1
|
Zhang S, Chen Y, Lv Y, Feng Y, Gao C. Mitochondrial PGAM5 modulates methionine metabolism and feather follicle development by targeting Wnt/β-catenin signaling pathway in broiler chickens. J Anim Sci Biotechnol 2025; 16:35. [PMID: 40038789 DOI: 10.1186/s40104-025-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency. Methionine (Met) is an essential amino acid required for feather follicle development; yet the exact mechanism involved remains insufficiently understood. METHODS A total of 180 1-day-old broilers were selected and randomly divided into 3 treatments: control group (0.45% Met), Met-deficiency group (0.25% Met), and Met-rescue group (0.45% Met in the pre-trial period and 0.25% Met in the post-trial period). The experimental period lasted for 56 d, with a pre-trial period of 1-28 d and a post-trial period of 29-56 d. In addition, Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium. RESULTS Dietary Met-deficiency significantly (P < 0.05) reduced the ADG, ADFI and F/G, and inhibited feather follicle development. Met supplementation significantly (P < 0.05) improved growth performance and the feather growth in broilers. Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway (GSK-3β, CK1, Axin1, β-catenin, Active β-catenin, TCF4, and Cyclin D1). Compared with Met-deficiency group, Met-rescue significantly (P < 0.05) increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential, activated Wnt/β-catenin signaling pathway, and decreased the content of reactive oxygen species (P < 0.05). CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1, the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway, and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development. CONCLUSIONS PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway, and promotes feather follicle development and feather growth of broiler chickens through Met supplementation. These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yijun Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yaxue Lv
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqing Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Chunqi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
O’Connor JK. Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230426. [PMID: 40010392 PMCID: PMC11864835 DOI: 10.1098/rstb.2023.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 02/28/2025] Open
Abstract
Modern birds (Neornithes) are the mostly highly modified group of amniotes, bearing little resemblance to other extant sauropsids. Archaeopteryx, with its nearly modern wings but plesiomorphic skeleton, demonstrated more than 160 years ago that soft tissue specializations preceded skeletal modifications for flight. Soft tissues are thus of great importance for understanding the early evolution of modern avian physiology. Most commonly, traces of the integumentary system are preserved; exceptional discoveries include remnants of organs. Together, these have helped to elucidate the evolution of the lungs, ovaries, plumage and beak in early diverging birds. These fossils reveal that many important adaptations for efficient digestion, high oxygen intake, reduced body mass and improved wing structure, all of which serve to improve aerial capabilities and/or meet the energetic demands of this costly form of locomotion, evolved within the first 20-30 Myr of avian evolution. Soft tissue preservation also provides important clues for understanding the ecology of early diverging birds and may even elucidate the extinction of certain groups. However, the current fossil record of Mesozoic avian soft tissues is almost entirely limited to the Early Cretaceous and thus, discoveries from the Late Cretaceous have the potential to drastically transform our interpretation of the available data.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Jingmai K. O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605, USA
| |
Collapse
|
3
|
Xu X, Barrett PM. The origin and early evolution of feathers: implications, uncertainties and future prospects. Biol Lett 2025; 21:20240517. [PMID: 39969251 PMCID: PMC11837858 DOI: 10.1098/rsbl.2024.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025] Open
Abstract
As a defining feature of the clade, feathers are key to understanding bird biology. Discoveries of spectacular dinosaur and pterosaur fossils preserving feathers and feather-like integumentary appendages demonstrate trends of increasing complexity in gross morphology and microstructure through avemetatarsalian evolution, and the acquisition of complex flight feathers before the origin of birds. Moreover, this material shows some early feathers differed from modern feathers morphologically, ultrastructurally, biochemically and developmentally, revealing integumentary evolutionary pathways absent in modern taxa. These advances have changed conventional understanding of dinosaurs and impacted conceptions of both birds and feathers. However, it remains unknown if 'true' feathers originated at the base of Avemetatarsalia or within Theropoda. The former scenario implies multiple feather losses, the evolutionary and developmental mechanisms of which require investigation; the latter suggests pterosaurs and ornithischians independently evolved filamentous integumentary appendages, which might have shared genetic regulatory networks with theropod feathers. Answering these questions requires additional data on avemetatarsalian integument, particularly for sauropodomorphs, early diverging theropods and dinosaur outgroups, and more information on those taxa with known integumentary features. An integrative approach combining morphological, developmental, biochemical and taphonomic data, including extinct and extant taxa, is essential for a clearer understanding of feather origin and evolution.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, China
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, Yunnan650504, China
| | - Paul M. Barrett
- Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| |
Collapse
|
4
|
Tam EA, Robb FE, Champagne AM. Lipids in the American Alligator stratum corneum provide insights into the evolution of vertebrate skin. Comp Biochem Physiol A Mol Integr Physiol 2024; 292:111620. [PMID: 38452971 DOI: 10.1016/j.cbpa.2024.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In terrestrial vertebrates, the outermost layer of the skin, the stratum corneum (SC), provides a durable and flexible interface with the environment and is comprised of corneocytes embedded in lipids. However, the morphology and lipid composition of the SC varies throughout evolutionary history. Because crocodilians and birds phylogenetically bracket the Archosaurian clade, lipid composition in crocodilian SC may be compared with that of birds and other vertebrates to make inferences about broader phylogenetic patterns within Archosaurs while highlighting adaptations in vertebrate skin. We identified and quantified lipid classes in the SC of the American Alligator (Alligator mississippiensis) from three skin regions varying in mobility. Our results find similarities in lipid composition between alligator and avian SC, including a high percentage of cerebrosides, a polar lipid previously found only in the SC of birds and bats. Furthermore, polar lipids were more abundant in the most mobile region of the SC. Because polar lipids bind with water to increase skin hydration and therefore its pliability under physical stress, we hypothesize that selection for lipids in Archosaurian SC was driven by the unique distribution of proteins in the SC of this clade, and cerebrosides may have served as pre-adaptations for flight.
Collapse
Affiliation(s)
- Elissa A Tam
- Biology Department, University of Southern Indiana, Evansville, IN 47712, USA
| | - Frank E Robb
- Environmental Education Awareness Research Support and Services, Sharpes, FL 32959, USA
| | - Alex M Champagne
- Biology Department, University of Southern Indiana, Evansville, IN 47712, USA.
| |
Collapse
|
5
|
Yang Z, Jiang B, Xu J, McNamara ME. Cellular structure of dinosaur scales reveals retention of reptile-type skin during the evolutionary transition to feathers. Nat Commun 2024; 15:4063. [PMID: 38773066 PMCID: PMC11109146 DOI: 10.1038/s41467-024-48400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.
Collapse
Affiliation(s)
- Zixiao Yang
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Jiaxin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Falk D, Wings O, Unitt R, Wade J, McNamara ME. Fossilized anuran soft tissues reveal a new taphonomic model for the Eocene Geiseltal Konservat-Lagerstätte, Germany. Sci Rep 2024; 14:7876. [PMID: 38654038 PMCID: PMC11039752 DOI: 10.1038/s41598-024-55822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024] Open
Abstract
The Eocene Geiseltal Konservat-Lagerstätte (Germany) is famous for reports of three dimensionally preserved soft tissues with sub-cellular detail. The proposed mode of preservation, direct replication in silica, is not known in other fossils and has not been verified using modern approaches. Here, we investigated the taphonomy of the Geiseltal anurans using diverse microbeam imaging and chemical analytical techniques. Our analyses confirm the preservation of soft tissues in all body regions but fail to yield evidence for silicified soft tissues. Instead, the anuran soft tissues are preserved as two layers that differ in microstructure and composition. Layer 1 comprises sulfur-rich carbonaceous microbodies interpreted as melanosomes. Layer 2 comprises the mid-dermal Eberth-Katschenko layer, preserved in calcium phosphate. In addition, patches of original aragonite crystals define the former position of the endolymphatic sac. The primary modes of soft tissue preservation are therefore sulfurization of melanosomes and phosphatization of more labile soft tissues, i.e., skin. This is consistent with the taphonomy of vertebrates in many other Konservat-Lagerstätten. These findings emphasize an emerging model for pervasive preservation of vertebrate soft tissues via melanosome films, particularly in stagnation-type deposits, with phosphatization of more labile tissues where tissue biochemistry is favorable.
Collapse
Affiliation(s)
- Daniel Falk
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland.
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland.
| | - Oliver Wings
- Natural History Museum Bamberg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Fleischstraße 2, 96047, Bamberg, Germany
| | - Richard Unitt
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland
- Copper Coast UNESCO Global Geopark, Knockmahon, Bunmahon, X42 T923, Ireland
| | - Jon Wade
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland
| |
Collapse
|
7
|
Davis SN, Clarke JA. Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution 2021; 76:42-57. [PMID: 34719783 DOI: 10.1111/evo.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Carotenoids are pigments responsible for most bright yellow, red, and orange hues in birds. Their distribution has been investigated in avian plumage, but the evolution of their expression in skin and other integumentary structures has not been approached in detail. Here, we investigate the expression of carotenoid-consistent coloration across tissue types in all extant, nonpasserine species (n = 4022) and archelosaur outgroups in a phylogenetic framework. We collect dietary data for a subset of birds and investigate how dietary carotenoid intake may relate to carotenoid expression in various tissues. We find that carotenoid-consistent expression in skin or nonplumage keratin has a 50% probability of being present in the most recent common ancestor of Archosauria. Skin expression has a similar probability at the base of the avian crown clade, but plumage expression is unambiguously absent in that ancestor and shows hundreds of independent gains within nonpasserine neognaths, consistent with previous studies. Although our data do not support a strict sequence of tissue expression in nonpasserine birds, we find support that expression of carotenoid-consistent color in nonplumage integument structures might evolve in a correlated manner and feathers are rarely the only region of expression. Taxa with diets high in carotenoid content also show expression in more body regions and tissue types. Our results may inform targeted assays for carotenoids in tissues other than feathers, and expectations of these pigments in nonavian dinosaurs. In extinct groups, bare-skin regions and the rhamphotheca, especially in species with diets rich in plants, may express these pigments, which are not expected in feathers or feather homologues.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
8
|
Christophers E, Schröder JM. Evolution of innate defense in human skin. Exp Dermatol 2021; 31:304-311. [PMID: 34694661 DOI: 10.1111/exd.14482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
More often as compared to other barrier systems (gastrointestinal, urogenital, and respiratory linings) human skin over millions of years has been subject to fundamental changes in structure and function. When life on land started, the first changes consisted in the formation of a coherent impermeable stratum corneum. Two-legged locomotion was followed by loss of body hair and formation of sweat glands. Major changes took place after the agricultural revolution, investigating settlements with domestication of animals and plants. Living together after giving up nomadic life, hairless skin became a battlefield for pathogens, members of the skin microbiome, and arthropod visits. Human skin became exceptional in showing a boosted, highly developed immune system which is much more complex as compared to the "skins" of other species. A recently found skin disinfection system ("Cationic Intrinsically Disordered Antimicrobial Peptides, CIDAMPs") dates back to the origins of life and still is active in present-day integuments. As a skin-restricted and effective principle, keratinocyte- myeloid synergy (KMS) is recognized. As a consequence of such highly developed immune defense, the basic contributions of KMS - cells (keratinocytes, neutrophils, macrophages) in regulating innate immunity is emphasized. Antimicrobial peptides and chemokines became major keratinocyte products. The formation of impermeable str. corneum membrane has enabled KMS - cells to accumulate within upper skin levels and cause a special group of human skin diseases, pustular dermatoses.
Collapse
Affiliation(s)
- Enno Christophers
- Department of Dermatology, University-Hospital Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
9
|
Ehrlich F, Lachner J, Hermann M, Tschachler E, Eckhart L. Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates. Mol Biol Evol 2021; 37:982-993. [PMID: 31822906 PMCID: PMC7086170 DOI: 10.1093/molbev/msz279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Klingler JJ. The evolution of the pectoral extrinsic appendicular and infrahyoid musculature in theropods and its functional and behavioral importance. J Anat 2020; 237:870-889. [PMID: 32794182 DOI: 10.1111/joa.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/13/2023] Open
Abstract
Birds have lost and modified the musculature joining the pectoral girdle to the skull and hyoid, called the pectoral extrinsic appendicular and infrahyoid musculature. These muscles include the levator scapulae, sternomandibularis, sternohyoideus, episternocleidomastoideus, trapezius, and omohyoideus. As non-avian theropod dinosaurs are the closest relatives to birds, it is worth investigating what conditions they may have exhibited to learn when and how these muscles were lost or modified. Using extant phylogenetic bracketing, osteological correlates and non-osteological influences of these muscles are identified and discussed. Compsognathids and basal Maniraptoriformes were found to have been the likeliest transition points of a derived avian condition of losing or modifying these muscles. Increasing needs to control the feather tracts of the neck and shoulder, for insulation, display, or tightening/readjustment of the skin after dynamic neck movements may have been the selective force that drove some of these muscles to be modified into dermo-osseous muscles. The loss and modification of shoulder protractors created a more immobile girdle that would later be advantageous for flight in birds. The loss of the infrahyoid muscles freed the hyolarynx, trachea, and esophagus which may have aided in vocal tract filtering.
Collapse
Affiliation(s)
- Jeremy J Klingler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Alfonso-Rojas A, Cadena EA. Exceptionally preserved 'skin' in an Early Cretaceous fish from Colombia. PeerJ 2020; 8:e9479. [PMID: 32714661 PMCID: PMC7353916 DOI: 10.7717/peerj.9479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/14/2020] [Indexed: 01/13/2023] Open
Abstract
Studies of soft tissue, cells and original biomolecular constituents preserved in fossil vertebrates have increased greatly in recent years. Here we report preservation of 'skin' with chemical and molecular characterization from a three-dimensionally preserved caudal portion of an aspidorhynchid Cretaceous fish from the equatorial Barremian of Colombia, increasing the number of localities for which exceptional preservation is known. We applied several analytical techniques including SEM-EDS, FTIR and ToF-SIMS to characterize the micromorphology and molecular and elemental composition of this fossil. Here, we show that the fossilized 'skin' exhibits similarities with those from extant fish, including the wrinkles after suffering compression stress and flexibility, as well as architectural and tissue aspects of the two main layers (epidermis and dermis). This similarity extends also to the molecular level, with the demonstrated preservation of potential residues of original proteins not consistent with a bacterial source. Our results show a potential preservation mechanism where scales may have acted as an external barrier and together with an internal phosphate layer resulting from the degradation of the dermis itself creating an encapsulated environment for the integument.
Collapse
Affiliation(s)
- Andrés Alfonso-Rojas
- Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Universidad del Rosario, Bogotá, Colombia
| | - Edwin-Alberto Cadena
- Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Universidad del Rosario, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
12
|
Roy A, Pittman M, Saitta ET, Kaye TG, Xu X. Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol Rev Camb Philos Soc 2020; 95:22-50. [PMID: 31538399 PMCID: PMC7004074 DOI: 10.1111/brv.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023]
Abstract
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is typically stored in rod- to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary appendages create the so-called 'structural colours'. Reconstruction of colour patterns in ancient animals has opened an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape, arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
Collapse
Affiliation(s)
- Arindam Roy
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Evan T. Saitta
- Integrative Research Center, Section of Earth SciencesField Museum of Natural History1400 S. Lake Shore Drive, ChicagoIL60605U.S.A.
| | - Thomas G. Kaye
- Foundation for Scientific Advancement7023 Alhambra Drive, Sierra VistaAZ85650U.S.A.
| | - Xing Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of Sciences142 Xizhimenwai Street.Beijing100044China
| |
Collapse
|
13
|
Slater TS, McNamara ME, Orr PJ, Foley TB, Ito S, Wakamatsu K. Taphonomic experiments resolve controls on the preservation of melanosomes and keratinous tissues in feathers. PALAEONTOLOGY 2020; 63:103-115. [PMID: 32025055 PMCID: PMC6988486 DOI: 10.1111/pala.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures.
Collapse
Affiliation(s)
- Tiffany S. Slater
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Maria E. McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Patrick J. Orr
- UCDSchool of Earth SciencesUniversity College DublinDublinIreland
| | - Tara B. Foley
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| | - Shosuke Ito
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Kazumasa Wakamatsu
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| |
Collapse
|
14
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
15
|
Havstad JC, Smith NA. Fossils with Feathers and Philosophy of Science. Syst Biol 2019; 68:840-851. [PMID: 30753719 PMCID: PMC6701454 DOI: 10.1093/sysbio/syz010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/14/2023] Open
Abstract
The last half century of paleornithological research has transformed the way that biologists perceive the evolutionary history of birds. This transformation has been driven, since 1969, by a series of exciting fossil discoveries combined with intense scientific debate over how best to interpret these discoveries. Ideally, as evidence accrues and results accumulate, interpretive scientific agreement forms. But this has not entirely happened in the debate over avian origins: the accumulation of scientific evidence and analyses has had some effect, but not a conclusive one, in terms of resolving the question of avian origins. Although the majority of biologists have come to accept that birds are dinosaurs, there is lingering and, in some quarters, strident opposition to this view. In order to both understand the ongoing disagreement about avian origins and generate a prediction about the future of the debate, here we use a revised model of scientific practice to assess the current and historical state of play surrounding the topic of bird evolutionary origins. Many scientists are familiar with the metascientific scholars Sir Karl Popper and Thomas Kuhn, and these are the primary figures that have been appealed to so far, in prior attempts to assess the dispute. But we demonstrate that a variation of Imre Lakatos's model of progressive versus degenerative research programmes provides a novel and productive assessment of the debate. We establish that a refurbished Lakatosian account both explains the intractability of the dispute and predicts a likely outcome for the debate about avian origins. In short, here, we offer a metascientific tool for rationally assessing competing theories-one that allows researchers involved in seemingly intractable scientific disputes to advance their debates.
Collapse
Affiliation(s)
- Joyce C Havstad
- Department of Philosophy, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| | - N Adam Smith
- Campbell Geology Museum, Clemson University, 140 Discovery Lane, Clemson SC 29634, USA
| |
Collapse
|
16
|
Benton MJ, Dhouailly D, Jiang B, McNamara M. The Early Origin of Feathers. Trends Ecol Evol 2019; 34:856-869. [PMID: 31164250 DOI: 10.1016/j.tree.2019.04.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Feathers have long been regarded as the innovation that drove the success of birds. However, feathers have been reported from close dinosaurian relatives of birds, and now from ornithischian dinosaurs and pterosaurs, the cousins of dinosaurs. Incomplete preservation makes these reports controversial. If true, these findings shift the origin of feathers back 80 million years before the origin of birds. Gene regulatory networks show the deep homology of scales, feathers, and hairs. Hair and feathers likely evolved in the Early Triassic ancestors of mammals and birds, at a time when synapsids and archosaurs show independent evidence of higher metabolic rates (erect gait and endothermy), as part of a major resetting of terrestrial ecosystems following the devastating end-Permian mass extinction.
Collapse
Affiliation(s)
| | | | - Baoyu Jiang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University of Cork, Cork, Ireland
| |
Collapse
|