1
|
Sciortino A, Orhant-Prioux M, Guerin C, Bonnemay L, Takagi Y, Sellers J, Colin A, Théry M, Blanchoin L. Filament transport supports contractile steady states of actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639071. [PMID: 40060478 PMCID: PMC11888238 DOI: 10.1101/2025.02.21.639071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
In all eukaryotic cells, the actin cytoskeleton is maintained in a dynamic steady-state. Actin filaments are continuously displaced from cell periphery, where they assemble, towards the cell's center, where they disassemble. Despite this constant flow and turnover, cellular networks maintain their overall architecture constant. How such a flow of material can support dynamic yet steady cellular architectures remains an open question. To investigate the role of myosin-based forces in contractile steady-states of actin networks, we used a reconstituted in vitro system based on a minimal set of purified proteins, namely actin, myosin and actin regulators. We found that, contrary to previous bulk experiments, when confined in microwells, the actin network could self-organize into ordered arrangements of contractile bundles, flowing continuously without collapsing. This was supported by three-dimensional fluxes of actin filaments, spatially separated yet balancing each other. Unexpectedly, maintaining these fluxes did not depend on filament nucleation or elongation, but solely on filament transport. Ablation of the contractile bundles abolished the flux balance and led to network collapse. These findings demonstrate that the dynamic steady state of actin networks can be sustained by filament displacement and recirculation, independently of filament assembly and disassembly.
Collapse
Affiliation(s)
- Alfredo Sciortino
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Christophe Guerin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Louise Bonnemay
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - James Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Manuel Théry
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris 75005, France
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France
| |
Collapse
|
2
|
Nakajima D, Takahashi N, Inoue T, Nomura SIM, Matsubayashi HT. A unified purification method for actin-binding proteins using a TEV-cleavable His-Strep-tag. MethodsX 2024; 13:102884. [PMID: 39224451 PMCID: PMC11367271 DOI: 10.1016/j.mex.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The actin cytoskeleton governs the dynamic functions of cells, ranging from motility to phagocytosis and cell division. To elucidate the molecular mechanism, in vitro reconstructions of the actin cytoskeleton and its force generation process have played essential roles, highlighting the importance of efficient purification methods for actin-binding proteins. In this study, we introduce a unified purification method for actin-binding proteins, including capping protein (CP), cofilin, ADF, profilin, fascin, and VASP, key regulators in force generation of the actin cytoskeleton. Exploiting a His-Strep-tag combined with a TEV protease cleavage site, we purified these diverse actin-binding proteins through a simple two-column purification process: initial purification through a Strep-Tactin column and subsequent tag removal through the reverse purification by a Ni-NTA column. Biochemical and microscopic assays validated the functionality of the purified proteins, demonstrating the versatility of the approach. Our methods not only delineate critical steps for the efficient preparation of actin-binding proteins but also hold the potential to advance investigations of mutants, isoforms, various source species, and engineered proteins involved in actin cytoskeletal dynamics.•Unified purification method for various actin-binding proteins.•His-Strep-tag and TEV protease cleavage for efficient purification.•Functional validation through biochemical and microscopic assays.
Collapse
Affiliation(s)
- Daichi Nakajima
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01 Aramaki Aoba-ku, Mechanical Eng. Research Bldg. 2 (A 03), Sendai, Miyagi, 980-8579, Japan
| | - Nozomi Takahashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba 6-3 Aramaki Aoba-ku, Research Bldg. (G 06), Sendai, Miyagi, 980-8579, Japan
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 N. Wolfe St. 476 Rangos Building, Baltimore, MD, 21205, USA
| | - Shin-ichiro M. Nomura
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01 Aramaki Aoba-ku, Mechanical Eng. Research Bldg. 2 (A 03), Sendai, Miyagi, 980-8579, Japan
| | - Hideaki T. Matsubayashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba 6-3 Aramaki Aoba-ku, Research Bldg. (G 06), Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
3
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
4
|
Sakamoto R, Murrell MP. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat Commun 2024; 15:9731. [PMID: 39523366 PMCID: PMC11551154 DOI: 10.1038/s41467-024-53228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes). Myosin activity is controlled by light patterns globally or locally at the equator. Global activation causes slow, shallow cleavage furrows due to a tug-of-war between the equatorial and polar forces. By contrast, local activation leads to faster, deeper, and symmetric division as equatorial forces dominate. Dissociating the actin cortex at the poles is crucial for inducing significant furrowing. During furrowing, actomyosin flows align actin filaments parallel to the division plane, forming a contractile ring-like structure. Mechanical power is not greatest during contraction, but is maximized just before furrowing. This study reveals the quantitative relationship between force patterning and mechanical energy during division-like shape changes, providing insights into cell division mechanics.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
5
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
6
|
Wubshet NH, Young CJ, Liu AP. Rearrangement of GUV-confined actin networks in response to micropipette aspiration. Cytoskeleton (Hoboken) 2024; 81:310-317. [PMID: 38326972 PMCID: PMC11303591 DOI: 10.1002/cm.21836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Although diverse actin network architectures found inside the cell have been individually reconstituted outside of the cell, how different types of actin architectures reorganize under applied forces is not entirely understood. Recently, bottom-up reconstitution has enabled studies where dynamic and phenotypic characteristics of various actin networks can be recreated in an isolated cell-like environment. Here, by creating a giant unilamellar vesicle (GUV)-based cell model encapsulating actin networks, we investigate how actin networks rearrange in response to localized stresses applied by micropipette aspiration. We reconstitute actin bundles and branched bundles in GUVs separately and mechanically perturb them. Interestingly, we find that, when aspirated, protrusive actin bundles that are otherwise randomly oriented in the GUV lumen collapse and align along the axis of the micropipette. However, when branched bundles are aspirated, the network remains intact and outside of the pipette while the GUV membrane is aspirated into the micropipette. These results reveal distinct responses in the rearrangement of actin networks in a network architecture-dependent manner when subjected to physical forces.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Cole J. Young
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Sakamoto R, Murrell MP. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Commun Biol 2024; 7:840. [PMID: 38987288 PMCID: PMC11236970 DOI: 10.1038/s42003-024-06528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound "no-slip boundary" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated "slip boundary" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
8
|
Razavi S, Wong F, Abubaker-Sharif B, Matsubayashi HT, Nakamura H, Nguyen NTH, Robinson DN, Chen B, Iglesias PA, Inoue T. Synthetic control of actin polymerization and symmetry breaking in active protocells. SCIENCE ADVANCES 2024; 10:eadk9731. [PMID: 38865458 PMCID: PMC11168455 DOI: 10.1126/sciadv.adk9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Nonlinear biomolecular interactions on membranes drive membrane remodeling crucial for biological processes including chemotaxis, cytokinesis, and endocytosis. The complexity of biomolecular interactions, their redundancy, and the importance of spatiotemporal context in membrane organization impede understanding of the physical principles governing membrane mechanics. Developing a minimal in vitro system that mimics molecular signaling and membrane remodeling while maintaining physiological fidelity poses a major challenge. Inspired by chemotaxis, we reconstructed chemically regulated actin polymerization inside vesicles, guiding membrane self-organization. An external, undirected chemical input induced directed actin polymerization and membrane deformation uncorrelated with upstream biochemical cues, suggesting symmetry breaking. A biophysical model incorporating actin dynamics and membrane mechanics proposes that uneven actin distributions cause nonlinear membrane deformations, consistent with experimental findings. This protocellular system illuminates the interplay between actin dynamics and membrane shape during symmetry breaking, offering insights into chemotaxis and other cell biological processes.
Collapse
Affiliation(s)
- Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Felix Wong
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Bedri Abubaker-Sharif
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T. Matsubayashi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Nakamura
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nhung Thi Hong Nguyen
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Pablo A. Iglesias
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Kandiyoth FB, Michelot A. Reconstitution of actin-based cellular processes: Why encapsulation changes the rules. Eur J Cell Biol 2023; 102:151368. [PMID: 37922812 DOI: 10.1016/j.ejcb.2023.151368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
While in vitro reconstitution of cellular processes is progressing rapidly, the encapsulation of biomimetic systems to reproduce the cellular environment is a major challenge. Here we review the difficulties, using reconstitution of processes dependent on actin polymerization as an example. Some of the problems are purely technical, due to the need for engineering strategies to encapsulate concentrated solutions in micrometer-sized compartments. However, other significant issues arise from the reduction of experimental volumes, which alters the chemical evolution of these non-equilibrium systems. Important parameters to consider for successful reconstitutions are the amount of each component, their consumption and renewal rates to guarantee their continuous availability.
Collapse
Affiliation(s)
| | - Alphée Michelot
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
10
|
Lopes Dos Santos R, Malo M, Campillo C. Spatial Control of Arp2/3-Induced Actin Polymerization on Phase-Separated Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:3267-3274. [PMID: 37909673 DOI: 10.1021/acssynbio.3c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Deciphering the physical mechanisms underlying cell shape changes, while avoiding the cellular interior's complexity, involves the development of controlled basic biomimetic systems that imitate cell functions. In particular, the reconstruction of cytoskeletal dynamics on cell-sized giant unilamellar vesicles (GUVs) has allowed for the reconstituting of some cell-like processes in vitro. In fact, such a bottom-up strategy could be the basis for forming protocells able to reorganize or even move autonomously. However, reconstituting the subtle and controlled dynamics of the cytoskeleton-membrane interface in vitro remains an experimental challenge. Taking advantage of the lipid-induced segregation of an actin polymerization activator, we present a system that targets actin polymerization in specific domains of phase-separated GUVs. We observe actin networks localized on Lo, Ld, or on both types of domains and the actin-induced deformation or reorganization of these domains. These results suggest that the system we have developed here could pave the way for future experiments further detailing the interplay between actin dynamics and membrane heterogeneities.
Collapse
Affiliation(s)
- Rogério Lopes Dos Santos
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
11
|
Razavi S, Wong F, Abubaker-Sharif B, Matsubayashi HT, Nakamura H, Sandoval E, Robinson DN, Chen B, Liu J, Iglesias PA, Inoue T. Synthetic control of actin polymerization and symmetry breaking in active protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559060. [PMID: 37790449 PMCID: PMC10542490 DOI: 10.1101/2023.09.22.559060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Non-linear biomolecular interactions on the membranes drive membrane remodeling that underlies fundamental biological processes including chemotaxis, cytokinesis, and endocytosis. The multitude of biomolecules, the redundancy in their interactions, and the importance of spatiotemporal context in membrane organization hampers understanding the physical principles governing membrane mechanics. A minimal, in vitro system that models the functional interactions between molecular signaling and membrane remodeling, while remaining faithful to cellular physiology and geometry is powerful yet remains unachieved. Here, inspired by the biophysical processes underpinning chemotaxis, we reconstituted externally-controlled actin polymerization inside giant unilamellar vesicles, guiding self-organization on the membrane. We show that applying undirected external chemical inputs to this system results in directed actin polymerization and membrane deformation that are uncorrelated with upstream biochemical cues, indicating symmetry breaking. A biophysical model of the dynamics and mechanics of both actin polymerization and membrane shape suggests that inhomogeneous distributions of actin generate membrane shape deformations in a non-linear fashion, a prediction consistent with experimental measurements and subsequent local perturbations. The active protocellular system demonstrates the interplay between actin dynamics and membrane shape in a symmetry breaking context that is relevant to chemotaxis and a suite of other biological processes.
Collapse
Affiliation(s)
- Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Bedri Abubaker-Sharif
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T. Matsubayashi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Nakamura
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eduardo Sandoval
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pablo A. Iglesias
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
13
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Baldauf L, Frey F, Arribas Perez M, Idema T, Koenderink GH. Branched actin cortices reconstituted in vesicles sense membrane curvature. Biophys J 2023:S0006-3495(23)00124-8. [PMID: 36806830 DOI: 10.1016/j.bpj.2023.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.
Collapse
Affiliation(s)
- Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Marcos Arribas Perez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
15
|
Zhang Q, Wan M, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525393. [PMID: 36747622 PMCID: PMC9900769 DOI: 10.1101/2023.01.24.525393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella -containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector harbors a lipid-binding domain that specifically recognizes PI(3)P (phosphatidylinositol 3-phosphate) and localizes to endosomes when ectopically expressed. We show that MavH recruits host actin capping proteins (CP) and actin to the endosome via its CP interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates robust actin polymerization only in the presence of PI(3)P-containing liposomes and the recruitment of CP by MavH negatively regulates F-actin density at the membrane. Furthermore, in L. pneumophila -infected cells, MavH can be detected around the LCV at the very early stage of infection. Together, our results reveal a novel mechanism of membrane-dependent actin polymerization catalyzed by MavH that may play a role at the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Corresponding Author: , Telephone: 607-255-0783
| |
Collapse
|
16
|
van Buren L, Koenderink GH, Martinez-Torres C. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:120-135. [PMID: 36508359 PMCID: PMC9872171 DOI: 10.1021/acssynbio.2c00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Giant unilamellar vesicles (GUVs) are cell-sized aqueous compartments enclosed by a phospholipid bilayer. Due to their cell-mimicking properties, GUVs have become a widespread experimental tool in synthetic biology to study membrane properties and cellular processes. In stark contrast to the experimental progress, quantitative analysis of GUV microscopy images has received much less attention. Currently, most analysis is performed either manually or with custom-made scripts, which makes analysis time-consuming and results difficult to compare across studies. To make quantitative GUV analysis accessible and fast, we present DisGUVery, an open-source, versatile software that encapsulates multiple algorithms for automated detection and analysis of GUVs in microscopy images. With a performance analysis, we demonstrate that DisGUVery's three vesicle detection modules successfully identify GUVs in images obtained with a wide range of imaging sources, in various typical GUV experiments. Multiple predefined analysis modules allow the user to extract properties such as membrane fluorescence, vesicle shape, and internal fluorescence from large populations. A new membrane segmentation algorithm facilitates spatial fluorescence analysis of nonspherical vesicles. Altogether, DisGUVery provides an accessible tool to enable high-throughput automated analysis of GUVs, and thereby to promote quantitative data analysis in synthetic cell research.
Collapse
Affiliation(s)
- Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Cristina Martinez-Torres
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
17
|
Aufderhorst-Roberts A, Staykova M. Scratching beyond the surface - minimal actin assemblies as tools to elucidate mechanical reinforcement and shape change. Emerg Top Life Sci 2022; 6:ETLS20220052. [PMID: 36541184 PMCID: PMC9788373 DOI: 10.1042/etls20220052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The interaction between the actin cytoskeleton and the plasma membrane in eukaryotic cells is integral to a large number of functions such as shape change, mechanical reinforcement and contraction. These phenomena are driven by the architectural regulation of a thin actin network, directly beneath the membrane through interactions with a variety of binding proteins, membrane anchoring proteins and molecular motors. An increasingly common approach to understanding the mechanisms that drive these processes is to build model systems from reconstituted lipids, actin filaments and associated actin-binding proteins. Here we review recent progress in this field, with a particular emphasis on how the actin cytoskeleton provides mechanical reinforcement, drives shape change and induces contraction. Finally, we discuss potential future developments in the field, which would allow the extension of these techniques to more complex cellular processes.
Collapse
Affiliation(s)
| | - Margarita Staykova
- Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
18
|
Schwan C, Lang AE, Schlosser A, Fujita-Becker S, AlHaj A, Schröder RR, Faix J, Aktories K, Mannherz HG. Inhibition of Arp2/3 Complex after ADP-Ribosylation of Arp2 by Binary Clostridioides Toxins. Cells 2022; 11:cells11223661. [PMID: 36429089 PMCID: PMC9688287 DOI: 10.3390/cells11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Alexander E. Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center of Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | | | - Abdulatif AlHaj
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | - Rasmus R. Schröder
- Cryo-Electron Microscopy, BioQuant, University Hospital, 69120 Heidelberg, Germany
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
- Department of Anatomy and Molecular Embryology and of Cellular Physiology, Ruhr-University, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: ; Tel.: +49-234-3223164; Fax: +49-234-321447
| |
Collapse
|
19
|
Lopes dos Santos R, Campillo C. Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks. Biochem Soc Trans 2022; 50:1527-1539. [PMID: 36111807 PMCID: PMC9704537 DOI: 10.1042/bst20220900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 10/05/2023]
Abstract
Cell shape changes that are fuelled by the dynamics of the actomyosin cytoskeleton control cellular processes such as motility and division. However, the mechanisms of interplay between cell membranes and actomyosin are complicated to decipher in the complex environment of the cytoplasm. Using biomimetic systems offers an alternative approach to studying cell shape changes in assays with controlled biochemical composition. Biomimetic systems allow quantitative experiments that can help to build physical models describing the processes of cell shape changes. This article reviews works in which actin networks are reconstructed inside or outside cell-sized Giant Unilamellar Vesicles (GUVs), which are models of cell membranes. We show how various actin networks affect the shape and mechanics of GUVs and how some cell shape changes can be reproduced in vitro using these minimal systems.
Collapse
Affiliation(s)
- Rogério Lopes dos Santos
- LAMBE, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- LAMBE, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
20
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Mears JA, Ramachandran R. Drp1 and the cytoskeleton: mechanistic nexus in mitochondrial division. CURRENT OPINION IN PHYSIOLOGY 2022; 29:100574. [PMID: 36406887 PMCID: PMC9668076 DOI: 10.1016/j.cophys.2022.100574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamin-related protein 1 (Drp1), the master regulator of mitochondrial division (MD), interacts with the cytoskeletal elements, namely filamentous actin (F-actin), microtubules (MT), and septins that coincidentally converge at MD sites. However, the mechanistic contributions of these critical elements to, and their cooperativity in, MD remain poorly characterized. Emergent data indicate that the cytoskeleton plays combinatorial modulator, mediator, and effector roles in MD by 'priming' and 'channeling' Drp1 for mechanoenzymatic membrane remodeling. In this brief review, we will outline our current understanding of Drp1-cytoskeleton interactions, focusing on recent progress in the field and a plausible 'diffusion barrier' role for the cytoskeleton in MD.
Collapse
Affiliation(s)
- Jason A. Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
22
|
Nast-Kolb T, Bleicher P, Payr M, Bausch AR. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol Biol Cell 2022; 33:ar91. [PMID: 35830600 PMCID: PMC9582628 DOI: 10.1091/mbc.e21-11-0577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Actin bundles constitute important cytoskeleton structures and enable a scaffold for force transmission inside cells. Actin bundles are formed by proteins, with multiple F-actin binding domains cross-linking actin filaments to each other. Vasodilator-stimulated phosphoprotein (VASP) has mostly been reported as an actin elongator, but it has been shown to be a bundling protein as well and is found in bundled actin structures at filopodia and adhesion sites. Based on in vitro experiments, it remains unclear when and how VASP can act as an actin bundler or elongator. Here we demonstrate that VASP bound to membranes facilitates the formation of large actin bundles during polymerization. The alignment by polymerization requires the fluidity of the lipid bilayers. The mobility within the bilayer enables VASP to bind to filaments and capture and track growing barbed ends. VASP itself phase separates into a protein-enriched phase on the bilayer. This VASP-rich phase nucleates and accumulates at bundles during polymerization, which in turn leads to a reorganization of the underlying lipid bilayer. Our findings demonstrate that the nature of VASP localization is decisive for its function. The up-concentration based on VASP’s affinity to actin during polymerization enables it to simultaneously fulfill the function of an elongator and a bundler.
Collapse
Affiliation(s)
- T Nast-Kolb
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and
| | - P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - M Payr
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhoferstr. 1, 69117 Heidelberg, Germany
| | - A R Bausch
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| |
Collapse
|
23
|
Yan VT, Narayanan A, Wiegand T, Jülicher F, Grill SW. A condensate dynamic instability orchestrates actomyosin cortex activation. Nature 2022; 609:597-604. [PMID: 35978196 PMCID: PMC9477739 DOI: 10.1038/s41586-022-05084-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
Collapse
Affiliation(s)
- Victoria Tianjing Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Arjun Narayanan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Biotechnology Center, TU Dresden, Dresden, Germany. .,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
25
|
Ghosh S, Gutti S, Chaudhuri D. Pattern formation, localized and running pulsation on active spherical membranes. SOFT MATTER 2021; 17:10614-10627. [PMID: 34605510 DOI: 10.1039/d1sm00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Sashideep Gutti
- BITS Pilani Hyderabad Campus, Hyderabad 500078, Telengana, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
26
|
Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Shim J, Zhou C, Gong T, Iserlis DA, Linjawi HA, Wong M, Pan T, Tan C. Building protein networks in synthetic systems from the bottom-up. Biotechnol Adv 2021; 49:107753. [PMID: 33857631 PMCID: PMC9558565 DOI: 10.1016/j.biotechadv.2021.107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023]
Abstract
The recent development of synthetic biology has expanded the capability to design and construct protein networks outside of living cells from the bottom-up. The new capability has enabled us to assemble protein networks for the basic study of cellular pathways, expression of proteins outside cells, and building tissue materials. Furthermore, the integration of natural and synthetic protein networks has enabled new functions of synthetic or artificial cells. Here, we review the underlying technologies for assembling protein networks in liposomes, water-in-oil droplets, and biomaterials from the bottom-up. We cover the recent applications of protein networks in biological transduction pathways, energy self-supplying systems, cellular environmental sensors, and cell-free protein scaffolds. We also review new technologies for assembling protein networks, including multiprotein purification methods, high-throughput assay screen platforms, and controllable fusion of liposomes. Finally, we present existing challenges towards building protein networks that rival the complexity and dynamic response akin to natural systems. This review addresses the gap in our understanding of synthetic and natural protein networks. It presents a vision towards developing smart and resilient protein networks for various biomedical applications.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Ting Gong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Dasha Aleksandra Iserlis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Hamad Abdullah Linjawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Matthew Wong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America; Suzhou Institute for Advanced Research, University of Science and Technology, Suzhou, China.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
28
|
Wubshet NH, Bashirzadeh Y, Liu AP. Fascin-induced actin protrusions are suppressed by dendritic networks in giant unilamellar vesicles. Mol Biol Cell 2021; 32:1634-1640. [PMID: 34133215 PMCID: PMC8684724 DOI: 10.1091/mbc.e21-02-0080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The interactions between actin networks and cell membrane are immensely important for eukaryotic cell functions including cell shape changes, motility, polarity establishment, and adhesion. Actin-binding proteins are known to compete and cooperate using a finite amount of actin monomers to form distinct actin networks. How actin-bundling protein fascin and actin-branching protein Arp2/3 complex compete to remodel membranes is not entirely clear. To investigate fascin- and Arp2/3-mediated actin network remodeling, we applied a reconstitution approach encapsulating bundled and dendritic actin networks inside giant unilamellar vesicles (GUVs). Independently reconstituted, membrane-bound Arp2/3 nucleation forms an actin cortex in GUVs, whereas fascin mediates formation of actin bundles that protrude out of GUVs. Coencapsulating both fascin and Arp2/3 complex leads to polarized dendritic aggregates and significantly reduces membrane protrusions, irrespective of whether the dendritic network is membrane bound or not. However, reducing Arp2/3 complex while increasing fascin restores membrane protrusion. Such changes in network assembly and the subsequent interplay with membrane can be attributed to competition between fascin and Arp2/3 complex to utilize a finite pool of actin.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
29
|
Agarwal S, Klocke MA, Pungchai PE, Franco E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat Commun 2021; 12:3557. [PMID: 34117248 PMCID: PMC8196065 DOI: 10.1038/s41467-021-23850-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bottom-up synthetic biology aims to engineer artificial cells capable of responsive behaviors by using a minimal set of molecular components. An important challenge toward this goal is the development of programmable biomaterials that can provide active spatial organization in cell-sized compartments. Here, we demonstrate the dynamic self-assembly of nucleic acid (NA) nanotubes inside water-in-oil droplets. We develop methods to encapsulate and assemble different types of DNA nanotubes from programmable DNA monomers, and demonstrate temporal control of assembly via designed pathways of RNA production and degradation. We examine the dynamic response of encapsulated nanotube assembly and disassembly with the support of statistical analysis of droplet images. Our study provides a toolkit of methods and components to build increasingly complex and functional NA materials to mimic life-like functions in synthetic cells.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Melissa A Klocke
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Passa E Pungchai
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Allard A, Lopes Dos Santos R, Campillo C. Remodelling of membrane tubules by the actin cytoskeleton. Biol Cell 2021; 113:329-343. [PMID: 33826772 DOI: 10.1111/boc.202000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.
Collapse
Affiliation(s)
- Antoine Allard
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France.,Sorbonne Université, UPMC, Paris 06, Paris, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Clément Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| |
Collapse
|
31
|
Litschel T, Kelley CF, Holz D, Adeli Koudehi M, Vogel SK, Burbaum L, Mizuno N, Vavylonis D, Schwille P. Reconstitution of contractile actomyosin rings in vesicles. Nat Commun 2021; 12:2254. [PMID: 33859190 PMCID: PMC8050101 DOI: 10.1038/s41467-021-22422-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. Cytoskeletal networks support and direct cell shape and guide intercellular transport, but relatively little is understood about the self-organization of cytoskeletal components on the scale of an entire cell. Here, authors use an in vitro system and observe the assembly of different types of actin networks and the condensation of membrane-bound actin into single rings.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA, USA
| | | | - Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
32
|
Abstract
Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein-membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| |
Collapse
|
33
|
Morita M, Noda N. Membrane Shape Dynamics-Based Analysis of the Physical Properties of Giant Unilamellar Vesicles Prepared by Inverted Emulsion and Hydration Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2268-2275. [PMID: 33555886 DOI: 10.1021/acs.langmuir.0c02698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The giant unilamellar vesicle (GUV) is a basic model of the cell membrane that allows for the modulation and control of membrane shape dynamics, which play essential roles in the functions of living cell membranes. However, to properly use these artificial cell-like model systems, we need to understand their physical properties. GUV generation techniques are key technologies in the synthesis of artificial cell-like model systems. However, it is unclear whether GUVs produced by different techniques have the same physical properties. Here, we have investigated the physical properties of GUVs prepared by inverted emulsion and hydration techniques by examining the membrane shape deformation induced by external stimulation with a nonionic surfactant. We reveal differences in the spontaneous curvature of the membrane, the preferred differential area between the inner and outer leaflets of the membrane, and the edge tension of membrane pores between the GUVs prepared using the two distinct techniques.
Collapse
Affiliation(s)
- Masamune Morita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
34
|
Bleicher P, Nast-Kolb T, Sciortino A, de la Trobe YA, Pokrant T, Faix J, Bausch AR. Intra-bundle contractions enable extensile properties of active actin networks. Sci Rep 2021; 11:2677. [PMID: 33514794 PMCID: PMC7846802 DOI: 10.1038/s41598-021-81601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular cortex is a dynamic and contractile actomyosin network modulated by actin-binding proteins. We reconstituted a minimal cortex adhered to a model cell membrane mimicking two processes mediated by the motor protein myosin: contractility and high turnover of actin monomers. Myosin reorganized these networks by extensile intra‑bundle contractions leading to an altered growth mechanism. Hereby, stress within tethered bundles induced nicking of filaments followed by repair via incorporation of free monomers. This mechanism was able to break the symmetry of the previously disordered network resulting in the generation of extensile clusters, reminiscent of structures found within cells.
Collapse
Affiliation(s)
- P Bleicher
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| | - T Nast-Kolb
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - A Sciortino
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - Y A de la Trobe
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - T Pokrant
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - J Faix
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - A R Bausch
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
35
|
Franquelim HG, Dietz H, Schwille P. Reversible membrane deformations by straight DNA origami filaments. SOFT MATTER 2021; 17:276-287. [PMID: 32406895 DOI: 10.1039/d0sm00150c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane-active cytoskeletal elements, such as FtsZ, septin or actin, form filamentous polymers able to induce and stabilize curvature on cellular membranes. In order to emulate the characteristic dynamic self-assembly properties of cytoskeletal subunits in vitro, biomimetic synthetic scaffolds were here developed using DNA origami. In contrast to our earlier work with pre-curved scaffolds, we specifically assessed the potential of origami mimicking straight filaments, such as actin and microtubules, by origami presenting cholesteryl anchors for membrane binding and additional blunt end stacking interactions for controllable polymerization into linear filaments. By assessing the interaction of our DNA nanostructures with model membranes using fluorescence microscopy, we show that filaments can be formed, upon increasing MgCl2 in solution, for structures displaying blunt ends; and can subsequently depolymerize, by decreasing the concentration of MgCl2. Distinctive spike-like membrane protrusions were generated on giant unilamellar vesicles at high membrane-bound filament densities, and the presence of such deformations was reversible and shown to correlate with the MgCl2-triggered polymerization of DNA origami subunits into filamentous aggregates. In the end, our approach reveals the formation of membrane-bound filaments as a minimal requirement for membrane shaping by straight cytoskeletal-like objects.
Collapse
Affiliation(s)
| | - Hendrik Dietz
- Technical University of Munich, Garching Near Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried near Munich, Germany.
| |
Collapse
|
36
|
Abou-Ghali M, Kusters R, Körber S, Manzi J, Faix J, Sykes C, Plastino J. Capping protein is dispensable for polarized actin network growth and actin-based motility. J Biol Chem 2020; 295:15366-15375. [PMID: 32868296 DOI: 10.1074/jbc.ra120.015009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.
Collapse
Affiliation(s)
- Majdouline Abou-Ghali
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Remy Kusters
- Centre de Recherche Interdisciplinaire, Université de Paris, INSERM U1284, Paris, France
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - John Manzi
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Cécile Sykes
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France.
| |
Collapse
|
37
|
Jahnke K, Weiss M, Weber C, Platzman I, Göpfrich K, Spatz JP. Engineering Light-Responsive Contractile Actomyosin Networks with DNA Nanotechnology. ACTA ACUST UNITED AC 2020; 4:e2000102. [PMID: 32696544 DOI: 10.1002/adbi.202000102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
External control and precise manipulation is key for the bottom-up engineering of complex synthetic cells. Minimal actomyosin networks have been reconstituted into synthetic cells; however, their light-triggered symmetry breaking contraction has not yet been demonstrated. Here, light-activated directional contractility of a minimal synthetic actomyosin network inside microfluidic cell-sized compartments is engineered. Actin filaments, heavy-meromyosin-coated beads, and caged ATP are co-encapsulated into water-in-oil droplets. ATP is released upon illumination, leading to a myosin-generated force which results in a motion of the beads along the filaments and hence a contraction of the network. Symmetry breaking is achieved using DNA nanotechnology to establish a link between the network and the compartment periphery. It is demonstrated that the DNA-linked actin filaments contract to one side of the compartment forming actin asters and quantify the dynamics of this process. This work exemplifies that an engineering approach to bottom-up synthetic biology, combining biological and artificial elements, can circumvent challenges related to active multi-component systems and thereby greatly enrich the complexity of synthetic cellular systems.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Cornelia Weber
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany.,Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, D 69120, Germany
| |
Collapse
|
38
|
Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 2020; 477:2561-2580. [PMID: 32573649 DOI: 10.1042/bcj20200287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Collapse
|
39
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
40
|
Salzer E, Zoghi S, Kiss MG, Kage F, Rashkova C, Stahnke S, Haimel M, Platzer R, Caldera M, Ardy RC, Hoeger B, Block J, Medgyesi D, Sin C, Shahkarami S, Kain R, Ziaee V, Hammerl P, Bock C, Menche J, Dupré L, Huppa JB, Sixt M, Lomakin A, Rottner K, Binder CJ, Stradal TEB, Rezaei N, Boztug K. The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Sci Immunol 2020; 5:5/49/eabc3979. [PMID: 32646852 DOI: 10.1126/sciimmunol.abc3979] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1-/- mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity.
Collapse
Affiliation(s)
- Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Máté G Kiss
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Rashkova
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jana Block
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Celine Sin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christoph Bock
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexis Lomakin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Abstract
The cell-free molecular synthesis of biochemical systems is a rapidly growing field of research. Advances in the Human Genome Project, DNA synthesis, and other technologies have allowed the in vitro construction of biochemical systems, termed cell-free biology, to emerge as an exciting domain of bioengineering. Cell-free biology ranges from the molecular to the cell-population scales, using an ever-expanding variety of experimental platforms and toolboxes. In this review, we discuss the ongoing efforts undertaken in the three major classes of cell-free biology methodologies, namely protein-based, nucleic acids–based, and cell-free transcription–translation systems, and provide our perspectives on the current challenges as well as the major goals in each of the subfields.
Collapse
Affiliation(s)
- Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allen P. Liu
- Departments of Mechanical Engineering, Biomedical Engineering, Biophysics, and the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
42
|
Bleicher P, Sciortino A, Bausch AR. The dynamics of actin network turnover is self-organized by a growth-depletion feedback. Sci Rep 2020; 10:6215. [PMID: 32277095 PMCID: PMC7148320 DOI: 10.1038/s41598-020-62942-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The dynamics of actin networks is modulated by a machinery consisting of actin binding proteins that control the turnover of filaments in space and time. To study this complex orchestration, in vitro reconstitution approaches strive to project actin dynamics in ideal, minimal systems. To this extent we reconstitute a self-supplying, dense network of globally treadmilling filaments. In this system we analyze growth and intrinsic turnover by means of FRAP measurements and thereby demonstrate how the depletion of monomers and actin binding partners modulate the dynamics in active actin networks. The described effects occur only in dense networks, as single filament dynamics are unable to produce depletion effects to this extent. Furthermore, we demonstrate a synergistic relationship between the nucleators formin and Arp2/3 when branched networks and formin-induced networks are colocalized. As a result, the formin-enhanced filament turnover depletes cofilin at the surface and thus protects the dense, Arp2/3 polymerized network from debranching. Ultimately, these results may be key for understanding the maintenance of the two contradicting requirements of network stability and dynamics in cells.
Collapse
Affiliation(s)
- P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany
| | - A Sciortino
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany
| | - A R Bausch
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
43
|
Allard A, Bouzid M, Betz T, Simon C, Abou-Ghali M, Lemière J, Valentino F, Manzi J, Brochard-Wyart F, Guevorkian K, Plastino J, Lenz M, Campillo C, Sykes C. Actin modulates shape and mechanics of tubular membranes. SCIENCE ADVANCES 2020; 6:eaaz3050. [PMID: 32494637 PMCID: PMC7176416 DOI: 10.1126/sciadv.aaz3050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/21/2020] [Indexed: 05/22/2023]
Abstract
The actin cytoskeleton shapes cells and also organizes internal membranous compartments. In particular, it interacts with membranes for intracellular transport of material in mammalian cells, yeast, or plant cells. Tubular membrane intermediates, pulled along microtubule tracks, are formed during this process and destabilize into vesicles. While the role of actin in tubule destabilization through scission is suggested, literature also provides examples of actin-mediated stabilization of membranous structures. To directly address this apparent contradiction, we mimic the geometry of tubular intermediates with preformed membrane tubes. The growth of an actin sleeve at the tube surface is monitored spatiotemporally. Depending on network cohesiveness, actin is able to entirely stabilize or locally maintain membrane tubes under pulling. On a single tube, thicker portions correlate with the presence of actin. These structures relax over several minutes and may provide enough time and curvature geometries for other proteins to act on tube stability.
Collapse
Affiliation(s)
- A. Allard
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- LAMBE, Université Évry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Évry, France
| | - M. Bouzid
- LPTMS, CNRS, University of Paris-Sud, Universit Paris-Saclay, 91405 Orsay, France
| | - T. Betz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, Cells in Motion Cluster of Excellence, Münster University, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| | - C. Simon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - M. Abou-Ghali
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - J. Lemière
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - F. Valentino
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - J. Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - F. Brochard-Wyart
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - K. Guevorkian
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - J. Plastino
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - M. Lenz
- LPTMS, CNRS, University of Paris-Sud, Universit Paris-Saclay, 91405 Orsay, France
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris, PSL Research University, Université Paris Diderot, Sorbonne Université, Paris 75005, France
| | - C. Campillo
- LAMBE, Université Évry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Évry, France
- Corresponding author. (C.C.); (C.Sy.)
| | - C. Sykes
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Corresponding author. (C.C.); (C.Sy.)
| |
Collapse
|
44
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
45
|
Zhu M, Zernicka-Goetz M. Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives. Curr Opin Cell Biol 2019; 62:144-149. [PMID: 31869760 DOI: 10.1016/j.ceb.2019.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Cell polarization is critical for lineage segregation and morphogenesis during mammalian embryogenesis. However, the processes and mechanisms that establish cell polarity in the mammalian embryo are not well understood. Recent studies suggest that unique regulatory mechanisms are deployed by the mouse embryo to establish cell polarization. In this review, we discuss the current understanding of cell polarity establishment, focusing on the formation of the apical domain in the mouse embryo. We will also discuss outstanding questions and possible directions for future study.
Collapse
Affiliation(s)
- Meng Zhu
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
46
|
Abstract
The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here we investigate the contribution of myosin 1b to actin dynamics using sliding motility assays. We observe that sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end, while sliding on myosin II, although 5 times faster, has no effect. This work reveals a non-conventional myosin motor as another type of depolymerase and points to its singular interactions with the actin barbed end. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here authors use in vitro assays in which they observe that actin sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end.
Collapse
|
47
|
Bashirzadeh Y, Liu AP. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. SOFT MATTER 2019; 15:8425-8436. [PMID: 31621750 DOI: 10.1039/c9sm01669d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cytoskeleton of a cell controls all the aspects of cell shape changes and motility from its physiological functions for survival to reproduction to death. The structure and dynamics of the cytoskeletal components: actin, microtubules, intermediate filaments, and septins - recently regarded as the fourth member of the cytoskeleton family - are conserved during evolution. Such conserved and effective control over the mechanics of the cell makes the cytoskeletal components great candidates for in vitro reconstitution and bottom-up synthetic biology studies. Here, we review the recent efforts in reconstitution of the cytoskeleton in and on membrane-enclosed biomimetic systems and argue that co-reconstitution and synergistic interplay between cytoskeletal filaments might be indispensable for efficient mechanical functionality of active minimal cells. Further, mechanical equilibrium in adherent eukaryotic cells is achieved by the formation of integrin-based focal contacts with extracellular matrix (ECM) and the transmission of stresses generated by actomyosin contraction to ECM. Therefore, a minimal mimic of such balance of forces and quasi-static kinetics of the cell by bottom-up reconstitution requires a careful construction of contractile machineries and their link with adhesive contacts. In this review, in addition to cytoskeletal crosstalk, we provide a perspective on reconstruction of cell mechanical equilibrium by reconstitution of cortical actomyosin networks in lipid membrane vesicles adhered on compliant substrates and also discuss future perspectives of this active research area.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
48
|
Frank JR, Guven J, Kardar M, Shackleton H. Pinning of diffusional patterns by non-uniform curvature. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/127/48001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Division in synthetic cells. Emerg Top Life Sci 2019; 3:551-558. [PMID: 33523162 DOI: 10.1042/etls20190023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Cell division is one of the most fundamental processes of life, and so far the only known way of how living systems can come into existence at all. Consequently, its reconstitution in any artificial cell system that will have to be built from the bottom-up is a notoriously complex but an important task. In this short review, I discuss several approaches how to realize division of cell-like compartments, from simply relying on the physical principles of destabilization by growth, or applying external forces, to the design of self-assembling and self-organizing machineries that may autonomously accomplish this task in response to external or internal cues.
Collapse
|
50
|
Hürtgen D, Vogel SK, Schwille P. Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design. ACTA ACUST UNITED AC 2019; 3:e1800311. [PMID: 32648711 DOI: 10.1002/adbi.201800311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Indexed: 01/28/2023]
Abstract
Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work. Findings over the last decades in the field of in vitro reconstitutions of cytoskeletal and motor proteins have elucidated mechanistic details of these active protein systems. For example, a complex spatial and temporal interplay between the cytoskeleton and motor proteins is responsible for the translation of chemically bound energy into (directed) movement and force generation, which eventually governs the emergence of complex cellular functions. Understanding these mechanisms and the design principles of the cytoskeleton and motor proteins builds the basis for mimicking fundamental life processes. Here, a brief overview of actin, prokaryotic actin analogs, and motor proteins and their potential role in the design of a minimal cell from the bottom-up is provided.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (Synmikro), D-35043, Marburg, Germany
| | - Sven Kenjiro Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| |
Collapse
|