1
|
Wang R, Li F, Lin Y, Lu Z, Luo W, Xu Z, Zhu Z, Lu Y, Mao X, Li Y, Shen Z, Lu H, Chen Y, Xia L, Wang M, Ding L, Li G. piR-RCC Suppresses Renal Cell Carcinoma Progression by Facilitating YBX-1 Cytoplasm Localization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e14398. [PMID: 40411401 DOI: 10.1002/advs.202414398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Indexed: 05/26/2025]
Abstract
PIWI-interacting RNAs (piRNAs), a novel category of small non-coding RNAs, are widely expressed in eukaryotes and deregulated in several pathologies, including cancer. Little is known about their function and mechanism in renal cell carcinoma (RCC) progression. Herein, a down-regulated piRNA in RCC, termed piR-hsa-28489 (designated as piR-RCC), is identified to impede RCC progression both in vivo and in vitro. Mechanistically, piR-RCC directly interacts with Y-box binding protein 1 (YBX-1), thus impeding p-AKT-mediated YBX-1 phosphorylation and its subsequent nuclear translocation. Moreover, YBX-1 coordinates the transcription of ETS homologous factor (EHF) as a repressor factor. Consequently, piR-RCC enhances EHF expression, leading to the inhibition of RCC proliferation and metastasis. Based on these, a biomimetic nanoparticle platform is constructed to achieve RCC-specific targeted delivery of piR-RCC. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells and used to encapsulate and deliver piR-RCC plasmids to renal orthotopic implantation in mice, hindering RCC progression. This study illustrates piR-RCC/YBX-1/EHF signaling axis in RCC, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhinian Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haohua Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yining Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
2
|
Ren N, Chen H, Huang Y, Jin J, Zhang S, Yan R, Li M, Zheng L, Zou S, Li Y, Tan W, Lin D. MDM1 overexpression promotes p53 expression and cell apoptosis to enhance therapeutic sensitivity to chemoradiotherapy in patients with colorectal cancer. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0540. [PMID: 40200809 PMCID: PMC11976705 DOI: 10.20892/j.issn.2095-3941.2024.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Identifying biomarkers that predict the efficacy and prognosis of chemoradiotherapy is important for individualized clinical treatment. We previously reported that high murine double minute 1 (MDM1) expression in patients with rectal cancer is linked to a favorable chemoradiation response. In this study the role of MDM1 in the chemoradiotherapy response in colorectal cancer (CRC) patients was evaluated. METHODS Colony formation and cell proliferation assays as well as xenograft models were used to determine if MDM1 expression affects the sensitivity of CRC cells to chemoradiation. RNA sequencing revealed that MDM1 regulates tumor protein 53 (TP53) expression and apoptosis. A series of molecular biology experiments were performed to determine how MDM1 affects p53 expression. The effects of inhibitors targeting apoptosis on MDM1 knockout cells were evaluated. RESULTS Gene expression profiling revealed that MDM1 is a potential chemoradiotherapy sensitivity marker. The sensitivity of CRC cells to chemoradiation treatment decreased after MDM1 knockout and increased after MDM1 overexpression. MDM1 affected p53 expression, thereby regulating apoptosis. MDM1 overexpression limited YBX1 binding to TP53 promoter, regulated TP53 expression, and rendered CRC cells more sensitive to chemoradiation. In CRC cells with low MDM1 expression, a combination of apoptosis-inducing inhibitors and chemoradiation treatment restored sensitivity to cancer therapy. CONCLUSIONS The current study showed that MDM1 expression influences the sensitivity of CRC cells to chemoradiation by influencing p53 and apoptosis pathways, which is the basis for the underlying molecular mechanism, and serves as a possible predictive marker for chemoradiotherapy prognosis.
Collapse
Affiliation(s)
- Ningxin Ren
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongxia Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518100, China
| | - Shaosen Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ruoqing Yan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mengjie Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Linlin Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| |
Collapse
|
3
|
Dickmander RJ, Lenarcic EM, Sears JD, Hale AE, Moorman NJ. RNA-targeted proteomics identifies YBX1 as critical for efficient HCMV mRNA translation. Proc Natl Acad Sci U S A 2025; 122:e2421155122. [PMID: 40035757 PMCID: PMC11912382 DOI: 10.1073/pnas.2421155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Viruses have evolved unique strategies to circumvent host control of protein synthesis and enable viral protein synthesis in the face of the host response. Defining the factors that regulate viral messenger RNA (mRNA) translation is thus critical to understand how viruses replicate and cause disease. To identify factors that might regulate viral mRNA translation, we developed a technique for identifying proteins associated with a native RNA expressed from its endogenous promoter and genomic locus. This approach uses a guide RNA to target dCas13b fused to a biotin ligase domain to a specific RNA, where it covalently labels proteins in close proximity. Using this approach, we identified multiple proteins associated with transcripts encoding the human cytomegalovirus (HCMV) IE1 and IE2 proteins and found that several associated proteins positively or negatively regulate HCMV replication. We confirmed that one such protein, the cellular Y-box binding protein 1 (YBX1), binds to HCMV immediate early mRNAs and is required for efficient viral protein expression and virus replication. Ablating YBX1 expression reduced the association of HCMV immediate early mRNAs with polysomes, demonstrating a role for YBX1 as a positive regulator of viral RNA translation. These results provide a powerful tool for unraveling RNA-protein interactions that can be used in a wide range of biological processes and reveal a role for YBX1 as a critical regulator of HCMV immediate early gene expression.
Collapse
Affiliation(s)
- Rebekah J. Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Erik M. Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Andrew E. Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
4
|
Kshirsagar A, Ronan R, Rebelo AL, McMahon S, Pandit A, Schlosser G. Quantitative proteomics of regenerating and non-regenerating spinal cords in Xenopus. Dev Biol 2025; 519:65-78. [PMID: 39694174 DOI: 10.1016/j.ydbio.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Spinal cord injury in humans is a life-changing condition with no effective treatment. However, many non-mammalian vertebrates can fully regenerate their spinal cord after injury. Frogs such as Xenopus can regenerate the spinal cord at larval stages, but lose this capacity at metamorphosis. This makes them ideal models to elucidate molecular pathways underlying regenerative capacity by comparing responses to spinal cord injury in regenerative (R) and non-regenerative (NR) stages of the same species. Here we use quantitative proteomics with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) followed by Ingenuity Pathway Analysis (IPA) to identify functions and pathways that were differentially regulated after spinal cord injury between R and NR stages in Xenopus laevis. We find that many embryonic pathways of neuronal development are re-activated following SCI at the R but not at the NR stage. This is accompanied by the upregulation of regulatory proteins controlling transcription and translation at the R stage, but their downregulation at the NR stage. Conversely, lipid hydrolysis and uptake as well as mitochondrial oxidative phosphorylation is downregulated at the R, but upregulated at the NR stage. Taken together this suggests that dysregulation of lipid homeostasis and augmentation of oxidative stress play a key role in the loss of regenerative capacity of the spinal cord after metamorphosis. In identifying new factors regulating regenerative capacity in the vertebrate spinal cord, our findings suggest new potential therapeutic targets for promoting neural repair in the injured adult mammalian spinal cord.
Collapse
Affiliation(s)
- Aniket Kshirsagar
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Rachel Ronan
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Ana Lúcia Rebelo
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- Research Ireland Centre for Medical Devices (CÚRAM), University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland.
| | - Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland.
| |
Collapse
|
5
|
Zheng X, Kong W, Dai X, You C. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. ACS Chem Biol 2025; 20:529-536. [PMID: 39903676 DOI: 10.1021/acschembio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
8-Oxoguanine (8-oxoG) is not only a biomarker of oxidative DNA damage but also an epigenetic-like regulator in mammalian cells. The identification and characterization of 8-oxoG-binding proteins would be crucial for further understanding the biological consequences of 8-oxoG. Here, we identified human Y-box-binding protein 1 (YBX1) as a novel binding protein for 8-oxoG modification in DNA by using a quantitative proteomic approach. Moreover, we found that the deficiency of YBX1 can substantially decrease the cellular sensitivity to oxidative stress and facilitate the repair of 8-oxoG embedded in DNA. These findings provided new insight into the biological significance of the functional interplay between YBX1 and 8-oxoG modification in DNA.
Collapse
Affiliation(s)
- Xiaofang Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, PR China
| | - Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Liu Y, Feng P, Wei X, Xu H, Yu M, Zhang L, Hao W, Guo Z. PGC7 regulates maternal mRNA translation via AKT1-YBX1 interactions in mouse oocytes. Cell Commun Signal 2024; 22:604. [PMID: 39696520 DOI: 10.1186/s12964-024-01976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Timely and accurate translation of maternal mRNA is essential for oocyte maturation and early embryonic development. Previous studies have highlighted the importance of Primordial Germ cell 7 (PGC7) as a maternal factor in maintaining DNA methylation of maternally imprinted loci in zygotes. However, it is still unknown whether PGC7 is involved in the regulation of Maternal mRNA Translation. In this study, we have identified that PGC7-AKT1-YBX1 axis is involved in promoting the translation of maternal mRNAs. PGC7 not only sustains AKT1 activity by counteracting PP2A dephosphorylation and facilitating PDK1-AKT1 binding but also assists AKT1 in phosphorylating the translation inhibitor YBX1. In the absence of PGC7, despite increased PIK3CA expression and AKT1 phosphorylation, AKT1 is unable to phosphorylate YBX1. PGC7 facilitates the interaction between AKT1 and YBX1, enhancing YBX1-Serine 100 phosphorylation, which leads to YBX1 dissociation from eIF4E, thereby activating the translation of maternal Cyclin B1 and YAP1. The findings demonstrate the indispensability of PGC7 for translation activation in mammalian oocytes and provide a potential network regulated by PGC7 in early oogenesis.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Mengying Yu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, 710049, P.R. China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan, Zhengzhou, P.R. China
| | - Weijie Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
7
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
8
|
Hayden AN, Brandel KL, Pietryk EW, Merlau PR, Vijayakumar P, Leptich EJ, Gaytan ES, Williams MI, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans. PLoS Genet 2024; 20:e1011443. [PMID: 39423228 PMCID: PMC11524487 DOI: 10.1371/journal.pgen.1011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N. Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katie L. Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Edward W. Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul R. Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Priyadharshini Vijayakumar
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily J. Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth S. Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meredith I. Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie W. Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Rice University, Houston, Texas, United States of America
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Yang H, Wu B, Yang Q, Tan T, Shang D, Chen J, Cao C, Xu C. Urolithin C suppresses colorectal cancer progression via the AKT/mTOR pathway. J Nat Med 2024; 78:887-900. [PMID: 38849679 PMCID: PMC11364574 DOI: 10.1007/s11418-024-01821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Urolithin families are gut-microbial metabolites of ellagic acid (EA). Although urolithin A (UA) and urolithin B (UB) were reported to have antiproliferative activities in cancer cells, the role and related mechanisms of urolithin C (UC) in colorectal cancer (CRC) have not yet been clarified. In this study, we assess the antitumor activities of UC in vitro and in vivo and further explore the underlying mechanisms in CRC cell lines. We found that UC inhibited the proliferation and migration of CRC cells, induced apoptosis, and arrested the cell cycle at the G2/M phase in vitro, and UC inhibited tumor growth in a subcutaneous transplantation tumor model in vivo. Mechanically, UC blocked the activation of the AKT/mTOR signaling pathway by decreasing the expression of Y-box binding protein 1(YBX1). The AKT agonist SC79 could reverse the suppression of cell proliferation in UC-treated CRC cells. In conclusion, our research revealed that UC could prevent the progression of CRC by blocking AKT/mTOR signaling, suggesting that it may have potential therapeutic values.
Collapse
Affiliation(s)
- Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Binghuo Wu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qi Yang
- Biotherapy Centre, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian Tan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Shang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Jie Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Chenhui Cao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Centre, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, China.
| | - Chuan Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China.
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
10
|
Qin S, Liu Y, Zhang X, Huang P, Xia L, Leng W, Li D. lncRNA FGD5-AS1 is required for gastric cancer proliferation by inhibiting cell senescence and ROS production via stabilizing YBX1. J Exp Clin Cancer Res 2024; 43:188. [PMID: 38965605 PMCID: PMC11225384 DOI: 10.1186/s13046-024-03103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Yue Liu
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Xiangang Zhang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
11
|
Yao B, Xing M, Zeng X, Zhang M, Zheng Q, Wang Z, Peng B, Qu S, Li L, Jin Y, Li H, Yuan H, Zhao Q, Ma C. KMT2D-mediated H3K4me1 recruits YBX1 to facilitate triple-negative breast cancer progression through epigenetic activation of c-Myc. Clin Transl Med 2024; 14:e1753. [PMID: 38967349 PMCID: PMC11225074 DOI: 10.1002/ctm2.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical MedicineNanjing Medical UniversityTaizhouChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Que Zheng
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Bo Peng
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Lingyun Li
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Haitao Li
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| |
Collapse
|
12
|
Martin KR, Le HT, Abdelgawad A, Yang C, Lu G, Keffer JL, Zhang X, Zhuang Z, Asare-Okai PN, Chan CS, Batish M, Yu Y. Development of an efficient, effective, and economical technology for proteome analysis. CELL REPORTS METHODS 2024; 4:100796. [PMID: 38866007 PMCID: PMC11228373 DOI: 10.1016/j.crmeth.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
Collapse
Affiliation(s)
- Katherine R Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Canyuan Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guotao Lu
- CDS Analytical, LLC, Oxford, PA 19363, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Hayden AN, Brandel KL, Merlau PR, Vijayakumar P, Leptich EJ, Pietryk EW, Gaytan ES, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening of conserved RNA-binding proteins reveals CEY-1/YBX RNA-binding protein dysfunction leads to impairments in memory and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574402. [PMID: 38260399 PMCID: PMC10802296 DOI: 10.1101/2024.01.05.574402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Katie L Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Paul R Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | | | - Emily J Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Edward W Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth S Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, 77030
| | - Connie W Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Neuroscience, Rice University, Houston, TX 77005
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Baylor Genetics Laboratories, Houston, TX 77021
| | - Rachel N Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
14
|
Ge Y, Weng H, Sun Y, Wu M. Integrated single-cell and spatial transcriptomic analysis reveals YBX1 drives immune regulation in GBM progression. Heliyon 2024; 10:e29451. [PMID: 38628755 PMCID: PMC11019236 DOI: 10.1016/j.heliyon.2024.e29451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The RNA modification 5-methylcytosine (m5C) is widespread across various RNA types, significantly impacting RNA stability and translational efficiency. Accumulating evidence highlights its significant role within the tumorigenesis and progression of multiple malignancies. Nevertheless, the specific process through m5C is implicated in Glioblastoma (GBM) remains unclear. We conducted acomprehensive analysis of m5C expression distribution in single-cell GBM data. Our findings revealed elevated m5C scores in GBM single-cell data compared to the normal group. Additionally, multiple tumors exhibited significantly higher m5C scores than the normal group. Moreover, there was a positive correlation observed between the m5C score and inflammation score. m5C regulatory factor YBX1 exhibited a heightened expression in GBM, correlating closely with metastatic tendencies and an unfavorable prognosis across various cancer types. YBX1 has different biological functions in myeloid cells 1 and myeloid cells 2. YBX1 may act as immunosuppressive regulator by inhibiting the NF-κB pathway and inflammatory response in myeloid cells 1. YBX1 is essential for immune infiltrates, which creates a highly immunosuppressive tumor microenvironment by TNF signaling pathway in myeloid cells 2. YBX1+ neoplastic cells promote cell proliferation by NF-κB pathway. APOE mediates the interaction of YBX1+ myeloid cells and neoplastic cells by NF-κB.
Collapse
Affiliation(s)
- Yanshan Ge
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Huiting Weng
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
15
|
Fan S, Zhou L, Zhang W, Wang D, Tang D. Role of imbalanced gut microbiota in promoting CRC metastasis: from theory to clinical application. Cell Commun Signal 2024; 22:232. [PMID: 38637851 PMCID: PMC11025274 DOI: 10.1186/s12964-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, 400030, Chongqing, P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, 225000, Yangzhou, P. R. China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, 225000, Yangzhou, P. R. China.
| |
Collapse
|
16
|
Takashima S, Sun W, Otten ABC, Cai P, Peng SI, Tong E, Bui J, Mai M, Amarbayar O, Cheng B, Odango RJ, Li Z, Qu K, Sun BK. Alternative mRNA splicing events and regulators in epidermal differentiation. Cell Rep 2024; 43:113814. [PMID: 38402585 PMCID: PMC11293371 DOI: 10.1016/j.celrep.2024.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Alternative splicing (AS) of messenger RNAs occurs in ∼95% of multi-exon human genes and generates diverse RNA and protein isoforms. We investigated AS events associated with human epidermal differentiation, a process crucial for skin function. We identified 6,413 AS events, primarily involving cassette exons. We also predicted 34 RNA-binding proteins (RBPs) regulating epidermal AS, including 19 previously undescribed candidate regulators. From these results, we identified FUS as an RBP that regulates the balance between keratinocyte proliferation and differentiation. Additionally, we characterized the function of a cassette exon AS event in MAP3K7, which encodes a kinase involved in cell signaling. We found that a switch from the short to long isoform of MAP3K7, triggered during differentiation, enforces the demarcation between proliferating basal progenitors and overlying differentiated strata. Our findings indicate that AS occurs extensively in the human epidermis and has critical roles in skin homeostasis.
Collapse
Affiliation(s)
- Shota Takashima
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Auke B C Otten
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaohong Isaac Peng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Elton Tong
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Jolina Bui
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - McKenzie Mai
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Oyumergen Amarbayar
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Rowen Jane Odango
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Zongkai Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA.
| |
Collapse
|
17
|
Chetty VK, Ghanam J, Lichá K, Brenzel A, Reinhardt D, Thakur BK. Y-box binding protein 1 in small extracellular vesicles reduces mesenchymal stem cell differentiation to osteoblasts-implications for acute myeloid leukaemia. J Extracell Vesicles 2024; 13:e12417. [PMID: 38499475 PMCID: PMC10948369 DOI: 10.1002/jev2.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) released by acute myeloid leukaemia (AML) cells have been reported to influence the trilineage differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it remains elusive which biological cargo from AML-sEVs is responsible for this effect. In this study, sEVs were isolated from cell-conditioned media and blood plasma using size-exclusion chromatography and ultrafiltration and characterized according to MISEV2018 guidelines. Our results demonstrated that AML-sEVs increased the proliferation of BM-MSCs. Conversely, key proteins that are important for normal haematopoiesis were downregulated in BM-MSCs. Additionally, we revealed that AML-sEVs significantly reduced the differentiation of BM-MSCs to osteoblasts without affecting adipogenic or chondrogenic differentiation. Next, LC-MS/MS proteomics elucidated that various proteins, including Y-box-binding protein 1 (YBX1), were upregulated in both AML-sEVs and BM-MSCs treated with AML-sEVs. Clinically relevant, we found that YBX1 is considerably upregulated in most paediatric AML patient-derived sEVs compared to healthy controls. Interestingly, sEVs isolated after the downregulation of YBX1 in AML cells remarkably rescued the osteoblastic differentiation of BM-MSCs. Altogether, our data demonstrate for the first time that YBX1 containing AML-sEVs is one of the key players that disrupt the normal function of bone marrow microenvironment by reducing the osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
| | - Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius University in BratislavaBratislavaSlovakia
| | | | - Dirk Reinhardt
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Basant Kumar Thakur
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- European Liquid Biopsy SocietyHamburgGermany
| |
Collapse
|
18
|
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, Bruder D, Lindquist JA, Isermann B, Mertens PR. Comparative Analysis of Acute Kidney Injury Models and Related Fibrogenic Responses: Convergence on Methylation Patterns Regulated by Cold Shock Protein. Cells 2024; 13:367. [PMID: 38474331 PMCID: PMC10930537 DOI: 10.3390/cells13050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Fibrosis is characterized by excessive extracellular matrix formation in solid organs, disrupting tissue architecture and function. The Y-box binding protein-1 (YB-1) regulates fibrosis-related genes (e.g., Col1a1, Mmp2, and Tgfβ1) and contributes significantly to disease progression. This study aims to identify fibrogenic signatures and the underlying signaling pathways modulated by YB-1. METHODS Transcriptomic changes associated with matrix gene patterns in human chronic kidney diseases and murine acute injury models were analyzed with a focus on known YB-1 targets. Ybx1-knockout mouse strains (Ybx1ΔRosaERT+TX and Ybx1ΔLysM) were subjected to various kidney injury models. Fibrosis patterns were characterized by histopathological staining, transcriptome analysis, qRT-PCR, methylation analysis, zymography, and Western blotting. RESULTS Integrative transcriptomic analyses revealed that YB-1 is involved in several fibrogenic signatures related to the matrisome, the WNT, YAP/TAZ, and TGFß pathways, and regulates Klotho expression. Changes in the methylation status of the Klotho promoter by specific methyltransferases (DNMT) are linked to YB-1 expression, extending to other fibrogenic genes. Notably, kidney-resident cells play a significant role in YB-1-modulated fibrogenic signaling, whereas infiltrating myeloid immune cells have a minimal impact. CONCLUSIONS YB-1 emerges as a master regulator of fibrogenesis, guiding DNMT1 to fibrosis-related genes. This highlights YB-1 as a potential target for epigenetic therapies interfering in this process.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Fabian Gehringer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Sascha Kahlfuß
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
20
|
Xie Y, Wang Q, Yang Y, Near D, Wang H, Colon M, Nguyen C, Slattery C, Keepers B, Farber G, Wang TW, Lee SH, Shih YYI, Liu J, Qian L. Translational landscape of direct cardiac reprogramming reveals a role of Ybx1 in repressing cardiac fate acquisition. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1060-1077. [PMID: 38524149 PMCID: PMC10959502 DOI: 10.1038/s44161-023-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/06/2023] [Indexed: 03/26/2024]
Abstract
Direct reprogramming of fibroblasts into induced cardiomyocytes holds great promise for heart regeneration. Although considerable progress has been made in understanding the transcriptional and epigenetic mechanisms of iCM reprogramming, its translational regulation remains largely unexplored. Here, we characterized the translational landscape of iCM reprogramming through integrative ribosome and transcriptomic profiling, and found extensive translatome repatterning during this process. Loss of function screening for translational regulators uncovered Ybx1 as a critical barrier to iCM induction. In a mouse model of myocardial infarction, removing Ybx1 enhanced in vivo reprogramming, resulting in improved heart function and reduced scar size. Mechanistically, Ybx1 depletion de-repressed the translation of its direct targets SRF and Baf60c, both of which mediated the effect of Ybx1 depletion on iCM generation. Furthermore, removal of Ybx1 allowed single factor Tbx5-mediated iCM conversion. In summary, this study revealed a new layer of regulatory mechanism that controls cardiac reprogramming at the translational level.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Qiaozi Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - David Near
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Haofei Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Marazzano Colon
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Christopher Nguyen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Conor Slattery
- EIRNA Bio Ltd, BioInnovation Centre, Food Science and Technology Building, College Road, Cork, Ireland, T12 DP07
| | - Benjamin Keepers
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Gregory Farber
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Tzu-Wen Wang
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Sung-Ho Lee
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Yen-Yu Ian Shih
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology 2023; 21:359. [PMID: 37789395 PMCID: PMC10546722 DOI: 10.1186/s12951-023-02125-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tendon injuries have a high incidence and limited treatment options. Stem cell transplantation is essential for several medical conditions like tendon injuries. However, high local concentrations of reactive oxygen species (ROS) inhibit the activity of transplanted stem cells and hinder tendon repair. Cerium oxide nanoparticles (CeONPs) have emerged as antioxidant agents with reproducible reducibility. RESULTS In this study, we synthesized polyethylene glycol-packed CeONPs (PEG-CeONPs), which were loaded into the human umbilical cord mesenchymal stem cells (hUCMSCs) to counteract oxidative damage. H2O2 treatment was performed to evaluate the ROS scavenging ability of PEG-CeONPs in hUCMSCs. A rat model of patellar tendon defect was established to assess the effect of PEG-CeONPs-carrying hUCMSCs in vivo. The results showed that PEG-CeONPs exhibited excellent antioxidant activity both inside and outside the hUCMSCs. PEG-CeONPs protect hUCMSCs from senescence and apoptosis under excessive oxidative stress. Transplantation of hUCMSCs loaded with PEG-CeONPs reduced ROS levels in the tendon injury area and facilitated tendon healing. Mechanistically, NFκB activator tumor necrosis factor α and MAPK activator dehydrocrenatine, reversed the therapeutic effect of PEG-CeONPs in hUCMSCs, indicating that PEG-CeONPs act by inhibiting the NFκB and MAPK signaling pathways. CONCLUSIONS The carriage of the metal antioxidant oxidase PEG-CeONPs maintained the ability of hUCMSCs in the injured area, reduced the ROS levels in the microenvironment, and facilitated tendon regeneration. The data presented herein provide a novel therapeutic strategy for tendon healing and new insights into the use of stem cells for disease treatment.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Li H, Zhang D, Fu Q, Wang S, Wang Z, Zhang X, Chen X, Zhu X, An N, Chen Y, Zhou L, Lu D, Zhao N. YBX1 as an oncogenic factor in T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4874-4885. [PMID: 37339496 PMCID: PMC10469076 DOI: 10.1182/bloodadvances.2022009648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Y-box-binding protein 1 (YBX1), a member of the RNA-binding protein family, is a critical regulator of cell survival in various solid tumors and acute myeloid leukemia. However, the function of YBX1 in T-cell acute lymphoblastic leukemia (T-ALL) remains elusive. Here, we found that YBX1 was upregulated in patients with T-ALL, T-ALL cell lines, and NOTCH1-induced T-ALL mice. Furthermore, depletion of YBX1 dramatically reduced cell proliferation, induced cell apoptosis, and induced G0/G1 phase arrest in vitro. Moreover, YBX1 depletion significantly decreased the leukemia burden in the human T-ALL xenograft and NOTCH1-induced T-ALL mice model in vivo. Mechanistically, downregulation of YBX1 markedly inhibited the expression of total AKT serine/threonine kinase (AKT), p-AKT, total extracellular signal-regulated kinase (ERK), and p-ERK in T-ALL cells. Taken together, our results uncovered a critical role of YBX1 in the leukemogenesis of T-ALL, which may have great potential as a biomarker and therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danlan Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhongyuan Wang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Chen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Na An
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Desheng Lu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Zheng C, Wei Y, Zhang Q, Sun M, Wang Y, Hou J, Zhang P, Lv X, Su D, Jiang Y, Gumin J, Sahni N, Hu B, Wang W, Chen X, McGrail DJ, Zhang C, Huang S, Xu H, Chen J, Lang FF, Hu J, Chen Y. Multiomics analyses reveal DARS1-AS1/YBX1-controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. SCIENCE ADVANCES 2023; 9:eadf3984. [PMID: 37540752 PMCID: PMC10403220 DOI: 10.1126/sciadv.adf3984] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
24
|
Varma E, Burghaus J, Schwarzl T, Sekaran T, Gupta P, Górska AA, Hofmann C, Stroh C, Jürgensen L, Kamuf-Schenk V, Li X, Medert R, Leuschner F, Kmietczyk V, Freichel M, Katus HA, Hentze MW, Frey N, Völkers M. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res Cardiol 2023; 118:25. [PMID: 37378715 PMCID: PMC10307726 DOI: 10.1007/s00395-023-00996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.
Collapse
Affiliation(s)
- Eshita Varma
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Jana Burghaus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Thileepan Sekaran
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Parul Gupta
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Agnieszka A Górska
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Christoph Hofmann
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Claudia Stroh
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Lonny Jürgensen
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Verena Kamuf-Schenk
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Vivien Kmietczyk
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marc Freichel
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
- Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Mirko Völkers
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Fritzke M, Chen K, Tang W, Stinson S, Pham T, Wang Y, Xu L, Chen EY. The MYC-YBX1 Circuit in Maintaining Stem-like Vincristine-Resistant Cells in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2788. [PMID: 37345125 DOI: 10.3390/cancers15102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.
Collapse
Affiliation(s)
- Madeline Fritzke
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiliang Tang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Spencer Stinson
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thao Pham
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
- Astellas US Technologies, Universal Cells, Inc., Seattle, WA 98121, USA
| | - Yadong Wang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eleanor Y Chen
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Wang Y, Wei J, Feng L, Li O, Huang L, Zhou S, Xu Y, An K, Zhang Y, Chen R, He L, Wang Q, Wang H, Du Y, Liu R, Huang C, Zhang X, Yang YG, Kan Q, Tian X. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer 2023; 22:81. [PMID: 37161388 PMCID: PMC10169458 DOI: 10.1186/s12943-023-01780-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND RNA 5-methylcytosine (m5C) modification plays critical roles in the pathogenesis of various tumors. However, the function and molecular mechanism of RNA m5C modification in tumor drug resistance remain unclear. METHODS The correlation between RNA m5C methylation, m5C writer NOP2/Sun RNA methyltransferase family member 2 (NSUN2) and EGFR-TKIs resistance was determined in non-small-cell lung cancer (NSCLC) cell lines and patient samples. The effects of NSUN2 on EGFR-TKIs resistance were investigated by gain- and loss-of-function assays in vitro and in vivo. RNA-sequencing (RNA-seq), RNA bisulfite sequencing (RNA-BisSeq) and m5C methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) were performed to identify the target gene of NSUN2 involved in EGFR-TKIs resistance. Furthermore, the regulatory mechanism of NSUN2 modulating the target gene expression was investigated by functional rescue and puromycin incorporation assays. RESULTS RNA m5C hypermethylation and NSUN2 were significantly correlated with intrinsic resistance to EGFR-TKIs. Overexpression of NSUN2 resulted in gefitinib resistance and tumor recurrence, while genetic inhibition of NSUN2 led to tumor regression and overcame intrinsic resistance to gefitinib in vitro and in vivo. Integrated RNA-seq and m5C-BisSeq analyses identified quiescin sulfhydryl oxidase 1 (QSOX1) as a potential target of aberrant m5C modification. NSUN2 methylated QSOX1 coding sequence region, leading to enhanced QSOX1 translation through m5C reader Y-box binding protein 1 (YBX1). CONCLUSIONS Our study reveals a critical function of aberrant RNA m5C modification via the NSUN2-YBX1-QSOX1 axis in mediating intrinsic resistance to gefitinib in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Yueqin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyao Wei
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Luyao Feng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ouwen Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaoxuan Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjie Xu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ke An
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruiying Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lulu He
- Biobank of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruijuan Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Chunmin Huang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| | - Xin Tian
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Lin ZC, Hsu CY, Hwang E, Wang PW, Fang JY. The role of cytokines/chemokines in an aging skin immune microenvironment. Mech Ageing Dev 2023; 210:111761. [PMID: 36496171 DOI: 10.1016/j.mad.2022.111761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reversing or slowing down the skin aging process is one of the most intriguing areas of focus across the social and scientific communities around the world. While aging is considered a universal and inevitable natural process of physiological decline, the aging of the skin is the most apparent visual representation of an individual's health. Aging skin may be objectively defined by epidermal thinning; increased transepidermal water loss; decreased cutaneous barrier function; loss of elasticity, laxity, and textured appearance; and gradual deterioration of the epidermal immune environment. As the largest structure of the immune system and of the body as a whole, the skin is the most vulnerable barrier of defense against the environment. The skin reflects an individual's exposures, lifestyle habits, and overall health. From an immunological perspective, cytokines and chemokines act as a central character in the communicating of the immunity in skin aging. These cell signaling proteins serve as the intercellular communication link. This review aims to elucidate how cell-cell crosstalk through cytokines and chemokines, and the interplay between host cells, infiltrating immune cells, and exogenous factors contribute to the overall aging skin.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Li B, Wang J, Xu F, Wang Q, Liu Q, Wang G, Miao D, Sun Q. LncRNA RAD51-AS1 Regulates Human Bone Marrow Mesenchymal Stem Cells via Interaction with YBX1 to Ameliorate Osteoporosis. Stem Cell Rev Rep 2023; 19:170-187. [PMID: 35727431 DOI: 10.1007/s12015-022-10408-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/29/2023]
Abstract
Long noncoding RNA (lncRNA) is a new key regulatory molecule in the occurrence of osteoporosis, but its research is still in the primary stage. In order to study the role and mechanism of lncRNA in the occurrence of osteoporosis, we reannotated the GSE35956 datasets, compared and analyzed the differential expression profiles of lncRNAs between bone marrow mesenchymal stem cells (hBMSCs) from healthy and osteoporotic patients, and then screened a lncRNA RAD51-AS1 with low expression in hBMSCs from osteoporotic patients, and its role in the occurrence of osteoporosis has not been studied. We confirmed that the expression level of lncRNA RAD51-AS1 in hBMSCs from patients with osteoporosis was significantly lower than those from healthy donors. A nuclear cytoplasmic separation experiment and RNA fluorescence in situ hybridization showed that RAD51-AS1 was mainly located in the nucleus. RAD51-AS1 knockdown significantly inhibited the proliferation and osteogenic differentiation of hBMSCs and significantly increased their apoptosis, while RAD51-AS1 overexpression significantly promoted the proliferation, osteogenic differentiation, and ectopic bone formation of hBMSCs. Mechanistically, we found that RAD51-AS1 banded to YBX1 and then activated the TGF-β signal pathway by binding to Smad7 and Smurf2 mRNA to inhibit their translation and transcription up-regulated PCNA and SIVA1 by binding to their promoter regions. In conclusion, RAD51-AS1 promoted the proliferation and osteogenic differentiation of hBMSCs by binding YBX1, inhibiting the translation of Smad7 and Smurf2, and transcriptionally up-regulated PCNA and SIVA1.
Collapse
Affiliation(s)
- Beichen Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China
| | - Fangrong Xu
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Quan Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China.
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 211161, China.
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
29
|
Fan S, Xing J, Jiang Z, Zhang Z, Zhang H, Wang D, Tang D. Effects of Long Non-Coding RNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Cancers (Basel) 2022; 14:5813. [PMID: 36497293 PMCID: PMC9735521 DOI: 10.3390/cancers14235813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although an imbalanced gut microbiome is closely associated with colorectal cancer (CRC), how the gut microbiome affects CRC is not known. Long non-coding RNAs (lncRNAs) can affect important cellular functions such as cell division, proliferation, and apoptosis. The abnormal expression of lncRNAs can promote CRC cell growth, proliferation, and metastasis, mediating the effects of the gut microbiome on CRC. Generally, the gut microbiome regulates the lncRNAs expression, which subsequently impacts the host transcriptome to change the expression of downstream target molecules, ultimately resulting in the development and progression of CRC. We focused on the important role of the microbiome in CRC and their effects on CRC-related lncRNAs. We also reviewed the impact of the two main pathogenic bacteria, Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis, and metabolites of the gut microbiome, butyrate, and lipopolysaccharide, on lncRNAs. Finally, available therapies that target the gut microbiome and lncRNAs to prevent and treat CRC were proposed.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
30
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, Ma J, Li Y. CircIPO7 Promotes Nasopharyngeal Carcinoma Metastasis and Cisplatin Chemoresistance by Facilitating YBX1 Nuclear Localization. Clin Cancer Res 2022; 28:4521-4535. [PMID: 35917517 DOI: 10.1158/1078-0432.ccr-22-0991] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy effectively improves the distant-metastasis control in nasopharyngeal carcinoma (NPC), but approximately 30% of patients develop treatment failure due to chemoresistance. However, the underlying mechanisms remain poorly understood. EXPERIMENTAL DESIGN Circular RNA (circRNA) sequencing data were used to identify metastasis-specific circRNAs and the expression of circIPO7 was validated in NPC tissues as well as NPC cell lines by qRT-PCR. The whole transcriptional profile upon circIPO7 knockdown was applied to explore the biological function and regulatory mechanism, which were further confirmed by in vitro and in vivo metastasis/chemosensitivity assays. We also evaluated the value of circIPO7 expression in predicting NPC metastasis and cisplatin chemoresistance by analyzing a cohort of 183 NPC patients. RESULTS In this study, circIPO7, a novel circRNA, is found to be specifically overexpressed in NPC patients with distant metastasis. Knockdown of circIPO7 in NPC cells suppresses their metastasis and increases sensitivity to cisplatin treatment in vitro and in vivo. Mechanistically, circIPO7 binds to Y-box binding protein-1 (YBX1) protein in the cytoplasm and facilitates its phosphorylation at serine 102 (p-YBX1S102) by the kinase AKT, which further promotes YBX1 nuclear translocation and activates FGFR1, TNC, and NTRK1 transcription. Clinically, higher circIPO7 expression indicates unfavorable distant metastasis-free survival in NPC patients given cisplatin-based chemotherapy. CONCLUSIONS Altogether, this study identifies oncogenic circIPO7 as a prognostic marker after cisplatin-based chemotherapy and as a potential therapeutic target for overcoming metastasis and chemoresistance in NPC.
Collapse
Affiliation(s)
- Xiaohong Hong
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junyan Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Kailin Chen
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuheng Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yelin Liang
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Han Qiao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Na Liu
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
31
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
33
|
Chen S, Cao X, Ben S, Zhu L, Gu D, Wu Y, Li S, Yu Q. Genetic variants in RNA m 5 C modification genes associated with survival and chemotherapy efficacy of colorectal cancer. Cancer Med 2022; 12:1376-1388. [PMID: 35861369 PMCID: PMC9883553 DOI: 10.1002/cam4.5018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant digestive tract tumors with a poor prognosis. RNA 5-methylcytosine (m5 C) is an important posttranscriptional widespread modification involved in many biological processes. However, the association between genetic variations of m5 C modification genes and the prognostic value of colorectal cancer remains unclear. METHODS We investigated the association between candidate single nucleotide polymorphisms (SNPs) in 13 m5 C modification genes and colorectal cancer overall survival (OS) after chemotherapy by the Cox regression model. The combined effect of selected SNPs on OS, progression-free survival (PFS), and disease control rate (DCR) was assessed by the number of risk alleles (NRA). The GTEx and TCGA database were used to perform expression qualitative trait locus (eQTL) analysis. RESULTS We identified that two SNPs in YBX1 were associated with OS after chemotherapy (HR = 1.43, p = 0.001 for rs10890208; HR = 1.36, p = 0.025 for rs3862218). A striking dose-response effect between NRA and OS after chemotherapy was found (ptrend = 0.002). The DCR of patients receiving oxaliplatin chemotherapy in the 3-4 NRA group was markedly reduced in comparison to that in the 0-2 NRA group (OR = 1.49, p = 0.036). Moreover, YBX1 mRNA expression was significantly overexpressed in tumor tissues (p < 0.05) in the TCGA database, and eQTL analysis demonstrated that the two SNPs were associated with YBX1 (p = 0.003 for rs10890208 and p = 0.024 for rs3862218). CONCLUSION Our study indicates that genetic variants in m5 C modification genes may mediate changes in YBX1 mRNA levels and affect the chemotherapeutic efficacy of colorectal cancer patients.
Collapse
Affiliation(s)
- Silu Chen
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Xiangming Cao
- Department of OncologyThe Affiliated Jiangyin Hospital of Southeast University Medical CollegeJiangyinChina
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Lingjun Zhu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dongying Gu
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yuan Wu
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - Qiang Yu
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversityJiangsuChina
| |
Collapse
|
34
|
Lu X, Xu Q, Tong Y, Zhang Z, Dun G, Feng Y, Tang J, Han D, Mao Y, Deng L, He X, Li Q, Xiang Y, Wang F, Zeng D, Tang B, Mao X. Long non-coding RNA EVADR induced by Fusobacterium nucleatum infection promotes colorectal cancer metastasis. Cell Rep 2022; 40:111127. [PMID: 35858553 DOI: 10.1016/j.celrep.2022.111127] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022] Open
Abstract
Both Fusobacterium nucleatum (F. nucleatum) and long non-coding RNA (lncRNA) EVADR are associated with colorectal cancer (CRC), but their relationship with CRC metastasis and the mechanisms by which EVADR promotes CRC metastasis are poorly understood. Here, we report that F. nucleatum promotes colorectal cancer cell metastasis to the liver and lung and that it can be detected in CRC-metastasis colonization in mouse models. Furthermore, F. nucleatum upregulates the expression of EVADR, which can increase the metastatic ability of CRC cells in vivo and in vitro. Mechanistically, elevated EVADR serves as a modular scaffold for the Y-box binding protein 1 (YBX1) to directly enhance the translation of epithelial-mesenchymal transition (EMT)-related factors, such as Snail, Slug, and Zeb1. These findings suggest that EVADR induced by F. nucleatum promotes colorectal cancer metastasis through YBX1-dependent translation. The EVADR-YBX1 axis may be useful for the prevention and treatment of patients with F. nucleatum-associated CRC metastasis.
Collapse
Affiliation(s)
- Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiaolin Xu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yanan Tong
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhujun Zhang
- Department of Hospital Infection Control, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guodong Dun
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuyang Feng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Dan Han
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yilan Mao
- Class of 2021 Undergraduate, Nursing College of Chongqing Medical University, Chongqing 400016, China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoyi He
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Xiang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - FengChao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dongzhu Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Bin Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
35
|
Niu ZS, Wang WH. Circular RNAs in hepatocellular carcinoma: Recent advances. World J Gastrointest Oncol 2022; 14:1067-1085. [PMID: 35949213 PMCID: PMC9244981 DOI: 10.4251/wjgo.v14.i6.1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have covalently closed loop structures at both ends, exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict the prognosis of HCC. Therefore, circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights for the early diagnosis and targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
36
|
Wang JZ, Zhu H, You P, Liu H, Wang WK, Fan X, Yang Y, Xu K, Zhu Y, Li Q, Wu P, Peng C, Wong CC, Li K, Shi Y, Zhang N, Wang X, Zeng R, Huang Y, Yang L, Wang Z, Hui J. Up-regulated YB-1 protein promotes glioblastoma growth through an YB-1/CCT4/mLST8/mTOR pathway. J Clin Invest 2022; 132:146536. [PMID: 35239512 PMCID: PMC9012288 DOI: 10.1172/jci146536] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Y-box binding protein 1 (YB-1) is a multi-functional RNA binding protein involved in virtually each step of RNA metabolism. However, the functions and mechanisms of YB-1 in one of the most aggressive cancers, glioblastoma, are not well understood. In this study, we identified that YB-1 protein was markedly overexpressed in glioblastoma and acted as a critical activator of both mTORC1 and mTORC2 signaling. Mechanistically, YB-1 bound the 5' untranslated region (UTR) of the CCT4 mRNA to promote the translation of CCT4, a component of CCT chaperone complex, that in turn activated the mTOR signal pathway by promoting mLST8 folding. In addition, YB-1 autoregulated its own translation by binding to its 5' UTR, leading to sustained activation of mTOR signaling. In glioblastoma patients, the protein level of YB-1 positively correlated with CCT4 and mLST8 expression as well as activated mTOR signaling. Importantly, the administration of RNA decoys specifically targeting YB-1 in a mouse xenograft model resulted in slower tumor growth and better survival. Taken together, these findings uncover a disrupted proteostasis pathway involving YB-1/CCT4/mLST8/mTOR axis in promoting glioblastoma growth, suggesting that YB-1 is a potential therapeutic target for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jin-Zhu Wang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pu You
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China
| | - Hui Liu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Kang Wang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fan
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Yang
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Keren Xu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Fudan University, Shanghai, China
| | - Qunyi Li
- Department of Pharmacy, Fudan University, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Catherine Cl Wong
- Center for Precision Medicine Multi-Omics Research, Peking University, Beijing, China
| | - Kaicheng Li
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China
| | - Yufeng Shi
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Nu Zhang
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiuxing Wang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Liusong Yang
- Department of Neurosurgery, Fudan University, Shanghai, China
| | - Zefeng Wang
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Hui
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Feng X, Zhang L, Feng W, Zhang C, Jin T, Li J, Guo J. miR-221 promotes keratinocyte proliferation and migration by targeting SOCS7 and is regulated by YB-1. J Cell Mol Med 2022; 26:2299-2311. [PMID: 35201663 PMCID: PMC8995440 DOI: 10.1111/jcmm.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Proliferation and migration of keratinocytes are vital processes for the successful epithelization specifically after wounding. MiR‐221 has been identified to play a potential role in promoting wound regeneration by inducing blood vessel formation. However, little is known about the role of miR‐221 in the keratinocyte proliferation and migration during wound healing. An in vivo mice wound‐healing model was generated; the expression levels of miR‐221 were assessed by qRT‐PCR and fluorescence in situ hybridization. Initially, we found that miR‐221 was upregulated in the proliferative phase of wound healing. Further, in an in vivo wound‐healing mice model, targeted delivery of miR‐221 mimics accelerated wound healing. Contrastingly, inhibition of miR‐221 delayed healing. Additionally, we observed that overexpression of miR‐221 promoted cell proliferation and migration, while inhibition of miR‐221 had the opposite effects. Moreover, we identified SOCS7 as a direct target of miR‐221 in keratinocytes and overexpression of SOCS7 reversed the effects of miR‐221 in HaCaT keratinocytes. Finally, we identified that YB‐1 regulates the expression of miR‐221 in HaCaT keratinocytes. Overall, our experiments suggest that miR‐221 is regulated by YB‐1 in HaCaT keratinocytes and acts on SOCS7, thereby playing an important role in HaCaT keratinocyte proliferation and migration during wound healing.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lei Zhang
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wei Feng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ce Zhang
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tingting Jin
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jingyu Li
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jincai Guo
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
38
|
Wu R, Cao S, Li F, Feng S, Shu G, Wang L, Gao P, Zhu X, Zhu C, Wang S, Jiang Q. RNA-binding protein YBX1 promotes brown adipogenesis and thermogenesis via PINK1/PRKN-mediated mitophagy. FASEB J 2022; 36:e22219. [PMID: 35195911 DOI: 10.1096/fj.202101810rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Promoting the thermogenic function of brown adipose tissue (BAT) is a promising strategy to combat obesity and metabolic disorders. While much is known about the transcriptional regulation of BAT activation, however, the underlying mechanism of post-transcriptional control by RNA binding proteins remains largely unknown. Here, we found that RNA binding protein Y-box binding protein 1 (YBX1) expression was abundant in BAT and induced by cold exposure and a β-adrenergic agonist in mice. Loss-of-function experiments showed that YBX1 deficiency inhibited mouse primary brown adipocyte differentiation and thermogenic function. Further study showed that YBX1 positively regulates thermogenesis through enhancing mitophagy. Mechanistically, RNA immunoprecipitation identified that YBX1 directly targeted the transcripts of PTEN-induced kinase 1 (Pink1) and parkin RBR E3 ubiquitin-protein ligase (Prkn), two key regulators of mitophagy. RNA decay assay proved that loss of YBX1 decreased mRNA stability of Pink1 and Prkn, leading to reduced protein expression, thereby alleviating mitophagy and inhibiting thermogenic program. Importantly, in vivo experiments demonstrated that YBX1 overexpression in BAT promoted thermogenesis and mitophagy in mice. Collectively, our results reveal novel insight into the molecular mechanism of YBX1 in post-transcriptional regulation of PINK1/PRKN-mediated mitophagy and highlight the critical role of YBX1 in brown adipogenesis and thermogenesis.
Collapse
Affiliation(s)
- Ruifan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shengchun Feng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Mai H, Xie H, Luo M, Hou J, Chen J, Hou J, Jiang DK. Implications of Stemness Features in 1059 Hepatocellular Carcinoma Patients from Five Cohorts: Prognosis, Treatment Response, and Identification of Potential Compounds. Cancers (Basel) 2022; 14:563. [PMID: 35158838 PMCID: PMC8833508 DOI: 10.3390/cancers14030563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer stemness has been reported to drive hepatocellular carcinoma (HCC) tumorigenesis and treatment resistance. In this study, five HCC cohorts with 1059 patients were collected to calculate transcriptional stemness indexes (mRNAsi) by the one-class logistic regression machine learning algorithm. In the TCGA-LIHC cohort, we found mRNAsi was an independent prognostic factor, and 626 mRNAsi-related genes were identified by Spearman correlation analysis. The HCC stemness risk model (HSRM) was trained in the TCGA-LIHC cohort and significantly discriminated overall survival in four independent cohorts. HSRM was also significantly associated with transarterial chemoembolization treatment response and rapid tumor growth in HCC patients. Consensus clustering was conducted based on mRNAsi-related genes to divide 1059 patients into two stemness subtypes. On gene set variation analysis, samples of subtype I were found enriched with pathways such as DNA replication and cell cycle, while several liver-specific metabolic pathways were inhibited in these samples. Somatic mutation analysis revealed more frequent mutations of TP53 and RB1 in the subtype I samples. In silico analysis suggested topoisomerase, cyclin-dependent kinase, and histone deacetylase as potential targets to inhibit HCC stemness. In vitro assay showed two predicted compounds, Aminopurvalanol-a and NCH-51, effectively suppressed oncosphere formation and impaired viability of HCC cell lines, which may shed new light on HCC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.M.); (H.X.); (M.L.); (J.H.); (J.C.)
| | - De-ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.M.); (H.X.); (M.L.); (J.H.); (J.C.)
| |
Collapse
|
40
|
Avolio R, Inglés-Ferrándiz M, Ciocia A, Coll O, Bonnin S, Guitart T, Ribó A, Gebauer F. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1. Cell Rep 2022; 38:110211. [PMID: 35021076 DOI: 10.1016/j.celrep.2021.110211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.
Collapse
Affiliation(s)
- Rosario Avolio
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Marta Inglés-Ferrándiz
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Annagiulia Ciocia
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Olga Coll
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sarah Bonnin
- Bioinformatics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Anna Ribó
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
41
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
42
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
43
|
Shen J, She W, Zhang F, Guo J, Jia R. YBX1 Promotes the Inclusion of RUNX2 Alternative Exon 5 in Dental Pulp Stem Cells. Int J Stem Cells 2021; 15:301-310. [PMID: 34965997 PMCID: PMC9396021 DOI: 10.15283/ijsc21035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives RUNX2 plays an essential role during the odontoblast differentiation of dental pulp stem cells (DPSCs). RUNX2 Exon 5 is an alternative exon and essential for RUNX2 transcriptional activity. This study aimed to investigate the regulatory mechanisms of RUNX2 exon 5 alternative splicing in human DPSCs. Methods and Results The regulatory motifs of RUNX2 exon 5 were analyzed using the online SpliceAid program. The alternative splicing of RUNX2 exon 5 in DPSCs during mineralization-induced differentiation was analyzed by RT-PCR. To explore the effect of splicing factor YBX1 on exon 5 alternative splicing, gaining or losing function of YBX1 was performed by transfection of YBX1 overexpression plasmid or anti-YBX1 siRNA in DPSCs. Human RUNX2 exon 5 is evolutionarily conserved and alternatively spliced in DPSCs. There are three potential YBX1 binding motifs in RUNX2 exon 5. The inclusion of RUNX2 exon 5 and YBX1 expression level increased significantly during mineralization- induced differentiation in DPSCs. Overexpression of YBX1 significantly increased the inclusion of RUNX2 exon 5 in DPSCs. In contrast, silence of YBX1 significantly reduced the inclusion of exon 5 and the corresponding RUNX2 protein expression level. Knockdown of YBX1 reduced the expression of alkaline phosphatase (ALP) and osteocalcin (OC) and the mineralization ability of DPSCs, while overexpression of YBX1 increased the expression of ALP and OC and the mineralization ability of DPSCs. Conclusions Human RUNX2 exon 5 is conserved evolutionarily and alternatively spliced in DPSCs. Splicing factor YBX1 promotes the inclusion of RUNX2 exon 5 and improves the mineralization ability of DPSCs.
Collapse
Affiliation(s)
- Jiaoxiang Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Wenting She
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fengxia Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Chen Y, Zhao Y, Yin Y, Jia X, Mao L. Mechanism of cargo sorting into small extracellular vesicles. Bioengineered 2021; 12:8186-8201. [PMID: 34661500 PMCID: PMC8806638 DOI: 10.1080/21655979.2021.1977767] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are special membranous structures released by almost every cell type that carry and protect some biomolecules from being degraded. They transport important signaling molecules involved in cell communication, migration, and numerous physiological processes. EVs can be categorized into two main types according to their size: i) small extracellular vesicles (sEVs), such as exosomes (30-150 nm), released from the fusion of multivesicular bodies (MVBs) with the plasma membrane, and ii) large EVs, such as microvesicles (100-1000 nm). These are no longer considered a waste product of cells, but regulators of intercellular communication, as they can transport specific repertoires of cargos, such as proteins, lipids, and nucleic acids to receptor cells to achieve cell-to-cell communication. This indicates the existence of different mechanisms, which controls the cargos sorting into EVs. This review mainly gives a description about the biological roles of the cargo and the sorting mechanisms of sEVs, especially exosomes.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxue Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiqian Yin
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaonan Jia
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Bernhardt A, Häberer S, Xu J, Damerau H, Steffen J, Reichardt C, Wolters K, Steffen H, Isermann B, Borucki K, Artelt N, Endlich N, Kozyraki R, Brandt S, Lindquist JA, Mertens PR. High salt diet-induced proximal tubular phenotypic changes and sodium-glucose cotransporter-2 expression are coordinated by cold shock Y-box binding protein-1. FASEB J 2021; 35:e21912. [PMID: 34533842 DOI: 10.1096/fj.202100667rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
High salt diet (HSD) is a hallmark of blood pressure elevations, weight gain and diabetes onset in the metabolic syndrome. In kidney, compensatory mechanisms are activated to balance salt turnover and maintain homeostasis. Data on the long-term effects of HSD with respect to tubular cell functions and kidney architecture that exclude confounding indirect blood pressure effects are scarce. Additionally we focus on cold shock Y-box binding protein-1 as a tubular cell protective factor. A HSD model (4% NaCl in chow; 1% NaCl in water) was compared to normal salt diet (NSD, standard chow) over 16 months using wild type mice and an inducible conditional whole body knockout for cold shock Y-box binding protein-1 (BL6J/N, Ybx1). HSD induced no difference in blood pressure over 16 months, comparing NSD/HSD and Ybx1 wild type/knockout. Nevertheless, marked phenotypic changes were detected. Glucosuria and subnephrotic albuminuria ensued in wild type animals under HSD, which subsided in Ybx1-deficient animals. At the same time megalin receptors were upregulated. The sodium-glucose cotransporter-2 (SGLT2) was completely downregulated in wild type HSD animals that developed glucosuria. In Ybx1 knockouts, expression of AQP1 and SGLT2 was maintained under HSD; proximal tubular widening and glomerular tubularization developed. Concurrently, amino aciduria of neutral and hydrophobic amino acids was seen. In vitro translation confirmed that YB-1 translationally represses Sglt2 transcripts. Our data reveal profound effects of HSD primarily within glomeruli and proximal tubular segments. YB-1 is regulated by HSD and orchestrates HSD-dependent changes; notably, sets reabsorption thresholds for amino acids, proteins and glucose.
Collapse
Affiliation(s)
- Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - JingJing Xu
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hannah Damerau
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nadine Artelt
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,NIPOKA GmbH, Greifswald, Germany
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,NIPOKA GmbH, Greifswald, Germany
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, INSERM, UMRS-1138, Université de Paris, Paris, France
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
46
|
YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia 2021; 36:426-437. [PMID: 34465866 PMCID: PMC8807392 DOI: 10.1038/s41375-021-01393-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2-mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression.
Collapse
|
47
|
Che X, Liu M, Li D, Li Z, Guo J, Jia R. RAN and YBX1 are required for cell proliferation and IL-4 expression and linked to poor prognosis in oral squamous cell carcinoma. Exp Cell Res 2021; 406:112767. [PMID: 34364882 DOI: 10.1016/j.yexcr.2021.112767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the world, with a high mortality rate. RAN is a member of the Ras GTPase family and is overexpressed in a range of cancers, however, the relationship between RAN and OSCC is rarely reported. In this study, we found that RAN is overexpressed in OSCC tissues. RAN inhibition retarded OSCC cell proliferation and led to apoptosis and cell cycle arrest. Knockdown of RAN inhibited tumor growth in vivo. Strikingly, we found that RAN and oncogene Y-box binding protein-1 (YBX1) are positively associated with the immune infiltrates of CD4+ Th2 cells in multiple types of cancer, and can promote IL-4 expression. IL-4 treatment can partially rescue RAN knockdown-induced cell apoptosis in OSCC cells. Moreover, overexpression of RAN could rescue cell growth inhibition caused by knockdown of YBX1. Furthermore, patients with low expression of both RAN and YBX1 had better overall survival than others. Collectively, these findings indicate that RAN is a target of YBX1. RAN and YBX1 are required for cell proliferation and IL-4 expression. RAN and YBX1 are co-expressed and can serve as potential co-biomarkers for poor prognosis in OSCC.
Collapse
Affiliation(s)
- Xiaoxuan Che
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Ziwei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
48
|
Long non-coding RNA MIR200CHG promotes breast cancer proliferation, invasion, and drug resistance by interacting with and stabilizing YB-1. NPJ Breast Cancer 2021; 7:94. [PMID: 34272387 PMCID: PMC8285504 DOI: 10.1038/s41523-021-00293-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have been identified as key regulators of tumorigenesis and development. We aim to explore the biological functions and molecular mechanisms of lncRNA MIR200CHG in breast cancer. We found that MIR200CHG is highly expressed in breast cancer tissues and is related to the tumor size and histopathological grade. In vitro and in vivo experiments confirmed that MIR200CHG can promote breast cancer proliferation, invasion, and drug resistance. MIR200CHG directly binds to the transcription factor Y-box binding protein-1 (YB-1), and inhibits its ubiquitination and degradation. MIR200CHG regulates YB-1 phosphorylation at serine 102, thereby affecting the expression of genes related to tumor cell proliferation, apoptosis, invasion, and drug resistance. Additionally, MIR200CHG partially affects the expression of miR-200c/141-3p encoded by its intron region. Therefore, MIR200CHG can promote the proliferation, invasion, and drug resistance of breast cancer by interacting with and stabilizing YB-1, and has the potential to become a target for breast cancer treatment.
Collapse
|
49
|
Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, Yin R, Wang Q, Zhang T, Wang P, Hu J, Cheng Y, Gao Z, Wang J, Chang J, Cui M, Gao K, Chai J, Liu W, Guo C, Li S, Liu L, Zhou F, Chen J, Zhang H. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood 2021; 138:71-85. [PMID: 33763698 PMCID: PMC8667054 DOI: 10.1182/blood.2020009676] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) are critical regulators of transcription and translation that are often dysregulated in cancer. Although RBPs are increasingly recognized as being important for normal hematopoiesis and for hematologic malignancies as oncogenes or tumor suppressors, RBPs that are essential for the maintenance and survival of leukemia remain elusive. Here we show that YBX1 is specifically required for maintaining myeloid leukemia cell survival in an N6-methyladenosine (m6A)-dependent manner. We found that expression of YBX1 is significantly upregulated in myeloid leukemia cells, and deletion of YBX1 dramatically induces apoptosis and promotes differentiation coupled with reduced proliferation and impaired leukemic capacity of primary human and mouse acute myeloid leukemia cells in vitro and in vivo. Loss of YBX1 has no obvious effect on normal hematopoiesis. Mechanistically, YBX1 interacts with insulin-like growth factor 2 messenger RNA (mRNA)-binding proteins (IGF2BPs) and stabilizes m6A-tagged RNA. Moreover, YBX1 deficiency dysregulates the expression of apoptosis-related genes and promotes mRNA decay of MYC and BCL2 in an m6A-dependent manner, which contributes to the defective survival that results from deletion of YBX1. Thus, our findings have uncovered a selective and critical role of YBX1 in maintaining myeloid leukemia survival, which might provide a rationale for the therapeutic targeting of YBX1 in myeloid leukemia.
Collapse
Affiliation(s)
- Mengdie Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueqin Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Guoqiang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yashu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yicun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Rong Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tong Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peipei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jin Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ying Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuying Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Jiwei Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Manman Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Kexin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Chengli Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Kong X, Li J, Li Y, Duan W, Qi Q, Wang T, Yang Q, Du L, Mao H, Wang C. A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer. Cell Death Dis 2021; 12:670. [PMID: 34218256 PMCID: PMC8254808 DOI: 10.1038/s41419-021-03943-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, Shandong, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China. .,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, Shandong, China.
| |
Collapse
|