1
|
Seneviratne JA, Ravindrarajah D, Carter DR, Zhai V, Lalwani A, Krishan S, Balachandran A, Ng E, Pandher R, Wong M, Nero TL, Wang S, Norris MD, Haber M, Liu T, Parker MW, Cheung BB, Marshall GM. Combined inhibition of histone methyltransferases EZH2 and DOT1L is an effective therapy for neuroblastoma. Cancer Med 2024; 13:e70082. [PMID: 39501501 PMCID: PMC11538032 DOI: 10.1002/cam4.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND The child cancer, neuroblastoma (NB), is characterised by a low incidence of mutations and strong oncogenic embryonal driver signals. Many new targeted epigenetic modifier drugs have failed in human trials as monotherapy. METHODS We performed a high-throughput, combination chromatin-modifier drug screen against NB cells. We screened 13 drug candidates in 78 unique combinations. RESULTS We found that the combination of two histone methyltransferase (HMT) inhibitors: GSK343, targeting EZH2, and SGC0946, targeting DOT1L, demonstrated the strongest synergy across 8 NB cell lines, with low normal fibroblast toxicity. High mRNA expression of both EZH2 and DOT1L in NB tumour samples correlated with the poorest patient survival. Combination HMT inhibitor treatment caused activation of ATF4-mediated endoplasmic reticulum (ER) stress responses. In addition, glutathione and several amino acids were depleted by HMT inhibitor combination on mass spectrometry analysis. The combination of SGC0946 and GSK343 reduced tumour growth in comparison to single agents. CONCLUSION Our results support further investigation of HMT inhibitor combinations as a therapeutic approach in NB.
Collapse
Affiliation(s)
- Janith A. Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Daenikka Ravindrarajah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Daniel R. Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vicki Zhai
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Amit Lalwani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Sukriti Krishan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Anushree Balachandran
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ernest Ng
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Ruby Pandher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Tracy L. Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Murray D. Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyRandwickNew South WalesAustralia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | - Belamy B. Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| |
Collapse
|
2
|
Mei D, Xue Z, Zhang T, Yang Y, Jin L, Yu Q, Hong J, Zhang X, Ge J, Xu L, Wang H, Zhang Z, Zhao Y, Zhai Y, Tao Q, Zhai Z, Li Q, Li H, Zhang L. Immune isolation-enabled nanoencapsulation of donor T cells: a promising strategy for mitigating GVHD and treating AML in preclinical models. J Immunother Cancer 2024; 12:e008663. [PMID: 39242117 PMCID: PMC11381671 DOI: 10.1136/jitc-2023-008663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND In allogeneic-hematopoietic stem cell transplantation for acute myeloid leukemia (AML), donor T cells combat leukemia through the graft-versus-leukemia (GVL) effect, while they also pose a risk of triggering life-threatening graft-versus-host disease (GVHD) by interacting with recipient cells. The onset of GVHD hinges on the interplay between donor T cells and recipient antigen-presenting cells (APCs), sparking T-cell activation. However, effective methods to balance GVHD and GVL are lacking. METHODS In our study, we crafted nanocapsules by layering polycationic aminated gelatin and polyanionic alginate onto the surface of T cells, examining potential alterations in their fundamental physiological functions. Subsequently, we established an AML mouse model and treated it with transplantation of bone marrow cells (BMCs) combined with encapsulated T cells to investigate the GVL and anti-GVHD effects of encapsulated T cells. In vitro co-culture was employed to probe the effects of encapsulation on immune synapses, co-stimulatory molecules, and tumor-killing pathways. RESULTS Transplantation of BMCs combined with donor T cells selectively encapsulated onto AML mice significantly alleviates GVHD symptoms while preserving essential GVL effects. Encapsulated T cells exerted their immunomodulatory effects by impeding the formation of immune synapses with recipient APCs, thereby downregulating co-stimulatory signals such as CD28-CD80, ICOS-ICOSL, and CD40L-CD40. Recipient mice receiving encapsulated T-cell transplantation exhibited a marked increase in donor Ly-5.1-BMC cell numbers, accompanied by unaltered in vivo expression levels of perforin and granzyme B. While transient inhibition of donor T-cell cytotoxicity in the tumor microenvironment was observed in vitro following single-cell nanoencapsulation, subsequent restoration to normal antitumor activity ensued, attributed to selective permeability of encapsulated vesicle shells and material degradation. Moreover, the expression of apoptotic proteins and FAS-FAS ligand pathway at normal levels was still observed in leukemia tumor cells. CONCLUSIONS Encapsulated donor T cells effectively mitigate GVHD while preserving the GVL effect by minimizing co-stimulatory signaling with APCs through early immune isolation. Subsequent degradation of nanocapsules restores T-cell cytotoxic efficacy against AML cells, mediated by cytotoxic pathways. Using transplant-encapsulated T cells offers a promising strategy to suppress GVHD while preserving the GVL effect.
Collapse
Affiliation(s)
- Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongxia Li
- Department of Hematology and Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Goldner Kabeli R, Zevin S, Abargel A, Zilberberg A, Efroni S. Self-supervised learning of T cell receptor sequences exposes core properties for T cell membership. SCIENCE ADVANCES 2024; 10:eadk4670. [PMID: 38669334 PMCID: PMC11809652 DOI: 10.1126/sciadv.adk4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the body's homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models demonstrate the potential of Transformer-based language models in TCR downstream applications.
Collapse
Affiliation(s)
- Romi Goldner Kabeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Avital Abargel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
5
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. DOT1L decelerates the development of osteoporosis by inhibiting SRSF1 transcriptional activity via microRNA-181-mediated KAT2B inhibition. Genomics 2024; 116:110759. [PMID: 38072145 DOI: 10.1016/j.ygeno.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
6
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
7
|
Kwesi-Maliepaard EM, Malik M, van Welsem T, van Doorn R, Vermeer MH, Vlaming H, Jacobs H, van Leeuwen F. DOT1L inhibition does not modify the sensitivity of cutaneous T cell lymphoma to pan-HDAC inhibitors in vitro. Front Genet 2022; 13:1032958. [PMID: 36425063 PMCID: PMC9681147 DOI: 10.3389/fgene.2022.1032958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a subset of T-cell malignancies presenting in the skin. The treatment options for CTCL, in particular in advanced stages, are limited. One of the emerging therapies for CTCL is treatment with histone deacetylase (HDAC) inhibitors. We recently discovered an evolutionarily conserved crosstalk between HDAC1, one of the targets of HDAC inhibitors, and the histone methyltransferase DOT1L. HDAC1 negatively regulates DOT1L activity in yeast, mouse thymocytes, and mouse thymic lymphoma. Here we studied the functional relationship between HDAC inhibitors and DOT1L in two human CTCL cell lines, specifically addressing the question whether the crosstalk between DOT1L and HDAC1 observed in mouse T cells plays a role in the therapeutic effect of clinically relevant broad-acting HDAC inhibitors in the treatment of human CTCL. We confirmed that human CTCL cell lines were sensitive to treatment with pan-HDAC inhibitors. In contrast, the cell lines were not sensitive to DOT1L inhibitors. Combining both types of inhibitors did neither enhance nor suppress the inhibitory effect of HDAC inhibitors on CTCL cells. Thus our in vitro studies suggest that the effect of commonly used pan-HDAC inhibitors in CTCL cells relies on downstream effects other than DOT1L misregulation.
Collapse
Affiliation(s)
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Hao Y, Zhao W, Chang L, Chen X, Liu C, Liu Y, Hou L, Su Y, Xu H, Guo Y, Sun Q, Mu L, Wang J, Li H, Han J, Kong Q. Metformin inhibits the pathogenic functions of AChR-specific B and Th17 cells by targeting miR-146a. Immunol Lett 2022; 250:29-40. [PMID: 36108773 DOI: 10.1016/j.imlet.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
Abstract
Myasthenia gravis (MG) is characterized by fatigable skeletal muscle weakness with a fluctuating and unpredictable disease course and is caused by circulating autoantibodies and pathological T helper cells. Regulation of B-cell function and the T-cell network may be a potential therapeutic strategy for MG. MicroRNAs (miRNAs) have emerged as potential biomarkers in immune disorders due to their critical roles in various immune cells and multiple inflammatory diseases. Aberrant miR-146a signal activation has been reported in autoimmune diseases, but a detailed exploration of the relationship between miR-146a and MG is still necessary. Using an experimental autoimmune myasthenia gravis (EAMG) rat model, we observed that miR-146a was highly expressed in the spleen but expressed at low levels in the thymus and lymph nodes in EAMG rats. Additionally, miR-146a expression in T and B cells was also quite different. EAMG-specific Th17 and Treg cells had lower miR-146a levels, while EAMG-specific B cells had higher miR-146a levels, indicating that targeted intervention against miR-146a might have diametrically opposite effects. Metformin, a drug that was recently demonstrated to alleviate EAMG, may rescue the functions of both Th17 cells and B cells by reversing the expression of miR-146a. We also investigated the downstream target genes of miR-146a in both T and B cells using bioinformatics screening and qPCR. Taken together, our study identifies a complex role of miR-146a in the EAMG rat model, suggesting that more caution should be paid in targeting miR-146a for the treatment of MG.
Collapse
Affiliation(s)
- Yue Hao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xingfan Chen
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Chonghui Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yang Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lixuan Hou
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yinchun Su
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Hao Xu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yu Guo
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Qixu Sun
- YanTai PengLai, People's Hospital Digestive System Department, YanTai, ShanDong 265600, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
9
|
Ito Y, Kagoya Y. Epigenetic engineering for optimal CAR-T cell therapy. Cancer Sci 2022; 113:3664-3671. [PMID: 36000807 DOI: 10.1111/cas.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Recent advancements in cancer immunotherapy, such as chimeric antigen receptor (CAR)-engineered T cell therapy and immune checkpoint therapy (ICT), have significantly improved the clinical outcomes of patients with several types of cancer. To broaden its applicability further and induce durable therapeutic efficacy, it is imperative to understand how antitumor T cells elicit cytotoxic functions, survive as memory T cells, or are impaired in their effector functions (exhausted) at the molecular level. T cell properties are regulated by their gene expression profiles, which are further controlled by epigenetic architectures, such as DNA methylation and histone modifications. Multiple studies have elucidated specific epigenetic genes associated with T-cell phenotypic changes. Conversely, exogenous modification of these key epigenetic factors can significantly alter T cell functions by extensively altering the transcription network, which can be applied in cancer immunotherapy by improving T cell persistence or augmenting effector functions. Since CAR-T cell therapy involves a genetic engineering step during the preparation of the infusion products, it would be a feasible strategy to additionally modulate specific epigenetic genes in CAR-T cells to improve their quality. Here, we review recent studies investigating how individual epigenetic factors play a crucial role in T-cell biology. We further discuss future directions to integrate these findings for optimal cancer immunotherapy.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Immune Response, Aichi Cancer Center Research Institute
| | - Yuki Kagoya
- Division of Immune Response, Aichi Cancer Center Research Institute.,Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine
| |
Collapse
|
10
|
Yi Y, Ge S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol 2022; 15:35. [PMID: 35331314 PMCID: PMC8944089 DOI: 10.1186/s13045-022-01251-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
Disrupting the methylation of telomeric silencing 1-like (DOT1L)-mediated histone H3 lysine 79 has been implicated in MLL fusion-mediated leukemogenesis. Recently, DOT1L has become an attractive therapeutic target for MLL-rearranged leukemias. Rigorous studies have been performed, and much progress has been achieved. Moreover, one DOT1L inhibitor, EPZ-5676, has entered clinical trials, but its clinical activity is modest. Here, we review the recent advances and future trends of various therapeutic strategies against DOT1L for MLL-rearranged leukemias, including DOT1L enzymatic activity inhibitors, DOT1L degraders, protein-protein interaction (PPI) inhibitors, and combinatorial interventions. In addition, the limitations, challenges, and prospects of these therapeutic strategies are discussed. In summary, we present a general overview of DOT1L as a target in MLL-rearranged leukemias to provide valuable guidance for DOT1L-associated drug development in the future. Although a variety of DOT1L enzymatic inhibitors have been identified, most of them require further optimization. Recent advances in the development of small molecule degraders, including heterobifunctional degraders and molecular glues, provide valuable insights and references for DOT1L degraders. However, drug R&D strategies and platforms need to be developed and preclinical experiments need to be performed with the purpose of blocking DOT1L-associated PPIs. DOT1L epigenetic-based combination therapy is worth considering and exploring, but the therapy should be based on a thorough understanding of the regulatory mechanism of DOT1L epigenetic modifications.
Collapse
Affiliation(s)
- Yan Yi
- Departments of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shenglei Ge
- Departments of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Street, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Khirsariya P, Pospíŝil P, Maier L, Boudný M, Babáŝ M, Kroutil OE, Mráz M, Vácha R, Paruch K. Synthesis and Profiling of Highly Selective Inhibitors of Methyltransferase DOT1L Based on Carbocyclic C-Nucleosides. J Med Chem 2022; 65:5701-5723. [PMID: 35302777 DOI: 10.1021/acs.jmedchem.1c02228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone methyltransferase DOT1L is an attractive therapeutic target for the treatment of hematological malignancies. Here, we report the design, synthesis, and profiling of new DOT1L inhibitors based on nonroutine carbocyclic C-nucleoside scaffolds. The experimentally observed SAR was found to be nontrivial as seemingly minor changes of individual substituents resulted in significant changes in the affinity to DOT1L. Molecular modeling suggested that these trends could be related to significant conformational changes of the protein upon interaction with the inhibitors. The compounds 22 and (-)-53 (MU1656), carbocyclic C-nucleoside analogues of the natural nucleoside derivative EPZ004777, and the clinical candidate EPZ5676 (pinometostat) potently and selectively inhibit DOT1L in vitro as well as in the cell. The most potent compound MU1656 was found to be more metabolically stable and significantly less toxic in vivo than pinometostat itself.
Collapse
Affiliation(s)
- Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Patrik Pospíŝil
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáŝ Maier
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Miroslav Boudný
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Martin Babáŝ
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ondr Ej Kroutil
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Mráz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
12
|
Zhang B, Yuan P, Xu G, Chen Z, Li Z, Ye H, Wang J, Shi P, Sun X. DUSP6 expression is associated with osteoporosis through the regulation of osteoclast differentiation via ERK2/Smad2 signaling. Cell Death Dis 2021; 12:825. [PMID: 34475393 PMCID: PMC8413376 DOI: 10.1038/s41419-021-04110-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/28/2023]
Abstract
Osteoporosis-related fractures, such as femoral neck and vertebral fractures, are common in aged people, resulting in increased disability rate and health-care costs. Thus, it is of great importance to clarify the mechanism of osteoclast-related osteoporosis and find effective ways to avoid its complication. In this study, gene expression profile analysis and real-time polymerase chain reaction revealed that DUSP6 expression was suppressed in human and mice osteoporosis cases. In vitro experiments confirmed that DUSP6 overexpression prevented osteoclastogenesis, whereas inhibition of DUSP6 by small interference RNA or with a chemical inhibitor, (E/Z)-BCI, had the opposite effect. (E/Z)-BCl significantly accelerated the bone loss process in vivo by enhancing osteoclastogenesis. Bioinformatics analyses and in vitro experiments indicated that miR-181a was an upstream regulator of DUSP6. Moreover, miR-181a positively induced the differentiation and negatively regulated the apoptosis of osteoclasts via DUSP6. Furthermore, downstream signals by ERK2 and SMAD2 were also found to be involved in this process. Evaluation of ERK2-deficiency bone marrow-derived macrophages confirmed the role of ERK2 signaling in the DUSP6-mediated osteoclastogenesis. Additionally, immunoprecipitation assays confirmed that DUSP6 directly modified the phosphorylation status of SMAD2 and the subsequent nuclear transportation of NFATC1 to regulate osteoclast differentiation. Altogether, this study demonstrated for the first time the role of miRNA-181a/DUSP6 in the progression of osteoporosis via the ERK2 and SMAD2 signaling pathway. Hence, DUSP6 may represent a novel target for the treatment of osteoclast-related diseases in the future.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Putao Yuan
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Guang Xu
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhijun Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhifei Li
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Xuewu Sun
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Song Q, Lei Y, Shao L, Li W, Kong Q, Lin Z, Qin X, Wei W, Hou F, Li J, Guo X, Mao Y, Cao Y, Liu Z, Zheng L, Liang R, Jiang Y, Liu Y, Zhang L, Yang J, Lau YL, Zhang Y, Ban B, Wang YF, Yang W. Genome-wide association study on Northern Chinese identifies KLF2, DOT1L and STAB2 associated with systemic lupus erythematosus. Rheumatology (Oxford) 2021; 60:4407-4417. [PMID: 33493351 DOI: 10.1093/rheumatology/keab016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To identify novel genetic loci associated with systemic lupus erythematosus (SLE) and to evaluate potential genetic differences between ethnic Chinese and European populations in SLE susceptibility. METHODS A new genome-wide association study (GWAS) was conducted from Jining, North China, on 1506 individuals (512 SLE cases and 994 matched healthy controls). The association results were meta-analysed with existing data on Chinese populations from Hong Kong, Guangzhou and Central China, as well as GWAS results from four cohorts of European ancestry. A total of 26 774 individuals (9310 SLE cases and 17 464 controls) were included in this study. RESULTS Meta-analysis on four Chinese cohorts identifies KLF2 as a novel locus associated with SLE [rs2362475; odds ratio (OR) = 0.85, P=2.00E-09]. KLF2 is likely an Asian-specific locus as no evidence of association was detected in the four European cohorts (OR = 0.98, P =0.58), with evidence of heterogeneity (P=0.0019) between the two ancestral groups. Meta-analyses of results from both Chinese and Europeans identify STAB2 (rs10082873; OR= 0.89, P=4.08E-08) and DOT1L (rs4807205; OR= 1.12, P=8.17E-09) as trans-ancestral association loci, surpassing the genome-wide significance. CONCLUSIONS We identified three loci associated with SLE, with KLF2 a likely Chinese-specific locus, highlighting the importance of studying diverse populations in SLE genetics. We hypothesize that DOT1L and KLF2 are plausible SLE treatment targets, with inhibitors of DOT1L and inducers of KLF2 already available clinically.
Collapse
Affiliation(s)
- Qin Song
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Yao Lei
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Li Shao
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Weiyang Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
| | - Zhiming Lin
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Xiao Qin
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
| | - Wei Wei
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
| | - Fei Hou
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Shandong
| | - Jian Li
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Xianghua Guo
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Yujing Mao
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Yujie Cao
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Zhongyi Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Lichuan Zheng
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Rui Liang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuping Jiang
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Yan Liu
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Lili Zhang
- Department of Rheumatology and Lupus Research Institute, The Affiliated Hospital of Jining Medical University
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University
- Chinese Research Center for Behavior Medicine in Growth and Development, Shandong
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
14
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
Van Acker HH, Ma S, Scolaro T, Kaech SM, Mazzone M. How metabolism bridles cytotoxic CD8 + T cells through epigenetic modifications. Trends Immunol 2021; 42:401-417. [PMID: 33867272 PMCID: PMC9681987 DOI: 10.1016/j.it.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
In the direct competition for metabolic resources between cancer cells and tumor-infiltrating CD8+ T cells, the latter are bound to lose out. These effector lymphocytes are therefore rendered exhausted or dysfunctional. Emerging insights into the mechanisms of T cell unresponsiveness in the tumor microenvironment (TME) point towards epigenetic mechanisms as crucial regulatory factors. In this review, we discuss the effects of characteristic components of the TME, i.e. glucose/amino acid dearth with elevated levels of reactive oxygen species (ROS), on DNA methylation and histone modifications in CD8+ T cells. We then take a closer look at the translational potential of epigenetic interventions that aim to improve current immunotherapeutic strategies, including the adoptive transfer of T cell receptor (TCR) or chimeric antigen receptor (CAR) engineered T cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium.
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tommaso Scolaro
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Inhibition of Dot1L Alleviates Fulminant Hepatitis Through Myeloid-Derived Suppressor Cells. Cell Mol Gastroenterol Hepatol 2021; 12:81-98. [PMID: 33497867 PMCID: PMC8081916 DOI: 10.1016/j.jcmgh.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Fulminant hepatitis (FH) is a clinical syndrome characterized by sudden and severe liver dysfunction. Dot1L, a histone methyltransferase, is implicated in various physiologic and pathologic processes, including transcription regulation and leukemia. However, the role of Dot1L in regulating inflammatory responses during FH remains elusive. METHODS Propionibacterium acnes (P. acnes)-primed, lipopolysaccharides (LPS)-induced FH was established in C57BL/6 mice and was treated with the Dot1L inhibitor EPZ-5676. Myeloid derived suppressor cells (MDSCs) were depleted by anti-Gr-1 antibody to evaluate their therapeutic roles in Dot1L treatment of FH. Moreover, peripheral blood of patients suffered with FH and healthy controls was collected to determine the expression profile of Dot1L-SOCS1-iNOS axis in their MDSCs. RESULTS Here we identified that EPZ-5676, pharmacological inhibitor of Dot1L, attenuated the liver injury of mice subjected to FH. Dot1L inhibition led to decreased T helper 1 cell response and expansion of regulatory T cells (Tregs) during FH. Interestingly, Dot1L inhibition didn't directly target T cells, but dramatically enhanced the immunosuppressive function of MDSCs. Mechanistically, Dot1L inhibition epigenetically suppressed SOCS1 expression, thus inducing inducible nitric oxide synthase (iNOS) expression in a STAT1-dependent manner. Moreover, in human samples, the levels of Dot1L and SOCS1 expression were upregulated in MDSCs, accompanied by decreased expression of iNOS in patients with FH, compared with healthy controls. CONCLUSIONS Altogether, our findings established Dot1L as a critical regulator of MDSC immunosuppressive function for the first time, and highlighted the therapeutic potential of Dot1L inhibitor for FH treatment.
Collapse
|
17
|
Sutter PA, Karki S, Crawley I, Singh V, Bernt KM, Rowe DW, Crocker SJ, Bayarsaihan D, Guzzo RM. Mesenchyme-specific loss of Dot1L histone methyltransferase leads to skeletal dysplasia phenotype in mice. Bone 2021; 142:115677. [PMID: 33022452 PMCID: PMC7744341 DOI: 10.1016/j.bone.2020.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangita Karki
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Ilan Crawley
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Vijender Singh
- Bioinformatics, University of Connecticut, Storrs, CT, United States of America
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA, United States of America
| | - David W Rowe
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Stephen J Crocker
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Rosa M Guzzo
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America.
| |
Collapse
|
18
|
Chen S, Wang D, Liu Y, Zhao R, Wu T, Hu X, Pan Z, Cui H. Targeting the Histone Methyltransferase Disruptor of Telomeric Silencing 1-Like Restricts Avian Leukosis Virus Subgroup J Replication by Restoring the Innate Immune Response in Chicken Macrophages. Front Microbiol 2020; 11:603131. [PMID: 33363525 PMCID: PMC7752946 DOI: 10.3389/fmicb.2020.603131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, is known to cause immunosuppression and various types of cancer in chickens. Recent reports have shown that epigenetic changes in DNA and chromatin are widely implicated in the life cycle of diverse viruses, and reversal of these changes in host cells can lead to alterations in the propagation of viruses. In the present study, we found that disruptor of telomeric silencing 1-like (DOT1L), a histone H3 lysine79 (H3K79) methyltransferase, was upregulated during ALV-J infection in chicken macrophage HD11 cells. Subsequently, we show that targeting DOT1L with a specific inhibitor can significantly decrease the ALV-J replication and viral production. By generating of DOT1L-knockout (KO) HD11 cells using the CRISPR/Cas9 system, we show that deletion of the DOT1L led to an increase in the induction of IFNβ and interferon-stimulated genes (ISGs) in HD11 cells in response to ALV-J infection. Importantly, we confirmed that ALV-J infection impaired the activation of the melanoma differentiation-associated protein 5 (MDA5)-mediated-IFN pathway by suppressing the MDA5 expression, and knockout DOT1L rescued the expression of MDA5 and signal transducer and activator of transcription 1 (STAT1), both of which tightly control the antiviral innate immunity. Collectively, it can be deduced from the current data that blocking DOT1L activity or deletion of DOT1L can lead to ALV-J replication inhibition and restoration of the virally suppressed host innate immunity. Thus, we suggest that DOT1L might be a potential drug target for modulating host innate immune responses to combat ALV-J infection.
Collapse
Affiliation(s)
- Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinyin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Ruihan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ting Wu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
20
|
Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 2020; 585:277-282. [PMID: 32879489 PMCID: PMC7486248 DOI: 10.1038/s41586-020-2682-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Abnormal epigenetic patterns correlate with effector T cell malfunction in tumors1–4. However, their causal link is unknown. Here, we show that tumor cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular methionine levels and the methyl donor S-adenosylmethionine (SAM), resulting in loss of H3K79me2. Consequently, loss of H3K79me2 led to low STAT5 expression and impaired T cell immunity. Mechanistically, tumor cells avidly consumed and outcompeted T cells for methionine via high expression of SLC43A2, a methionine transporter. Genetic and biochemical inhibition of tumor SLC43A2 rescued T cell H3K79me2 levels, boosting spontaneous and checkpoint-induced tumor immunity. Moreover, we found that methionine supplementation improved expression of H3K79me2 and STAT5 in T cells, accompanied by increased T cell immunity in tumor bearing models and colon cancer patients. Clinically, tumor SLC43A2 negatively correlated with T cell histone methylation and functional gene signatures. Our work reveals a novel mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumor microenvironment. Thus, cancer methionine consumption is an unappreciated immune evasion mechanism, and targeting cancer methionine signaling may provide an immunotherapeutic approach.
Collapse
|
21
|
Kwesi-Maliepaard EM, Aslam MA, Alemdehy MF, van den Brand T, McLean C, Vlaming H, van Welsem T, Korthout T, Lancini C, Hendriks S, Ahrends T, van Dinther D, den Haan JMM, Borst J, de Wit E, van Leeuwen F, Jacobs H. The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 + T cells. Proc Natl Acad Sci U S A 2020; 117:20706-20716. [PMID: 32764145 PMCID: PMC7456197 DOI: 10.1073/pnas.1920372117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.
Collapse
Affiliation(s)
| | - Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Chelsea McLean
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Cesare Lancini
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tomasz Ahrends
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
| |
Collapse
|
22
|
Inhibition of Methyltransferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of MLL-Rearrangements: A Novel Therapeutic Strategy for Pediatric AML. Cancers (Basel) 2020; 12:cancers12071972. [PMID: 32698374 PMCID: PMC7409321 DOI: 10.3390/cancers12071972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis for which there are few effective targeted approaches, despite the numerous genetic alterations, including MLL gene rearrangements (MLL-r). The histone methyltransferase DOT1L is involved in supporting the proliferation of MLL-r cells, for which a target inhibitor, Pinometostat, has been evaluated in a clinical trial recruiting pediatric MLL-r leukemic patients. However, modest clinical effects have been observed. Recent studies have reported that additional leukemia subtypes lacking MLL-r are sensitive to DOT1L inhibition. Here, we report that targeting DOT1L with Pinometostat sensitizes pediatric AML cells to further treatment with the multi-kinase inhibitor Sorafenib, irrespectively of MLL-r. DOT1L pharmacologic inhibition induces AML cell differentiation and modulates the expression of genes with relevant roles in cancer development. Such modifications in the transcriptional program increase the apoptosis and growth suppression of both AML cell lines and primary pediatric AML cells with diverse genotypes. Through ChIP-seq analysis, we identified the genes regulated by DOT1L irrespective of MLL-r, including the Sorafenib target BRAF, providing mechanistic insights into the drug combination activity. Our results highlight a novel therapeutic strategy for pediatric AML patients.
Collapse
|
23
|
Murata K, Nakatsugawa M, Rahman MA, Nguyen LT, Millar DG, Mulder DT, Sugata K, Saijo H, Matsunaga Y, Kagoya Y, Guo T, Anczurowski M, Wang CH, Burt BD, Ly D, Saso K, Easson A, Goldstein DP, Reedijk M, Ghazarian D, Pugh TJ, Butler MO, Mak TW, Ohashi PS, Hirano N. Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma. eLife 2020; 9:53244. [PMID: 32314731 PMCID: PMC7234812 DOI: 10.7554/elife.53244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-restricted T cell responses can induce antitumor effects in cancer patients. Previous human T cell research has largely focused on the few HLA alleles prevalent in a subset of ethnic groups. Here, using a panel of newly developed peptide-exchangeable peptide/HLA multimers and artificial antigen-presenting cells for 25 different class I alleles and greater than 800 peptides, we systematically and comprehensively mapped shared antigenic epitopes recognized by tumor-infiltrating T lymphocytes (TILs) from eight melanoma patients for all their class I alleles. We were able to determine the specificity, on average, of 12.2% of the TILs recognizing a mean of 3.1 shared antigen-derived epitopes across HLA-A, B, and C. Furthermore, we isolated a number of cognate T cell receptor genes with tumor reactivity. Our novel strategy allows for a more complete examination of the immune response and development of novel cancer immunotherapy not limited by HLA allele prevalence or tumor mutation burden. The immune system is the body’s way of defending itself, offering protection against diseases such as cancer. But to remove the cancer cells, the immune system must be able to identify them as different from the rest of the body. All cells break down proteins into shorter fragments, known as peptides, that are displayed on the cell surface by a protein called human leukocyte antigen, HLA for short. Cancer cells display distinctive peptides on their surface as they generate different proteins to those of healthy cells. Immune cells called T cells use these abnormal peptides to identify the cancer so that it can be destroyed. Sometimes T cells can lack the right equipment to detect abnormal peptides, allowing cancer cells to hide from the immune system. However, T cells can be trained through a treatment called immunotherapy, which provides T cells with new tools so that they can spot the peptides displayed by HLA on the previously ‘hidden’ cancer cells. There are many different forms of HLA, each of which can display different peptides. Current research in immunotherapy commonly targets only a subset of HLA forms, and not all cancer patients have these types. This means that immunotherapy research is only likely to be of most benefit to a limited number of patients. Immunotherapy could be made effective for more people if new cancer peptides that are displayed by the other ‘under-represented’ forms of HLA were identified. Murata, Nakatsugawa et al. have now used T cells that were taken from tumors in eight patients with melanoma, which is a type of skin cancer. A library of fluorescent HLA-peptides was generated – using a new, simplified methodology – with 25 forms of HLA that displayed over 800 peptides. T cells were then mixed with the library to identify which HLA-peptides they can target. As a result, Murata, Nakatsugawa et al. found the cancer targets of around 12% of the tumor-infiltrating T cells tested, including those from under-represented forms of HLA. Consequently, these findings could be used to develop new immunotherapies that can treat more patients.
Collapse
Affiliation(s)
- Kenji Murata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Linh T Nguyen
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Douglas G Millar
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David T Mulder
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Kenji Sugata
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hiroshi Saijo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yukiko Matsunaga
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Brian D Burt
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Dalam Ly
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alexandra Easson
- Department of Surgical Oncology, University Health Network, Toronto, Canada
| | - David P Goldstein
- Department of Surgical Oncology, University Health Network, Toronto, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Tak W Mak
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Pamela S Ohashi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
24
|
Liu B, Yang L, Zhu X, Li H, Zhu P, Wu J, Lu T, He L, Liu N, Meng S, Zhou L, Ye B, Tian Y, Fan Z. Yeats4 drives ILC lineage commitment via activation of Lmo4 transcription. J Exp Med 2019; 216:2653-2668. [PMID: 31434684 PMCID: PMC6829595 DOI: 10.1084/jem.20182363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Liu et al. show that Yeats4 recruits the Dot1l–RNA Pol II complex onto the Lmo4 promoter by recognizing H3K27ac modification to initiate Lmo4 transcription in α4β7+ CLPs, leading to ILC lineage commitment. Innate lymphoid cells (ILCs) play critical roles in defending infections and maintaining mucosal homeostasis. All ILCs arise from common lymphoid progenitors (CLPs) in bone marrow. However, how CLPs stratify and differentiate into ILC lineages remains elusive. Here, we showed that Yeats4 is highly expressed in ILCs and their progenitors. Yeats4 conditional KO in the hematopoietic system causes decreased numbers of ILCs and impairs their effector functions. Moreover, Yeats4 regulates α4β7+ CLP differentiation toward common helper ILC progenitors (CHILPs). Mechanistically, Yeats4 recruits the Dot1l–RNA Pol II complex onto Lmo4 promoter through recognizing H3K27ac modification to initiate Lmo4 transcription in α4β7+ CLPs. Additionally, Lmo4 deficiency also impairs ILC lineage differentiation and their effector functions. Collectively, the Yeats4–Lmo4 axis is required for ILC lineage commitment.
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tiankun Lu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nian Liu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu Meng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|