
Collapse
Affiliation(s)
- Ying Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyun Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiayu Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yu Wen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
32
|
Zhu Y, Zeng Q, Li F, Fang H, Zhou Z, Jiang T, Yin C, Wei Q, Wang Y, Ruan J, Huang J. Dysregulated H3K27 Acetylation Is Implicated in Fatty Liver Hemorrhagic Syndrome in Chickens. Front Genet 2021; 11:574167. [PMID: 33505421 PMCID: PMC7831272 DOI: 10.3389/fgene.2020.574167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Epigenetic regulation of gene expression has been reported in the pathogenesis of metabolic disorders such as diabetes and liver steatosis in humans. However, the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in chickens have been rarely studied. H3K27ac chromatin immunoprecipitation coupled with high-throughput sequencing and high-throughput RNA sequencing was performed to compare genome-wide H3K27ac profiles and transcriptomes of liver tissue between healthy and FLHS chickens. In total, 1,321 differential H3K27ac regions and 443 differentially expressed genes were identified (| log2Fold change| ≥ 1 and P-value ≤ 0.05) between the two groups. Binding motifs for transcription factors involved in immune processes and metabolic homeostasis were enriched among those differential H3K27ac regions. Differential H3K27ac peaks were associated with multiple known FLHS risk genes, involved in lipid and energy metabolism (PCK1, APOA1, ANGPTL4, and FABP1) and the immune system (FGF7, PDGFRA, and KIT). Previous studies and our current results suggested that the high-energy, low-protein (HELP) diet might have an impact on histone modification and chromatin structure, leading to the dysregulation of candidate genes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which causes excessive accumulation of fat in the liver tissue and induces the development of FLHS. These findings highlight that epigenetic modifications contribute to the regulation of gene expression and play a central regulatory role in FLHS. The PPAR signaling pathway and other genes implicated in FLHS are of great importance for the development of novel and specific therapies for FLHS-susceptible commercial laying hens.
Collapse
Affiliation(s)
- Yaling Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fang Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Zhimin Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Yin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yujie Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
34
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
35
|
Zhao L, Ke H, Xu H, Wang GD, Zhang H, Zou L, Xiang S, Li M, Peng L, Zhou M, Li L, Ao L, Yang Q, Shen CKJ, Yi P, Wang L, Jiao B. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun 2020; 11:341. [PMID: 31953403 PMCID: PMC6969145 DOI: 10.1038/s41467-019-14183-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Milk lipid secretion is a critical process for the delivery of nutrition and energy from parent to offspring. However, the underlying molecular mechanism is less clear. Here we report that TDP-43, a RNA-binding protein, underwent positive selection in the mammalian lineage. Furthermore, TDP-43 gene (Tardbp) loss induces accumulation of large lipid droplets and severe lipid secretion deficiency in mammary epithelial cells to outside alveolar lumens, eventually resulting in lactation failure and pup starvation within three weeks postpartum. In human milk samples from lactating women, the expression levels of TDP-43 is positively correlated with higher milk output. Mechanistically, TDP-43 exerts post-transcriptional regulation of Btn1a1 and Xdh mRNA stability, which are required for the secretion of lipid droplets from epithelial cells to the lumen. Taken together, our results highlights the critical role of TDP-43 in milk lipid secretion, providing a potential strategy for the screening and intervention of clinical lactation insufficiency. Milk lipid secretion is a critical process for the delivery of nutrition and energy from parent to offspring. Here the authors found that TDP-43, a RNA-binding protein, is required for milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh mRNA stability.
Collapse
Affiliation(s)
- Limin Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Hao Ke
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Honglei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Shu Xiang
- The First Hospital of Kunming, Calmette International Hospital, 650011, Kunming, China
| | - Mengyuan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Li Peng
- Yubei District Maternal and Child Health Care Hospital, 401120, Chongqing, China
| | - Mingfang Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Lingling Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Lei Ao
- Kunming Angel Women's and Children's Hospital, 650032, Kunming, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Nankang, Taiwan
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China.
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, 650091, Kunming, China.
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
36
|
Lin Y, Bao B, Yin H, Wang X, Feng A, Zhao L, Nie X, Yang N, Shi GP, Liu J. Peripheral cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin synthesis. BMC Biol 2019; 17:93. [PMID: 31771567 PMCID: PMC6880508 DOI: 10.1186/s12915-019-0719-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/06/2019] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Cathepsin L and some other cathepsins have been implicated in the development of obesity in humans and mice. The functional inactivation of the proteases reduces fat accumulation during mammalian adipocyte differentiation. However, beyond degrading extracellular matrix protein fibronectin, the molecular mechanisms by which cathepsins control fat accumulation remain unclear. We now provide evidence from Caenorhabditis elegans and mouse models to suggest a conserved regulatory circuit in which peripheral cathepsin L inhibition lowers fat accumulation through promoting central serotonin synthesis. RESULTS We established a C. elegans model of fat accumulation using dietary supplementation with glucose and palmitic acid. We found that nutrient supplementation elevated fat storage in C. elegans, and along with worm fat accumulation, an increase in the expression of cpl-1 was detected using real-time PCR and western blot. The functional inactivation of cpl-1 reduced fat storage in C. elegans through activating serotonin signaling. Further, knockdown of cpl-1 in the intestine and hypodermis promoted serotonin synthesis in worm ADF neurons and induced body fat loss in C. elegans via central serotonin signaling. We found a similar regulatory circuit in high-fat diet-fed mice. Cathepsin L knockout promoted fat loss and central serotonin synthesis. Intraperitoneal injection of the cathepsin L inhibitor CLIK195 similarly reduced body weight gain and white adipose tissue (WAT) adipogenesis, while elevating brain serotonin level and WAT lipolysis and fatty acid β-oxidation. These effects of inhibiting cathepsin L were abolished by intracranial injection of p-chlorophenylalanine, inhibitor of a rate-limiting enzyme for serotonin synthesis. CONCLUSION This study reveals a previously undescribed molecular mechanism by which peripheral CPL-1/cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin signaling.
Collapse
Affiliation(s)
- Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Bin Bao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China.
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Airong Feng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Lin Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Xianqi Nie
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Nan Yang
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China.
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
37
|
Abstract
Starvation is among the most ancient of selection pressures, driving evolution of a robust arsenal of starvation survival defenses. In order to survive starvation stress, organisms must be able to curtail anabolic processes during starvation and judiciously activate catabolic pathways. Although the activation of metabolic defenses in response to nutrient deprivation is an obvious component of starvation survival, less appreciated is the importance of the ability to recover from starvation upon re-exposure to nutrients. In order for organisms to successfully recover from starvation, cells must be kept in a state of ready so that upon the return of nutrients, activities such as growth and reproduction can be resumed. Critical to this state of ready is the lysosome, an organelle that provides essential signals of nutrient sufficiency to cell growth-activating pathways in the fed state. In this issue, Murphy and colleagues provide evidence that exposure of Caenorhabditis elegans roundworms to 2 simple nutrients, glucose and the polyunsaturated fatty acid linoleate, is able to render lysosomal function competent to activate key downstream starvation recovery pathways, bypassing the need for a master transcriptional regulator of lysosomes. These findings provide a quantum leap forward in our understanding of the cellular determinants that permit organisms to survive cycles of feast and famine. Organisms require elaborate systems to defend against nutrient stress. This Primer explores recent evidence that the transcription factor TFEB, a master regulator of starvation defences, also primes animals for recovery from starvation once food becomes available.
Collapse
Affiliation(s)
- Alexander A. Soukas
- Department of Medicine, Diabetes Unit, and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Ben Zhou
- Department of Medicine, Diabetes Unit, and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
38
|
Yan Q, Zhu C, Guang S, Feng X. The Functions of Non-coding RNAs in rRNA Regulation. Front Genet 2019; 10:290. [PMID: 31024617 PMCID: PMC6463246 DOI: 10.3389/fgene.2019.00290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/18/2019] [Indexed: 02/04/2023] Open
Abstract
Ribosomes are ribonucleoprotein machines that decode the genetic information embedded in mRNAs into polypeptides. Ribosome biogenesis is tightly coordinated and controlled from the transcription of pre-rRNAs to the assembly of ribosomes. Defects or disorders in rRNA production result in a number of human ribosomopathy diseases. During the processes of rRNA synthesis, non-coding RNAs, especially snoRNAs, play important roles in pre-rRNA transcription, processing, and maturation. Recent research has started to reveal that other long and short non-coding RNAs, including risiRNA, LoNA, and SLERT (among others), are also involved in pre-rRNA transcription and rRNA production. Here, we summarize the current understanding of the mechanisms of non-coding RNA-mediated rRNA generation and regulation and their biological roles.
Collapse
Affiliation(s)
- Qi Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Wang X, Ma H, Wang X. Nucleophosmin/B23 contributes to hepatic insulin resistance through the modulation of NF-κB pathway. Biochem Biophys Res Commun 2019; 511:214-220. [PMID: 30799086 DOI: 10.1016/j.bbrc.2019.01.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Nucleophosmin (NPM)/B23 is an important nucleolar phosphoprotein involved in the regulation of assorted cellular signaling pathways. In the present study, we revealed a critical role of NPM in liver insulin resistance. NPM is markedly upregulated in insulin-resistant liver tissues and palmitic acid (PA)-exposed HepG2 cells both at mRNA and protein levels. Ectopic expression of NPM in hepatocytes aggravated PA-induced insulin resistance, lipid droplet accumulation, glucose intake impairment as well as the expression of gluconeogenic genes. Coinciding with these results, interference of NPM using small interfering RNA (siRNA) oligos ameliorated PA-induced insulin resistance, as revealed by increased phosphorylation of AKT and GSK3β following insulin treatment. As predicted, PA-triggered alterations in glucose intake and the expression of gluconeogenic enzymes were attenuated following NPM depletion. Finally, we showed that NPM plays an indispensible role in PA-induced activation of NF-κB pathway. Both of NF-κB p65 phosphorylation and nuclear translocation were impeded by NPM interference in PA-treated HepG2 cells. Taken together, these findings explicitly demonstrate that NPM participates in the development of liver insulin resistance, suggesting that NPM may serve as a potential therapeutic target of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hong Ma
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, PR China
| | - Xueqin Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
40
|
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave-Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev Cell 2018; 47:67-79.e5. [DOI: 10.1016/j.devcel.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
|