1
|
Pollack BL, Torrisi JS, Hespe GE, Ashokan G, Shin J, Mehrara BJ, Kataru RP. Inhibition of Th2 Differentiation Accelerates Chronic Wound Healing by Facilitating Lymphangiogenesis. Biomedicines 2025; 13:1026. [PMID: 40426856 PMCID: PMC12109103 DOI: 10.3390/biomedicines13051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Chronic wounds pose a significant healthcare burden, and there remains no effective animal model for study. We aimed to develop a mouse model of chronic wounds that remain open for at least 4 weeks and to investigate the role of the lymphatic system in wound healing. Methods: Full-thickness excisional wounds were created on the dorsal surface of mouse tails to simulate chronic wounds. Lymphatic drainage was assessed using FITC-dextran lymphangiography. Histology and immunofluorescence were used to analyze immune cell infiltration. The effect of inhibiting Th2 differentiation via IL-4 and IL-13 neutralization on wound closure was also evaluated. Results: Our chronic wound model was successful, and wounds remained open for 4 weeks. Impaired lymphatic drainage was observed extending beyond the wound area. Increased CD4+ T-helper cell infiltration and Th2 cell accumulation were observed in the impaired lymphatic drainage zone. Inhibition of IL-4 and IL-13 accelerated wound healing. Conclusions: Impaired lymphatic drainage and Th2-mediated inflammation contribute to delayed healing, and gradients of lymphatic fluid flow are associated with spatial differences in lymphangiogenesis. Targeting Th2 cytokines may offer a novel therapeutic approach for chronic wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.L.P.); (J.S.T.); (G.E.H.); (G.A.); (J.S.); (B.J.M.)
| |
Collapse
|
2
|
Cheon H, Woo DC, Cha S, Chae YJ, Maeng I, Oh SJ, Jeon JY. Brain alterations and neurologic disorder progression induced by lymphatic dysfunction in the head and neck region. Acta Neuropathol Commun 2025; 13:72. [PMID: 40200314 PMCID: PMC11978131 DOI: 10.1186/s40478-025-01953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/09/2025] [Indexed: 04/10/2025] Open
Abstract
The potential negative impact of lymphatic dysfunction caused by head and neck cancer treatment remains underexplored. Emerging evidence suggests that waste clearance and fluidic balance in the brain are connected to the peripheral lymphatic system in the head and neck region, implying that lymphatic injury in this area could contribute to brain damage. This study aimed to investigate the pathological alterations in the brain induced by peripheral lymphatic dysfunction in the head and neck region using the lymphatic obstruction animal model. An animal model underwent cervical lymph node dissection combined with radiation therapy to simulate the condition with the peripheral lymphatic dysfunction in the head and neck region after cancer treatment. Lymphatic drainage impairment in the head and neck region was associated with significant swelling, disrupted lymphatic drainage, and immune cell infiltration in the white matter. The imaging techniques revealed ventricular enlargement and increased brain water content caused by fluid imbalance leading to significant structural alterations in the brain. Histopathological analysis demonstrated structural brain alterations similar to that of hydrocephalus and cerebral edema, while rotarod tests showed a substantial decline in motor performance. These findings highlight the impact of peripheral lymphatic dysfunction on brain integrity and function. This study provides evidence that brain damage in head and neck cancer patients may be influenced not only by chemotherapy or radiotherapy but also by lymphatic dysfunction caused by surgical interventions. Lymphatic injury in the head and neck region emerges as a potential risk factor for brain damage, underscoring the need for further research into preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Rehabilitation Research Center, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seungwoo Cha
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yeon Ji Chae
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Inhee Maeng
- College of Medicine, YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Jae Oh
- College of Medicine, YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jae Yong Jeon
- Rehabilitation Research Center, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
3
|
Hossain L, Gomes KP, Safarpour S, Gibson SB. The microenvironment of secondary lymphedema. The key to finding effective treatments? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167677. [PMID: 39828048 DOI: 10.1016/j.bbadis.2025.167677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lymphedema is characterized by the swelling of extremities due to the accumulation of interstitial fluids. It is a painful and devastating disease that increases the risk of infections and destroys patients' quality of life. Secondary lymphedema is caused by damage to the lymphatic system due to infections, obesity, surgery, and cancer treatments. This damage fails to be repaired and leads to fluid accumulation, tissue remodeling, inflammation, and ultimately fibrosis. The lymphedema microenvironment is altered by stress, immune dysfunction, and changes in metabolism. Stress in the microenvironment includes increased hypoxia and oxidative stress but how this contributes to lymphedema progression is unclear. The immune system plays a critical role in lymphedema through T cell helper type 2 (Th2) immune responses and the infiltration of macrophages into lymphedematous tissue. The inflammatory cytokines released by immune cells lead to tissue remodeling and fibrosis. There are also changes in metabolism in the lymphedema microenvironment with altered lipid oxidation, ketone body oxidation, and glycolysis. How these changes affect lymphedema and treatment interventions has been the focus of clinical trials. Lymphedema is also associated with cancer and obesity through damage to the lymphatic system. This review will illustrate microenvironmental changes in lymphedema and how this relates to cancer and obesity. In addition, we will discuss new therapeutic strategies to treat lymphedema. Finally, we will address the prospects of lymphedema research in the context of the microenvironment.
Collapse
Affiliation(s)
- Lazina Hossain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Karina P Gomes
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Samaneh Safarpour
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Spencer B Gibson
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Uemura K, Katayama KI, Nishioka T, Watanabe H, Yamada G, Inoue N, Asamura S. Dynamics of Immune Cell Infiltration and Fibroblast-Derived IL-33/ST2 Axis Induction in a Mouse Model of Post-Surgical Lymphedema. Int J Mol Sci 2025; 26:1371. [PMID: 39941140 PMCID: PMC11818732 DOI: 10.3390/ijms26031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Lymphedema is an intractable disease most commonly associated with lymph node dissection for cancer treatment and can lead to a decreased quality of life. Type 2 T helper (Th2) lymphocytes have been shown to be important in the progression of lymphedema. The activation of IL-33 and its receptor, the suppression of tumorigenicity 2 (ST2) signaling pathway, induces the differentiation of Th2 cells, but its involvement in lymphedema remains unclear. In the present study, we analyzed the dynamics of immune cell infiltration, including the IL-33/ST2 axis, in a mouse tail lymphedema model. Neutrophil infiltration was first detected in the lymphedema tissue on postoperative day (POD) 2. Macrophage infiltration increased from POD 2 to 5. The number of CD4+ T cells, including 50% Tregs, gradually increased from POD 14. The mRNA expression of ll13 and Ifng increased on POD 21. The expression of IL-33 was induced in fibroblast nuclei within dermal and subcutaneous tissues from POD 2, and the expression of the Il1rl1 gene encoding ST2 increased from POD 7. We demonstrated the infiltration process from innate to acquired immune cells through the development of a mouse tail lymphedema. The IL-33/ST2 axis was found to be induced during the transition from innate to acquired immunity.
Collapse
Affiliation(s)
- Kazuhisa Uemura
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Kei-ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Toshihiko Nishioka
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Hikaru Watanabe
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Gen Yamada
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Shinichi Asamura
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| |
Collapse
|
5
|
Salibian AA, Yu N, Patel KM. Staging Approaches to Lymphatic Surgery: Techniques and Considerations. J Surg Oncol 2025; 131:12-21. [PMID: 39558558 DOI: 10.1002/jso.27984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024]
Abstract
Lymphatic surgery has demonstrated promising outcomes for the treatment of lymphedema alongside nonsurgical techniques. Physiologic lymphatic surgeries including lymphovenous bypass and vascularized lymph node transplants address the fluid burden in lymphedema whereas reductive surgeries including suction lipectomy and excisional techniques address the fibroadipose component of the disease. Lymphedema patients often present with both fluid and fat components that may require different procedures for optimal results. In addition, the chronic, progressive nature of lymphedema can warrant the need for multiple procedures to address different anatomic areas as well as further improve outcomes. This paper reviews the current literature on staging different or repeated lymphatic procedures and proposes an algorithm to navigate physiologic and reductive lymphatic surgery when multiple procedures are needed to optimize surgical outcomes.
Collapse
Affiliation(s)
- Ara A Salibian
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Nina Yu
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Ketan M Patel
- Division of Plastic and Reconstructive Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Wei M, Wang L, Liu X, Deng Y, Yang S, Pan W, Zhang X, Xu G, Xiao S, Deng C. Metformin Eliminates Lymphedema in Mice by Alleviating Inflammation and Fibrosis: Implications for Human Therapy. Plast Reconstr Surg 2024; 154:1128e-1137e. [PMID: 38391208 PMCID: PMC11584190 DOI: 10.1097/prs.0000000000011363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Secondary lymphedema is a chronic, disabling disease affecting more than 50% of patients with cancer and lacking effective pharmacologic treatment even for early to middle disease stages. Metformin reportedly exerts anti-inflammatory and antifibrotic effects and is safe, with minimal side effects. The authors investigated the role of metformin in lymphedema mouse models and examined underlying molecular mechanisms. METHODS Male C57BL/6 mice (6 to 8 weeks old; n = 15/group) received metformin (300 mg/kg/day) by gavage on day 3 after lymphedema surgery; saline and sham groups were administered the same volume of saline. Hindlimb circumference and tail volume were monitored every 2 days. On day 28, samples were collected for histologic assessment, Western blotting, and reverse transcription quantitative polymerase chain reaction analysis of inflammation, fibrosis, and AMP-activated protein kinase (AMPK) expression. AMPK activity was assayed in patients with secondary lymphedema (International Society of Lymphology stage II) and controls following strict inclusion criteria. RESULTS Compared with the saline group, the metformin group exhibited hindlimb circumference and tail volume reduced by 469.70% and 305.18%, respectively, on day 28. Dermal thickness was reduced by 38.27% and 72.57% in the hindlimbs and tail, respectively. Metformin decreased CD4+ T-cell infiltration by 19.73%, and decreased expression levels of interleukin-4, interleukin-13, interleukin-17, and transforming growth factor-β1. In addition, it lowered collagen I deposition by 33.18%. Compared with the saline group, the number of lymphatic vessels increased by 229.96% in the metformin group. Both the saline group mice and patients with lymphedema showed reduced AMPK activity; metformin increased p-AMPK expression by 106.12%. CONCLUSION Metformin alleviated inflammation and fibrosis and increased lymphangiogenesis in lymphedema mouse models by activating AMPK signaling. CLINICAL RELEVANCE STATEMENT Metformin provides preliminary evidence as a potential therapeutic option for lymphedema.
Collapse
Affiliation(s)
- Miaomiao Wei
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Liangliang Wang
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Xin Liu
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Yaping Deng
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Sanhong Yang
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Wenjie Pan
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Xiaoshan Zhang
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
| | - Guangchao Xu
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University
| | - Shune Xiao
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University
| | - Chengliang Deng
- From the Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University
| |
Collapse
|
7
|
Kumegawa S, Suzuki T, Fujimoto K, Uemura K, Tachibana K, Yamada G, Asamura S. Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model. Int J Mol Sci 2024; 25:11883. [PMID: 39595953 PMCID: PMC11593372 DOI: 10.3390/ijms252211883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Drug therapy for secondary lymphedema has not yet been established. Conventional oral and intravenous administration is difficult to administer in sufficient doses due to adverse events. Therefore, it is necessary to develop a transdermal delivery system that can deliver high concentrations of drugs to the edema area. In this study, we examined the efficacy of transdermal drug delivery in a mouse model of tail edema using ultrasound irradiation (sonication method). Ultrasound irradiation can deliver high-molecular-weight substances subcutaneously, and the percutaneous administration of clobetasol propionate to the mouse tail edema model prevented the enlargement of lymphatic vessels with reduced tail volume. Therefore, steroid administration utilizing ultrasound irradiation is effective in decreasing tail swelling in a mouse tail edema model. Thus, ultrasound irradiation could have the potential to innovate the treatment of secondary lymphedema by directly administering the drug to the edema.
Collapse
Affiliation(s)
- Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takuya Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kota Fujimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kazuhisa Uemura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Gen Yamada
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
8
|
Brown S, Tadros AB, Montagna G, Bell T, Crowley F, Gallagher EJ, Dayan JH. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may reduce the risk of developing cancer-related lymphedema following axillary lymph node dissection (ALND). Front Pharmacol 2024; 15:1457363. [PMID: 39318780 PMCID: PMC11420520 DOI: 10.3389/fphar.2024.1457363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Patients undergoing axillary lymph node dissection (ALND) for breast cancer face a high risk of lymphedema, further increased by high body mass index (BMI) and insulin resistance. GLP-1 receptor agonists (GLP-1RAs) have the potential to reduce these risk factors, but their role in lymphedema has never been investigated. The purpose of this study was to determine if GLP-RAs can reduce the risk of lymphedema in patients undergoing ALND. Methods All patients who underwent ALND at a tertiary cancer center between 2010 and 2023 were reviewed. Patients with less than 2 years of follow-up from the time of ALND were excluded. Race, BMI, radiation, chemotherapy history, pre-existing diagnosis of diabetes, lymphedema development after ALND, and the use of GLP-1RAs were analyzed. Multivariate logistic regression analysis was performed to assess if there was a significant reduction in the risk of developing lymphedema after ALND. A sub-group analysis of non-diabetic patients was also performed. Results 3,830 patients who underwent ALND were included, 76 of which were treated with. GLP-1 RAs. The incidence of lymphedema in the GLP-1 RA cohort was 6.6% (5 patients). Compared to 28.5% (1,071 patients) in the non-GLP-1 RA cohort. On multivariate regression analysis, patients who were treated with GLP-1 RA were 86% less likely to develop lymphedema compared to the non-GLP-1 RA cohort (OR 0.14, 95% CI 0.04-0.32, p < 0.0001). A BMI of 25 kg/m 2 or greater was a statistically significant risk factor for developing lymphedema with an odds ratio of 1.34 (95% CI 1.16-1.56, p < 0.0001). Diabetes was associated with lymphedema development that closely approached statistical significance (OR 1.32, 95% CI 0.97-1.78, p = 0.06). A subgroup analysis solely on non-diabetic patients showed similar results. The odds of developing lymphedema were 84% lower for patients without diabetes treated with GLP1-RAs compared to those who did not receive GLP-1 RAs (OR 0.16, 95% CI 0.05-0.40, p < 0.0001). Conclusion GLP1-RAs appear to significantly reduce the risk of lymphedema in patientsundergoing ALND. The mechanism of action may be multifactorial and not limited to weight reduction and insulin resistance. Future prospective analysis is warranted to clarify the role of GLP-1RAs in reducing lymphedema risk.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Audree B. Tadros
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Giacomo Montagna
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tajah Bell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fionnuala Crowley
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emily J. Gallagher
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph H. Dayan
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- The Institute for Advanced Reconstruction, Plastic and Reconstructive Surgery, Red Bank, Paramus, NJ, United States
| |
Collapse
|
9
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
10
|
Kohle F, Wunderlich G, Fink GR, Schroeter M, Lehmann HC, Schneider C. Rituximab in non-systemic vasculitic neuropathy: a single-center experience. J Neurol 2024; 271:4406-4411. [PMID: 38656623 PMCID: PMC11233319 DOI: 10.1007/s00415-024-12378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES This case series reports clinical features and outcome of four patients with non-systemic vasculitic neuropathy (NSVN) treated with the anti-CD20 agent rituximab. METHODS Clinical, electrophysiological and biopsy data were retrospectively obtained and evaluated. Only patients with pathological definite or probable NSVN were included. Extensive clinical and laboratory work-up excluded systemic vasculitis. Follow-up data for at least 12 months and up to five years is provided. Outcome of the patients was assessed using the MRC-Sum Score, Prineas Score and Neurological Symptom Score. RESULTS Two of four patients treated with rituximab achieved disease remission and one patient remained stable under anti-CD20 therapy after a required treatment switch due to toxic side effects of cyclophosphamide. One patient deteriorated under rituximab induction. Rituximab was well tolerated in all patients. DISCUSSION Anti-CD20 therapy might be an alternative in NSVN patients requiring further treatment escalation or treatment switch due to side effects of corticosteroids or cyclophosphamide.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Hospital Leverkusen, Leverkusen, Germany
| | | |
Collapse
|
11
|
Crowley F, Brown S, Gallagher EJ, Dayan JH. GLP-1 receptor agonist as an effective treatment for breast cancer-related lymphedema: a case report. Front Oncol 2024; 14:1392375. [PMID: 38699640 PMCID: PMC11063291 DOI: 10.3389/fonc.2024.1392375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Lymphedema is a major public health issue for many women undergoing breast cancer treatment. Although weight loss has been reported to be beneficial in the treatment of lymphedema, no studies to date have examined the use of GLP-1RAs for the treatment of secondary lymphedema. This case report describes a patient who experienced significant resolution of her breast cancer-related lymphedema after initiation of a GLP-1RA for weight loss. Main symptoms and/or important clinical findings Nine months postoperatively the patient developed arm swelling and disability. While on adjuvant chemo and hormonal therapy, her weight increased dramatically and peaked 4 years later. Corresponding to her weight gain was significant worsening of her symptoms. The main diagnoses therapeutic interventions and outcomes Due to adjuvant cancer-related weight gain and inability to lose weight with diet and exercise, she was referred for evaluation and diagnosed with lymphedema. The patient started treatment with a Glucagon-like peptide 1 receptor agonist and lost 24% of her body weight over the next 13 months. The improvement in her lymphedema mirrored her weight loss. Her limb volume difference dropped from 10.3% down to 3.4% and she no longer required a compression garment. Her imaging demonstrated return of lymphatic pumping and she experienced a significant improvement in quality of life, assessed by a validated lymphedema-specific patient reported outcome (PROM). She remains on hormonal therapy, no longer needs compression and is back to regular exercise without impairment. Conclusions GLP-1 RAs provide a potential medical option for many patients struggling with weight gain and lymphedema. We have observed by all objective measures a significant reduction in lymphedema and the elimination of compression in the case presented as a direct result of GLP-1 RA. This may also reduce a patient's BMI to the point where they become a good candidate for lymphovenous bypass or vascularized lymph node transplant when indicated.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stav Brown
- Plastic and Reconstructive Surgery Division, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph H. Dayan
- Plastic and Reconstructive Surgery Division, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
12
|
Zamora A, Nougué M, Verdu L, Balzan E, Draia-Nicolau T, Benuzzi E, Pujol F, Baillif V, Lacazette E, Morfoisse F, Galitzky J, Bouloumié A, Dubourdeau M, Chaput B, Fazilleau N, Malloizel-Delaunay J, Bura-Rivière A, Prats AC, Garmy-Susini B. 15-Lipoxygenase promotes resolution of inflammation in lymphedema by controlling T reg cell function through IFN-β. Nat Commun 2024; 15:221. [PMID: 38177096 PMCID: PMC10766617 DOI: 10.1038/s41467-023-43554-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphedema (LD) is characterized by the accumulation of interstitial fluid, lipids and inflammatory cell infiltrate in the limb. Here, we find that LD tissues from women who developed LD after breast cancer exhibit an inflamed gene expression profile. Lipidomic analysis reveals decrease in specialized pro-resolving mediators (SPM) generated by the 15-lipoxygenase (15-LO) in LD. In mice, the loss of SPM is associated with an increase in apoptotic regulatory T (Treg) cell number. In addition, the selective depletion of 15-LO in the lymphatic endothelium induces an aggravation of LD that can be rescued by Treg cell adoptive transfer or ALOX15-expressing lentivector injections. Mechanistically, exogenous injections of the pro-resolving cytokine IFN-β restores both 15-LO expression and Treg cell number in a mouse model of LD. These results provide evidence that lymphatic 15-LO may represent a therapeutic target for LD by serving as a mediator of Treg cell populations to resolve inflammation.
Collapse
Affiliation(s)
- A Zamora
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - M Nougué
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - L Verdu
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - E Balzan
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - T Draia-Nicolau
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - E Benuzzi
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - F Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - E Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - F Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - J Galitzky
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - A Bouloumié
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - B Chaput
- Service de Chirurgie Plastique et des Brûlés, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - N Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University of Toulouse, 31024, Toulouse, France
| | - J Malloizel-Delaunay
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - A Bura-Rivière
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - A C Prats
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - B Garmy-Susini
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France.
| |
Collapse
|
13
|
Bucan A, Frendø M, Ngo MT, Sørensen JA, Hölmich LR. Surgical lymphedema models in the mice hindlimb-A systematic review and quality assessment. Microsurgery 2024; 44:e31088. [PMID: 37665032 DOI: 10.1002/micr.31088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Lymphedema constitutes a major unsolved problem in plastic surgery. To identify novel lymphedema treatments, preclinical studies are vital. The surgical mouse lymphedema model is popular and cost-effective; nonetheless, a synthesis and overview of the literature with evidence-based guidelines is needed. The aim of this review was to perform a systematic review to establish best practice and support future high-quality animal studies exploring lymphedema treatments. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching four databases (PubMed, Embase, Web of Science, and Scopus) from inception-September 2022. The Animals in Research Reporting In Vivo Experiments 2.0 (ARRIVE 2.0) guidelines were used to evaluate reporting quality. Studies claiming to surgically induce lymphedema in the hindlimb of mice were included. RESULTS Thirty-seven studies were included. Four main models were used. (1) Irradiation+surgery. (2) A variation of the surgery used by (1) + irradiation. (3) Surgery only (SPDF-model). (4) Surgery only (PLND-model). Remaining studies used other techniques. The most common measurement modality was the caliper. Mean quality coefficient was 0.57. Eighteen studies (49%) successfully induced sustained lymphedema. Combination of methods seemed to yield the best results, with an overrepresentation of irradiation, the removal of two lymph nodes, and the disruption of both the deep and superficial lymph vessels in the 18 studies. CONCLUSION Surgical mouse hindlimb lymphedema models are challenged by two related problems: (1) retaining lymphedema for an extended period, that is, establishing a (chronic) lymphedema model (2) distinguishing lymphedema from post-operative edema. Most studies failed to induce lymphedema and used error-prone measurements. We provide an overview of studies claiming to induce lymphedema and advocate improved research via five evidence-based recommendations to use: (1) a proven lymphedema model; (2) sufficient follow-up time, (3) validated measurement methods; (4) ARRIVE-guidelines; (5) contralateral hindlimb as control.
Collapse
Affiliation(s)
- Amar Bucan
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Martin Frendø
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR & Education, Copenhagen, Denmark
| | - Mikaella Ty Ngo
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jens Ahm Sørensen
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Chen Z, Ghavimi SAA, Wu M, McNamara J, Barreiro O, Maridas D, Kratchmarov R, Siegel A, Djeddi S, Gutierrez-Arcelus M, Brennan PJ, Padera TP, von Andrian U, Mehrara B, Greene AK, Kahn CR, Orgill DP, Sinha I, Rosen V, Agarwal S. PPARγ agonist treatment reduces fibroadipose tissue in secondary lymphedema by exhausting fibroadipogenic PDGFRα+ mesenchymal cells. JCI Insight 2023; 8:e165324. [PMID: 38131378 PMCID: PMC10807713 DOI: 10.1172/jci.insight.165324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Secondary lymphedema occurs in up to 20% of patients after lymphadenectomy performed for the surgical management of tumors involving the breast, prostate, uterus, and skin. Patients develop progressive edema of the affected extremity due to retention of protein-rich lymphatic fluid. Despite compression therapy, patients progress to chronic lymphedema in which noncompressible fibrosis and adipose tissue are deposited within the extremity. The presence of fibrosis led to our hypothesis that rosiglitazone, a PPARγ agonist that inhibits fibrosis, would reduce fibrosis in a mouse model of secondary lymphedema after hind limb lymphadenectomy. In vivo, rosiglitazone reduced fibrosis in the hind limb after lymphadenectomy. Our findings verified that rosiglitazone reestablished the adipogenic features of TGF-β1-treated mesenchymal cells in vitro. Despite this, rosiglitazone led to a reduction in adipose tissue deposition. Single-cell RNA-Seq data obtained from human tissues and flow cytometric and histological evaluation of mouse tissues demonstrated increased presence of PDGFRα+ cells in lymphedema; human tissue analysis verified these cells have the capacity for adipogenic and fibrogenic differentiation. Upon treatment with rosiglitazone, we noted a reduction in the overall quantity of PDGFRα+ cells and LipidTOX+ cells. Our findings provide a framework for treating secondary lymphedema as a condition of fibrosis and adipose tissue deposition, both of which, paradoxically, can be prevented with a pro-adipogenic agent.
Collapse
Affiliation(s)
- Ziyu Chen
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Soheila Ali Akbari Ghavimi
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mengfan Wu
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - David Maridas
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley Siegel
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Djeddi
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria Gutierrez-Arcelus
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Patrick J. Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy P. Padera
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Babak Mehrara
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arin K. Greene
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P. Orgill
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Indranil Sinha
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vicki Rosen
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Cąkała-Jakimowicz M, Domaszewska-Szostek A, Puzianowska-Kuznicka M. Interruption of Lymph Flow Worsens the Skin Inflammation Caused by Saprophytic Staphylococcus epidermidis. Biomedicines 2023; 11:3234. [PMID: 38137455 PMCID: PMC10740757 DOI: 10.3390/biomedicines11123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Lymphedema is often complicated by chronic inflammation, leading to fibrosis, fat deposition, and inhibition of lymphangiogenesis. This study aimed to verify whether lymphedema itself or together with commensal bacterial flora infection contributes to the severity of local inflammation. Edema was induced by interruption of the lymph flow in the rat's hind limb. Immune cell infiltrates were examined by flow cytometry and immunohistochemistry. Nine-day edema alone did not affect immune cell content in the skin but resulted in a decrease in CD4+ T helper lymphocytes and monocytes in the draining popliteal lymph nodes. In turn, local saprophytic Staphylococcus epidermidis infection of the edematous limb resulted in dense infiltrates of CD68+ macrophages and monocytes, MHC class II antigen-presenting cells, CD90+ stem cells, thymocytes, and immature B cells in the skin, accompanied by a simultaneous reduction in density of CD4+ T helper lymphocytes and monocytes, OX62+ dendritic cells, CD68+ macrophages and monocytes, HiS48+ granulocytes, CD90+ stem cells, thymocytes, and immature B cells in the draining popliteal lymph nodes. These results indicate that the combination of edema and saprophytic bacteria infection induces severe inflammation in the peripheral tissues and results in a delay of antibacterial protection processes in neighboring lymphatic organs.
Collapse
Affiliation(s)
- Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
16
|
Karlin J, Vranis N, Dayan E, Parsa K. Post-Hyaluronic Acid Recurrent Eyelid Edema: Pathophysiologic Mechanisms and a Proposed Treatment Protocol. Aesthet Surg J Open Forum 2023; 5:ojad102. [PMID: 38828092 PMCID: PMC11140515 DOI: 10.1093/asjof/ojad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Background Hyaluronic acid (HA) filler injections for facial augmentation are commonly administered but can lead to post-hyaluronic acid recurrent eyelid edema (PHAREE). The pathophysiology of this condition has not been fully understood. Objectives To report the successful treatment of PHAREE using serial hyaluronidase and fractionated radiofrequency microneedling, with additional carbon dioxide laser skin resurfacing in selected patients. Methods Five patients with PHAREE were treated with serial hyaluronidase injections and fractionated radiofrequency microneedling, with 2 patients receiving carbon dioxide laser treatment. The patients were followed up for a minimum of 24 months. Results All patients reported a resolution of PHAREE signs/symptoms with no adverse effects or recurrence. One patient demonstrated complete resolution after a single treatment; 4 required a series of treatments. Conclusions The proposed treatment protocol may provide advantages over hyaluronidase alone for PHAREE. The impermeable malar septum, vulnerable eyelid lymphatics, and potential immunogenicity of HA fragments likely contribute to PHAREE pathophysiology. Further research on pathophysiologic mechanisms is warranted. Level of Evidence 4
Collapse
Affiliation(s)
| | | | | | - Kami Parsa
- Corresponding Author: Dr Kami Parsa, 465 N Roxbury Dr, Ste 1011, Beverly Hills, CA 90210, USA. E-mail:
| |
Collapse
|
17
|
Abstract
Lymphedema is a debilitating disease characterized by extremity edema, fibroadipose deposition, impaired lymphangiogenesis, and dysfunctional lymphatics, often with lymphatic injury secondary to the treatment of malignancies. Emerging evidence has shown that immune dysfunction regulated by T cells plays a pivotal role in development of lymphedema. Specifically, Th1, Th2, Treg, and Th17 cells have been identified as critical regulators of pathological changes in lymphedema. In this review, our aim is to provide an overview of the current understanding of the roles of CD4+ T cells, including Th1, Th2, Treg, and Th17 subsets, in the progression of lymphedema and to discuss associated therapies targeting T cell inflammation for management of lymphedema.
Collapse
Affiliation(s)
- Ao Fu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunjun Liu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Yang YL, Zhou C, Chen Q, Shen SZ, Li JD, Wang XL, Wang PR. YAP1/Piezo1 involve in the dynamic changes of lymphatic vessels in UVR-induced photoaging progress to squamous cell carcinoma. J Transl Med 2023; 21:820. [PMID: 37974224 PMCID: PMC10655279 DOI: 10.1186/s12967-023-04458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND UV-induced cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers. The constant alterations of the lymphatic-centered immune microenvironment are essential in transforming from photoaging to cSCC. Studying the mechanism will be beneficial for new targets exploration to the early prediction of cSCC. AIMS To investigate the dynamic changes and mechanism of the lymphatic-centered immune microenvironment in transforming from photoaging to cSCC induced by ultraviolet irradiation (UVR). METHODS TIMER2.0 was used to analyze whether YAP1/VEGFC signaling pathway is involved in lymphangiogenesis in head and neck squamous cell carcinoma (HNSCC). Meanwhile, lymphatic-centered immune microenvironments alterations and the related cumulative survival time were also analyzed. With the accumulated UVR, skin photoaging developed and gradually progressed into actinic keratosis and cSCC on SKH-1 hairless mice. The skin lymphatic-centered immune microenvironment was evaluated at the 0th, 8th, 12th, 16-18th, and 20-24th week of UVR. Skin phenotype was assessed using optical coherence tomography (OCT) and skin image. H&E and Masson's trichrome staining evaluated epidermis and dermis. The structure of lymphatic vessels (LVs), blood vessels, and different types of T cells were evaluated by immunohistochemistry staining. The expression of Piezo1 whose deletion in adult lymphatics led to substantial valve degeneration, VE-cadherin that maintained the permeability of LVs, and YAP1 were evaluated by immunohistochemistry staining as well. Besides, the drainage function of LVs was assessed by Evans Blue assay in vivo. RESULTS The lymphatic function and immune cell infiltration underwent adaptive changes under continuous UVR. TIMER2.0 analysis indicated that VEGFC genes high expressed in HNSCC. YAP1 gene expression was positive correlated with VEGFC in HNSCC. LV density increased in human cSCC. More LVs in HNSCC were beneficial to prolong the survival time. VEGFC gene overexpression was positive correlated to CD8+T cell infiltration. More CD8A+T cells and CD8B+T cell infiltration in HNSCC extended survival time. When YAP1 gene overexpression and high infiltration of endothelial cells took place simultaneously might prolong the survival time of HNSCC patients. And high infiltration of CD8+T cells prolonged the survival time as well. In animal studies, UVR-induced eight weeks (photoaging) and 16-18 weeks (precancerous) were two turning points. The density of LVs in UV-8w was the least. When photoaged skin developed into AK lesions (UV-16-18w), LV slightly exceeded healthy skin and proliferated sharply in cSCC (UV-20-24w). YAP1 expression was almost consistent with LV but rose after the photoaging stage. The drainage of cSCC mice induced by UVR was better than that of photoaged skin and worse than that of health skin. The dynamic alterations of LVs number, Piezo1 expression, and collagen might be reasons for it. The expression of Piezo1 was in the highest point after 8 weeks of UVR, then gradually descended to the platform. The total T cells increased slowly, but the infiltration of CD4+T cells increased, and CD8+T cells decreased after eight weeks of UVR. The CD8+T cells and CD4+T cells increased sharply in UV-16-18w and UV-20-24w groups. CONCLUSION The lymphatic-centered immune microenvironment underwent adaptive changes under continuous UVR via regulating YAP1/VEGFC and Piezo1. During the formation of cSCC, there are two turning points, eight weeks (photoaging) and 16-18 weeks (precancerous). YAP1, Piezo1, LVs, and immune cells constantly changed with the skin state induced by UVR. According to these changes the process of cSCC can be identified in advance and intervene timely.
Collapse
Affiliation(s)
- Yuling L Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chu Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Z Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan D Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli L Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Peiru R Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Affiliation(s)
- Ebba Brakenhielm
- Rouen Institute for Innovation and Research in Biomedicine, INSERM EnVI UMR1096, University of Rouen Normandy, France
| |
Collapse
|
20
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Zhou Z, Sui X, Cao Z, Li X, Qing L, Tang J. Substance P promote macrophage M2 polarization to attenuate secondary lymphedema by regulating NF-kB/NLRP3 signaling pathway. Peptides 2023; 168:171045. [PMID: 37507091 DOI: 10.1016/j.peptides.2023.171045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023]
Abstract
Secondary lymphedema often occurs after filariasis, trauma, lymph node dissection and radiation therapy, which is manifested by infiltration of inflammatory cells and fibrosis formation in pathologically. Substance P is a widely used neuropeptide in the field of tissue repair, while the regenerative potential of the substance P has not been proven in the secondary lymphedema. In this study, animal model of secondary lymphedema was constructed by excising the skin and subcutaneous lymphatic network in the tail of mice, and the degree of swelling in the tail of mice was evaluated after 6 weeks under the treatment with substance P. Immunofluorescence staining was also performed to assess immune cell infiltration, subcutaneous fibrosis and lymphangiogenesis. The results revealed that substance P significantly alleviated post-surgical lymphedema in mice. Furthermore, we found that substance P promoted macrophages M2 polarization, a process associated with downregulation of the NF-kB/NLRP3 pathway. After application of disodium clodronate (macrophage scavenger, CLO), the positive effect of substance P in lymphedema is significantly inhibited. In vitro experiments, we further demonstrated the polarizing effect of substance P on bone marrow-derived macrophages (BMDMs), while substance P inhibited the activation of the NF-kB/NLRP3 pathway in BMDMs after the treatment of lipopolysaccharide (LPS). In addition, polarized macrophages were demonstrated to promote the proliferation, tube-forming and migratory functions of human lymphatic endothelial cells (hLEC). In conclusion, our study provides preliminary evidence that substance P alleviates secondary lymphedema by promoting macrophage M2 polarization, and this therapeutic effect may be associated with downregulation of the NF-kB/NLRP3 pathway.
Collapse
Affiliation(s)
- Zekun Zhou
- Xiangya hospital of central south university, Changsha, China
| | - Xinlei Sui
- Xiangya hospital of central south university, Changsha, China
| | - Zheming Cao
- Xiangya hospital of central south university, Changsha, China
| | - Xiaoxiao Li
- Changsha Medical University, Changsha, China
| | - Liming Qing
- Xiangya hospital of central south university, Changsha, China.
| | - Juyu Tang
- Xiangya hospital of central south university, Changsha, China.
| |
Collapse
|
22
|
Fu A, Liu C. Analysis of CD4 + T-helper-associated hub gene signature and immune dysregulation via RNA-sequencing data in a mouse tail model of lymphedema. Gland Surg 2023; 12:1141-1157. [PMID: 37842538 PMCID: PMC10570970 DOI: 10.21037/gs-23-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/02/2023] [Indexed: 10/17/2023]
Abstract
Background T-helper cells play an essential role in the progression of lymphedema. This study aimed to explore the biological significance of T-helper cell-associated genes (THAGs) in a mouse tail model of lymphedema by RNA-sequencing (RNA-seq) data. Methods The expression profiles of a murine model of secondary lymphedema were obtained from European Nucleotide Archive (ENA) database. Differentially expressed genes (DEGs) were screened and the enrichment analysis of DEGs was conducted. THAGs were constructed by crossing the T-helper-related gene sets obtained from Molecular Signatures Database with DEGs. Protein-protein interaction (PPI) network analysis was utilized to establish T-helper-associated hub genes (THAHGs). Single-sample gene set enrichment analysis (ssGSEA) was employed to decipher differences in immune cell infiltration. The correlation between THAHGs and immune infiltration was calculated by Pearson correlation analysis. Receiver operating characteristic (ROC) curves of THAHGs were drawn to evaluate their diagnostic properties. Additionally, potential drugs and upstream transcription factors (TFs) were predicted based on THAHGs. Results Enrichment analysis showed that lymphedematous tissue presented higher activation of biological process (BP) of T-helper 1 (Th1), T-helper 2 (Th2), T-helper 17 (Th17). The immune infiltration analysis further calculated that the relative immune abundance of follicular B cells, memory B cells, M1 macrophage, and CD4+ Tm cells was significantly elevated while the relative immune abundance of neutrophils and plasma cells were down-regulated in lymphedema. We established a list of THAHGs consisting of eight hub genes, compassing Cd4, Foxp3, Irf4, Ccr6, Il12rb1, Batf, Il1b, Cd74. THAHGs were shown to be significantly interrelated and related to immune infiltration by Pearson correlation analysis. ROC curves showcased that the area under curve (AUC) values of THAHGs were larger than 0.70. Gata3 was the most potential TF and thalidomide might be the immunoregulatory drug for lymphedema based on THAHGs. Conclusions Biological pathways associated with T-helpers were significantly enriched in mouse lymphedema tissue. The relative immune infiltration abundance of M1 macrophage, CD4+ Tm cells, and T-helper cells was higher in the lymphedema group. Besides, we identified the THAHGs containing eight genes, namely, Cd4, Foxp3, Irf4, Ccr6, Il12rb1, Batf, Il1b, and Cd74. The THAHGs were closely correlated with immune infiltration results and with good diagnostic properties.
Collapse
Affiliation(s)
- Ao Fu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunjun Liu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
25
|
Brown S, Nores GDG, Sarker A, Ly C, Li C, Park HJ, Hespe GE, Gardenier J, Kuonqui K, Campbell A, Shin J, Kataru RP, Aras O, Mehrara BJ. Topical captopril: a promising treatment for secondary lymphedema. Transl Res 2023; 257:43-53. [PMID: 36736951 PMCID: PMC10192126 DOI: 10.1016/j.trsl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-β1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-β1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-β1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela D G Nores
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ananta Sarker
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Ly
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire Li
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey E Hespe
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Gardenier
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Kuonqui
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adana Campbell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omer Aras
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
26
|
Imai H, Kawase T, Yoshida S, Mese T, Roh S, Fujita A, Uchiki T, Sasaki A, Nagamatsu S, Takazawa A, Ichinohe T, Koshima I. Peripheral T cell profiling reveals downregulated exhaustion marker and increased diversity in lymphedema post-lymphatic venous anastomosis. iScience 2023; 26:106822. [PMID: 37250774 PMCID: PMC10212982 DOI: 10.1016/j.isci.2023.106822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lymphedema is a progressive condition accompanying cellulitis and angiosarcoma, suggesting its association with immune dysfunction. Lymphatic venous anastomosis (LVA) can provide relief from cellulitis and angiosarcoma. However, the immune status of peripheral T cells during lymphedema and post-LVA remains poorly understood. Using peripheral blood T cells from lymphedema, post-LVA, and healthy controls (HCs), we compared the profile of T cell subsets and T cell receptor (TCR) diversity. PD-1+ Tim-3 + expression was downregulated in post-LVA compared with lymphedema. IFN-γ levels in CD4+PD-1+ T cells and IL-17A levels in CD4+ T cells were downregulated in post-LVA compared with lymphedema. TCR diversity was decreased in lymphedema compared with HCs; such TCR skewing was drastically improved in post-LVA. T cells in lymphedema were associated with exhaustion, inflammation, and diminished diversity, which were relieved post-LVA. The results provide insights into the peripheral T cell population in lymphedema and highlight the immune modulatory importance of LVA.
Collapse
Affiliation(s)
- Hirofumi Imai
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shuhei Yoshida
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshiro Mese
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Solji Roh
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Asuka Fujita
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Atsushi Takazawa
- Department of Orthopaedic Surgery, Hiroshima Hiramatsu Hospital, Hiroshima 732-0816, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Isao Koshima
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
27
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
28
|
Brown S, Campbell AC, Kuonqui K, Sarker A, Park HJ, Shin J, Kataru RP, Coriddi M, Dayan JH, Mehrara BJ. The Future of Lymphedema: Potential Therapeutic Targets for Treatment. CURRENT BREAST CANCER REPORTS 2023; 15:1-9. [PMID: 37359311 PMCID: PMC10233555 DOI: 10.1007/s12609-023-00491-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review aims to summarize the current knowledge regarding the pharmacological interventions studied in both experimental and clinical trials for secondary lymphedema. Recent Findings Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored pharmacological treatments in preclinical and early phase clinical trials. Summary Many potential treatment options for lymphedema have been explored throughout the past two decades including systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction with surgical approaches.
Collapse
Affiliation(s)
- Stav Brown
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Adana C. Campbell
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Kevin Kuonqui
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Ananta Sarker
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Joseph H. Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| |
Collapse
|
29
|
Tartaglia G, Park PH, Alexander MH, Nyström A, Rosenbloom J, South AP. Trametinib-Induced Epidermal Thinning Accelerates a Mouse Model of Junctional Epidermolysis Bullosa. Biomolecules 2023; 13:biom13050740. [PMID: 37238610 DOI: 10.3390/biom13050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Junctional epidermolysis bullosa (JEB) patients experience skin and epithelial fragility due to a pathological deficiency in genes associated with epidermal adhesion. Disease severity ranges from post-natal lethality to localized skin involvement with persistent blistering followed by granulation tissue formation and atrophic scarring. We evaluated the potential of utilizing Trametinib, an MEK inhibitor previously shown to target fibrosis, with and without the documented EB-anti-fibrotic Losartan for reducing disease severity in a mouse model of JEB; Lamc2jeb mice. We found that Trametinib treatment accelerated disease onset and decreased epidermal thickness, which was in large part ameliorated by Losartan treatment. Interestingly, a range of disease severity was observed in Trametinib-treated animals that tracked with epidermal thickness; those animals grouped with higher disease severity had thinner epidermis. To examine if the difference in severity was related to inflammation, we conducted immunohistochemistry for the immune cell markers CD3, CD4, CD8, and CD45 as well as the fibrotic marker αSMA in mouse ears. We used a positive pixel algorithm to analyze the resulting images and demonstrated that Trametinib caused a non-significant reduction in CD4 expression that inversely tracked with increased fibrotic severity. With the addition of Losartan to Trametinib, CD4 expression was similar to control. Together, these data suggest that Trametinib causes a reduction in both epidermal proliferation and immune cell infiltration/proliferation, with concurrent acceleration of skin fragility, while Losartan counteracts Trametinib's adverse effects in a mouse model of JEB.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pyung Hun Park
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael H Alexander
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center-University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
Sestito LF, To KH, Cribb MT, Archer PA, Thomas SN, Dixon JB. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. SCIENCE ADVANCES 2023; 9:eabq0435. [PMID: 36827374 PMCID: PMC9956116 DOI: 10.1126/sciadv.abq0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.
Collapse
Affiliation(s)
- Lauren F. Sestito
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Mechanical Engineering and Bioengineering, Valparaiso University, 1900 Chapel Dr, Valparaiso, IN 46383, USA
| | - Kim H. T. To
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew T. Cribb
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paul A. Archer
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - J. Brandon Dixon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
31
|
Brown S, Dayan JH, Kataru RP, Mehrara BJ. The Vicious Circle of Stasis, Inflammation, and Fibrosis in Lymphedema. Plast Reconstr Surg 2023; 151:330e-341e. [PMID: 36696336 PMCID: PMC9881755 DOI: 10.1097/prs.0000000000009866] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY Lymphedema is a progressive disease of the lymphatic system arising from impaired lymphatic drainage, accumulation of interstitial fluid, and fibroadipose deposition. Secondary lymphedema resulting from cancer treatment is the most common form of the disease in developed countries, affecting 15% to 40% of patients with breast cancer after lymph node dissection. Despite recent advances in microsurgery, outcomes remain variable and, in some cases, inadequate. Thus, development of novel treatment strategies is an important goal. Research over the past decade suggests that lymphatic injury initiates a chronic inflammatory response that regulates the pathophysiology of lymphedema. T-cell inflammation plays a key role in this response. In this review, the authors highlight the cellular and molecular mechanisms of lymphedema and discuss promising preclinical therapies.
Collapse
Affiliation(s)
- Stav Brown
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Joseph H Dayan
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Raghu P Kataru
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Babak J Mehrara
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
32
|
Park HJ, Kataru RP, Shin J, Garc A Nores GD, Encarnacion EM, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. Keratinocytes coordinate inflammatory responses and regulate development of secondary lymphedema. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524936. [PMID: 36711669 PMCID: PMC9882288 DOI: 10.1101/2023.01.20.524936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal changes are histological hallmarks of secondary lymphedema, but it is unknown if keratinocytes contribute to its pathophysiology. Using clinical lymphedema specimens and mouse models, we show that keratinocytes play a primary role in lymphedema development by producing T-helper 2 (Th2) -inducing cytokines. Specifically, we find that keratinocyte proliferation and expression of protease-activated receptor 2 (PAR2) are early responses following lymphatic injury and regulate the expression of Th2-inducing cytokines, migration of Langerhans cells, and skin infiltration of Th2-differentiated T cells. Furthermore, inhibition of PAR2 activation with a small molecule inhibitor or the proliferation inhibitor teriflunomide (TF) prevents activation of keratinocytes stimulated with lymphedema fluid. Finally, topical TF is highly effective for decreasing swelling, fibrosis, and inflammation in a preclinical mouse model. Our findings suggest that lymphedema is a chronic inflammatory skin disease, and topically targeting keratinocyte activation may be a clinically effective therapy for this condition.
Collapse
|
33
|
Nurlaila I, Roh K, Yeom CH, Kang H, Lee S. Acquired lymphedema: Molecular contributors and future directions for developing intervention strategies. Front Pharmacol 2022; 13:873650. [PMID: 36386144 PMCID: PMC9640931 DOI: 10.3389/fphar.2022.873650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 08/05/2023] Open
Abstract
Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.
Collapse
Affiliation(s)
- Ika Nurlaila
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Vaccine and Drugs, The National Research and Innovation Agency, Jakarta, Indonesia
| | - Kangsan Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Cardiology and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
34
|
Brown S, Dayan JH, Coriddi M, McGrath L, Kataru RP, Mehrara BJ. Doxycycline for the treatment of breast cancer-related lymphedema. Front Pharmacol 2022; 13:1028926. [PMID: 36339530 PMCID: PMC9630642 DOI: 10.3389/fphar.2022.1028926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose: Secondary lymphedema is a common complication of cancer treatment for which no effective drug treatments yet exist. Level I clinical data suggests that doxycycline is effective for treating filariasis-induced lymphedema, in which it decreases tissue edema and skin abnormalities; however, this treatment has not been tested for cancer-related lymphedema. Over the past year, we used doxycycline in an off-label manner in patients with breast cancer-related secondary lymphedema. The purpose of this report was to retrospectively analyze the efficacy of this treatment. Methods: Patients who presented to our lymphedema clinic between January 2021 and January 2022 were evaluated, and barring allergies or contraindications to doxycycline treatment, were counseled on the off-label use of this treatment. Patients who wished to proceed were treated with doxycycline (200 mg given orally once daily) for 6 weeks. After IRB approval of this study, lymphedema outcomes were retrospectively reviewed. Results: Seventeen patients with a mean follow-up of 17.0 ± 13.2 weeks were identified in our retrospective review. Although doxycycline treatment had no significant effect on relative limb volume change or L-Dex scores, we found a significant improvement in patient-reported quality of life. Analysis of patient responses to the Lymphedema Life Impact Scale showed a significant improvement in the total impairment score due to improvements in the physical and psychological well-being subscales (p = 0.03, p = 0.03, p = 0.04, respectively). Conclusion: This small, retrospective study did not show significant improvements in limb volume or L-Dex scores in patients with breast cancer-related lymphedema treated with doxycycline. However, our patients reported improvements in quality-of-life measures using a validated lymphedema patient-reported outcome instrument. Our results suggest that doxycycline may be of use in patients with breast cancer-related lymphedema; however, larger and more rigorous studies are needed.
Collapse
|
35
|
Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of Lymphangiogenesis by Human Mesenchymal Stem Cell Sheet. Adv Healthc Mater 2022; 11:e2200464. [PMID: 35678079 PMCID: PMC11932734 DOI: 10.1002/adhm.202200464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
37
|
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S, Hayashida K. Emerging Anti-Inflammatory Pharmacotherapy and Cell-Based Therapy for Lymphedema. Int J Mol Sci 2022; 23:ijms23147614. [PMID: 35886961 PMCID: PMC9322118 DOI: 10.3390/ijms23147614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary lymphedema is a common complication of lymph node dissection or radiation therapy for cancer treatment. Conventional therapies such as compression sleeve therapy, complete decongestive physiotherapy, and surgical therapies decrease edema; however, they are not curative because they cannot modulate the pathophysiology of lymphedema. Recent advances reveal that the activation and accumulation of CD4+ T cells are key in the development of lymphedema. Based on this pathophysiology, the efficacy of pharmacotherapy (tacrolimus, anti-IL-4/IL-13 antibody, or fingolimod) and cell-based therapy for lymphedema has been demonstrated in animal models and pilot studies. In addition, mesenchymal stem/stromal cells (MSCs) have attracted attention as candidates for cell-based lymphedema therapy because they improve symptoms and decrease edema volume in the long term with no serious adverse effects in pilot studies. Furthermore, MSC transplantation promotes functional lymphatic regeneration and improves the microenvironment in animal models. In this review, we focus on inflammatory cells involved in the pathogenesis of lymphedema and discuss the efficacy and challenges of pharmacotherapy and cell-based therapies for lymphedema.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2210
| |
Collapse
|
38
|
Sung C, Wang S, Hsu J, Yu R, Wong AK. Current Understanding of Pathological Mechanisms of Lymphedema. Adv Wound Care (New Rochelle) 2022; 11:361-373. [PMID: 34521256 PMCID: PMC9051876 DOI: 10.1089/wound.2021.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significance: Lymphedema is a common disease that affects hundreds of millions of people worldwide with significant financial and social burdens. Despite increasing prevalence and associated morbidities, the mainstay treatment of lymphedema is largely palliative without an effective cure due to incomplete understanding of the disease. Recent Advances: Recent studies have described key histological and pathological processes that contribute to the progression of lymphedema, including lymphatic stasis, inflammation, adipose tissue deposition, and fibrosis. This review aims to highlight cellular and molecular mechanisms involved in each of these pathological processes. Critical Issues: Despite recent advances in the understanding of the pathophysiology of lymphedema, cellular and molecular mechanisms underlying the disease remains elusive due to its complex nature. Future Directions: Additional research is needed to gain a better insight into the cellular and molecular mechanisms underlying the pathophysiology of lymphedema, which will guide the development of therapeutic strategies that target specific pathology of the disease.
Collapse
Affiliation(s)
- Cynthia Sung
- Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sarah Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jerry Hsu
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy Yu
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 Duarte Road, Familian Science Building 1018, Duarte, CA 91010, USA.
| |
Collapse
|
39
|
Saber S, Alomar SY, Yahya G. Blocking prostanoid receptors switches on multiple immune responses and cascades of inflammatory signaling against larval stages in snail fever. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43546-43555. [PMID: 35396684 PMCID: PMC9200668 DOI: 10.1007/s11356-022-20108-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/01/2022] [Indexed: 05/27/2023]
Abstract
Schistosomiasis, also known as snail fever or bilharziasis, is a worm infection caused by trematode called schistosomes that affects humans and animals worldwide. Schistosomiasis endemically exists in developing countries. Inflammatory responses elicited in the early phase of infection represent the rate limiting step for parasite migration and pathogenesis and could be a valuable target for therapeutic interventions. Prostaglandin E2 (PGE2) and interleukin (IL)-10 were found to be differentially affected in case of immune-modulation studies and cytokine analysis of hosts infected with either normal or radiation-attenuated parasite (RA) which switches off the development of an effective immune response against the migrating parasite in the early phase of schistosomiasis. Normal parasites induce predominantly a T helper 2 (Th2)-type cytokine response (IL-4 and IL-5) which is essential for parasite survival; here, we discuss in detail the downstream effects and cascades of inflammatory signaling of PGE2 and IL10 induced by normal parasites and the effect of blocking PGE2 receptors. We suggest that by selectively constraining the production of PGE2 during vaccination or therapy of susceptible persons or infected patients of schistosomiasis, this would boost IL-12 and reduce IL-10 production leading to a polarization toward the anti-worm Thl cytokine synthesis (IL-2 and Interferon (IFN)-γ).
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Suliman Y. Alomar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharkia, 44519 Egypt
| |
Collapse
|
40
|
Kataru RP, Park HJ, Shin J, Baik JE, Sarker A, Brown S, Mehrara BJ. Structural and Functional Changes in Aged Skin Lymphatic Vessels. FRONTIERS IN AGING 2022; 3:864860. [PMID: 35821848 PMCID: PMC9261401 DOI: 10.3389/fragi.2022.864860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022]
Abstract
Lymphatic structure and function play a critical role in fluid transport, antigen delivery, and immune homeostasis. A dysfunctional lymphatic system is associated with chronic low-grade inflammation of peripheral tissues, poor immune responses, and recurrent infections, which are also hallmarks of aging pathology. Previous studies have shown that aging impairs lymphatic structure and function in a variety of organ systems, including the intestines and central nervous system. However, previous studies are mostly limited to qualitative analysis of lymphatic structural changes and quantification of intestinal collecting vessel contractile function. It is not clear whether decreased lymphatic function contributes to pathological conditions related to aging, nor how it affects the skin immune microenvironment. Further, the effects of aging on skin initial and collecting lymphatic vessels, dendritic cell (DC) migration, cutaneous lymphatic pumping, and VEGFR-3 signaling in lymphatic endothelial cells (LECs) have not been quantitatively analyzed. Here, using fluorescent immunohistochemistry and flow cytometry, we confirm that aging decreases skin initial and collecting lymphatic vessel density. Indocyanine green (ICG) lymphangiography and DC migration assays confirm that aging decreases both fluid pumping and cell migration via lymphatic vessels. At the cellular level, aging causes decreased VEGFR-3 signaling, leading to increased LEC apoptosis and senescence. Finally, we determined that aging causes decreased lymphatic production of chemokines and alters LEC expression of junctional and adhesion molecules. This in turn leads to increased peri-lymphatic inflammation and nitrosative stress that might contribute to aging pathology in a feed-forward manner. Taken together, our study, in addition to quantitatively corroborating previous findings, suggests diverse mechanisms that contribute to lymphatic dysfunction in aging that in turn exacerbate the pathology of aging in a feed-forward manner.
Collapse
Affiliation(s)
- Raghu P. Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
42
|
Li D, Li J, Liu H, Zhai L, Hu W, Xia N, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Pathogenic Tconvs promote inflammatory macrophage polarization through GM‐CSF and exacerbate abdominal aortic aneurysm formation. FASEB J 2022; 36:e22172. [PMID: 35133017 PMCID: PMC9303938 DOI: 10.1096/fj.202101576r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM‐CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM‐CSF upregulated the expression of interferon regulatory factor 5 to promote M1‐like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM‐CSF produced by Tconvs enhanced the polarization of M1‐like macrophages and exacerbated AAA formation. Our findings revealed that GM‐CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jingyong Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Henan Liu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Luna Zhai
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wangling Hu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Guo‐Ping Shi
- Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston Massachusetts USA
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
43
|
Hsu SY, Lin CY, Cheng MH. Heparin-induced thrombocytopenia and thrombosis in primary lymphedema patients who underwent vascularized lymph node transplantations. J Surg Oncol 2022; 125:958-967. [PMID: 35107827 DOI: 10.1002/jso.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Heparin-induced thrombocytopenia and thrombosis (HITT) may result in microsurgical flap failure. This study investigated the outcomes of HITT in primary lymphedema patients who underwent vascularized lymph node transplantations (VLNT). METHODS Between 2012 and 2019, primary lymphedema patients who underwent VLNTs were retrospectively included. The 4Ts score was used to categorize patients into HITT (scores of 5-7) and non-HITT (score < 5) groups. Outcome evaluations included the re-exploration rate, success rate, circumferential differences, cellulitis episodes, and Lymphedema Specific Quality of Life Questionnaire (LYMQoL) scores. RESULTS Twenty-six and 15 patients with 31 and 16 VLNTs were included in the HITT and non-HITT groups, respectively. The HITT group had significantly greater first, second and third re-exploration rates of 38.7% (12/31), 25.7% (8/31), and 6.5% (2/31) than the non-HITT group (6.3%, 0%, and 0%, all p < 0.01), respectively. The platelet counts significantly decreased by 21.0% in the HITT group compared with the non-HITT group (14%) on postoperative Day one (p < 0.01) with a cutoff value of 17% and AUC = 0.88. CONCLUSIONS HITT may cause a high re-exploration rate of VLNTs in primary lymphedema patients. The 17% reduction in platelets on postoperative day one was an early sign for detecting HITT.
Collapse
Affiliation(s)
- Shao-Yun Hsu
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Lin
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Center for Lymphedema Microsurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Huei Cheng
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Center for Lymphedema Microsurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Section of Plastic Surgery, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Brown S, Dayan JH, Coriddi M, Campbell A, Kuonqui K, Shin J, Park HJ, Mehrara BJ, Kataru RP. Pharmacological Treatment of Secondary Lymphedema. Front Pharmacol 2022; 13:828513. [PMID: 35145417 PMCID: PMC8822213 DOI: 10.3389/fphar.2022.828513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.
Collapse
|
45
|
Weber E, Aglianò M, Bertelli E, Gabriele G, Gennaro P, Barone V. Lymphatic Collecting Vessels in Health and Disease: A Review of Histopathological Modifications in Lymphedema. Lymphat Res Biol 2022; 20:468-477. [PMID: 35041535 PMCID: PMC9603277 DOI: 10.1089/lrb.2021.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Secondary lymphedema of the extremities affects millions of people in the world as a common side effect of oncological treatments with heavy impact on every day life of patients and on the health care system. One of the surgical techniques for lymphedema treatment is the creation of a local connection between lymphatic vessels and veins, facilitating drainage of lymphatic fluid into the circulatory system. Successful results, however, rely on using a functional vessel for the anastomosis, and vessel function, in turn, depends on its structure. The structure of lymphatic collecting vessels changes with the progression of lymphedema. They appear initially dilated by excess interstitial fluid entered at capillary level. The number of lymphatic smooth muscle cells in their media then increases in the attempt to overcome the impaired drainage. When lymphatic muscle cells hyperplasia occurs at the expenses of the lumen, vessel patency decreases hampering lymph flow. Finally, collagen fiber accumulation leads to complete occlusion of the lumen rendering the vessel unfit to conduct lymph. Different types of vessels may coexist in the same patient but usually the distal part of the limb contains less affected vessels that are more likely to perform efficient lymphatic–venular anastomosis. Here we review the structure of the lymphatic collecting vessels in health and in lymphedema, focusing on the histopathological changes of the lymphatic vessel wall based on the observations on segments of the vessels used for lymphatic–venular anastomoses.
Collapse
Affiliation(s)
- Elisabetta Weber
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Margherita Aglianò
- Department of Clinical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Guido Gabriele
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Paolo Gennaro
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
46
|
Pilot Study of Anti-Th2 Immunotherapy for the Treatment of Breast Cancer-Related Upper Extremity Lymphedema. BIOLOGY 2021; 10:biology10090934. [PMID: 34571811 PMCID: PMC8466465 DOI: 10.3390/biology10090934] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023]
Abstract
Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer-related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.
Collapse
|
47
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
48
|
Alcantara DR, Jones CI, Altmann DM, Boyton RJ, Haniffa M, Newport MJ. Multiplexed gene expression analysis of HLA class II-associated podoconiosis implicates chronic immune activation in its pathogenesis. Trans R Soc Trop Med Hyg 2021; 114:926-936. [PMID: 33099652 PMCID: PMC7738654 DOI: 10.1093/trstmh/traa107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Background Podoconiosis is a tropical lymphoedema of the leg resulting from barefoot exposure to irritant volcanic soils. Approximately 4 million people are affected, mainly in African highland regions. The pathogenesis of this neglected tropical disease is still largely unknown, although HLA class II (HLAII) polymorphisms are associated with the disease. Methods NanoString technology was used to assess expression of 579 immune-related genes in formalin-fixed and paraffin-embedded lymph node archival samples from podoconiosis patients and unaffected controls. Results Forty-eight genes were upregulated and 21 downregulated in podoconiosis samples compared with controls. Gene ontology analysis showed differentially expressed genes to be closely related to major histocompatibility complex protein, cytokine and TNF receptor binding genes. Pathway enrichment analysis revealed involvement of lymphocyte activation, adaptive immunity, cytokine signalling, antigen processing and the IL-12 pathways. Conclusions This exploratory study reports a multiplex gene expression analysis in podoconiosis and shows upregulation of pro-inflammatory transcripts compatible with the notion of local, chronic immune activation in this HLAII-associated disease. Implicated pathways will inform future research into podoconiosis immunopathogenesis.
Collapse
Affiliation(s)
- Diana R Alcantara
- Brighton and Sussex Centre for Global Health Research, Department of Global Health & Infection, Brighton & Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PX, UK
| | - Christopher I Jones
- Department of Primary Care and Public Health, Brighton & Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PX, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Melanie J Newport
- Brighton and Sussex Centre for Global Health Research, Department of Global Health & Infection, Brighton & Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PX, UK
| |
Collapse
|
49
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
50
|
Cribb MT, Sestito LF, Rockson SG, Nicolls MR, Thomas SN, Dixon JB. The Kinetics of Lymphatic Dysfunction and Leukocyte Expansion in the Draining Lymph Node during LTB 4 Antagonism in a Mouse Model of Lymphedema. Int J Mol Sci 2021; 22:ijms22094455. [PMID: 33923272 PMCID: PMC8123113 DOI: 10.3390/ijms22094455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.
Collapse
Affiliation(s)
- Matthew T. Cribb
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lauren F. Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Stanley G. Rockson
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; (S.G.R.); (M.R.N.)
| | - Mark R. Nicolls
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; (S.G.R.); (M.R.N.)
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Susan N. Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence:
| |
Collapse
|