1
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
2
|
Kolinski L, Barrett TM, Kramer RA, Nunn CL. How market integration impacts human disease ecology. Evol Med Public Health 2024; 12:229-241. [PMID: 39524484 PMCID: PMC11544622 DOI: 10.1093/emph/eoae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024] Open
Abstract
Market integration (MI), or the shift from subsistence to market-based livelihoods, profoundly influences health, yet its impacts on infectious diseases remain underexplored. Here, we synthesize the current understanding of MI and infectious disease to stimulate more research, specifically aiming to leverage concepts and tools from disease ecology and related fields to generate testable hypotheses. Embracing a One Health perspective, we examine both human-to-human and zoonotic transmission pathways in their environmental contexts to assess how MI alters infectious disease exposure and susceptibility in beneficial, detrimental and mixed ways. For human-to-human transmission, we consider how markets expand contact networks in ways that facilitate infectious disease transmission while also increasing access to hygiene products and housing materials that likely reduce infections. For zoonotic transmission, MI influences exposures to pathogens through agricultural intensification and other market-driven processes that may increase or decrease human encounters with disease reservoirs or vectors in their shared environments. We also consider how MI-driven changes in noncommunicable diseases affect immunocompetence and susceptibility to infectious disease. Throughout, we identify statistical, survey and laboratory methods from ecology and the social sciences that will advance interdisciplinary research on MI and infectious disease.
Collapse
Affiliation(s)
- Lev Kolinski
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tyler M Barrett
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Randall A Kramer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Sharma P, Rathee S, Ahmad M, Siddiqui MH, Alamri S, Kaur S, Kohli RK, Singh HP, Batish DR. Leaf functional traits and resource use strategies facilitate the spread of invasive plant Parthenium hysterophorus across an elevational gradient in western Himalayas. BMC PLANT BIOLOGY 2024; 24:234. [PMID: 38561674 PMCID: PMC10985864 DOI: 10.1186/s12870-024-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Ravinder K Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
4
|
Ahmad M, Uniyal SK, Sharma P, Rathee S, Batish DR, Singh HP. Enhanced plasticity and reproductive fitness of floral and seed traits facilitate non-native species spread in mountain ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119222. [PMID: 37862892 DOI: 10.1016/j.jenvman.2023.119222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Floral and seed traits, their relationships, and responses to abiotic constraints are considered the key determinants of the invasion success of non-native plant species. However, studies evaluating the pattern of floral and seed traits of non-native species in mountain ecosystems are lacking. In this study, we determined (a) whether the floral and seed traits of native and non-native species show similarity or dissimilarity across elevations in mountains, and (b) whether the non-native species follow different allometric patterns compared with native species. Functional variations between native and non-native species were assessed through floral and seed traits: flower count, flower display area, flower mass, specific flower area, seed count, and seed mass across an elevational gradient. Permanent plots (20 × 20 m) were laid at each 100 m elevation rise from 2000 to 4000 m a.s.l. for sampling of herbaceous plant species. The mean values of floral and seed traits such as flower display area, specific flower area, and seed count were significantly higher for non-native species compared to native species. A significant difference in trait values (flower display area, flower mass, seed count, and seed mass) between non-native species and native species was observed along the elevational gradient, except for flower count and specific flower area. The bivariate relationship revealed non-native species to exhibit a stronger relationship between flower display area ∼ flower mass, and flower display area ∼ seed mass traits than the native species. Non-native species showed enhanced reproductive ability under varying environmental conditions along an elevational gradient in mountain ecosystems. Greater flower display area and seed mass at lower elevations and a stronger overall trait-trait relationship among non-native species implied resource investment in pollinator visualization, flower mass, and seed quality over seed quantity. The study concludes that enhanced plasticity and reproductive fitness of floral and seed traits would consequently aid non-native species to adapt, become invasive, and displace native species in mountain ecosystems if the climatic barriers acting on non-native species are reduced with climate change.
Collapse
Affiliation(s)
- Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, India; Department of Environmental Technology, CSIR-IHBT, Palampur, India
| | - Sanjay K Uniyal
- Department of Environmental Technology, CSIR-IHBT, Palampur, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Brian JI, Catford JA. A mechanistic framework of enemy release. Ecol Lett 2023; 26:2147-2166. [PMID: 37921034 DOI: 10.1111/ele.14329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The enemy release hypothesis (ERH) is the best-known hypothesis explaining high performance (e.g. rapid population growth) of exotic species. However, the current framing of the ERH does not explicitly link evidence of enemy release with exotic performance. This leads to uncertainty regarding the role of enemy release in biological invasions. Here, we demonstrate that the effect of enemy release on exotic performance is the product of three factors: enemy impact, enemy diversity, and host adaptation. These factors are modulated by seven contexts: time since introduction, resource availability, phylogenetic relatedness of exotic and native species, host-enemy asynchronicity, number of introduction events, type of enemy, and strength of growth-defence trade-offs. ERH-focused studies frequently test different factors under different contexts. This can lead to inconsistent findings, which typifies current evidence for the ERH. For example, over 80% of meta-analyses fail to consider ecological contexts which can alter study findings; we demonstrate this by re-analysing a recent ERH synthesis. Structuring the ERH around factors and contexts promotes generalisable predictions about when and where exotic species may benefit from enemy release, empowering effective management. Our mechanistic factor-context framework clearly lays out the evidence required to support the ERH, unifies many enemy-related invasion hypotheses, and enhances predictive capacity.
Collapse
Affiliation(s)
- Joshua I Brian
- Department of Geography, King's College London, London, UK
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
- Fenner School of Environment & Society, The Australian National University, Canberra, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Korpelainen H, Pietiläinen M. What Makes a Good Plant Invader? Life (Basel) 2023; 13:1596. [PMID: 37511971 PMCID: PMC10381298 DOI: 10.3390/life13071596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
We explored traits that promote plant invasions. External factors affecting invasion success consist of various abiotic and biotic constraints. How well plants perform under those depends on multiple characteristics, such as life history traits, genetic variation patterns, competitive and dispersal abilities, phenotypic plasticity, resistance, tolerance, and possibly allelopathic interactions. Since the introduction of invasive species is often connected with humans, their geographical distribution and differentiation may not reflect adaptation. However, a lack of adaptation may be compensated for by repeated introductions via mixing genotypes from multiple populations or through novel mutations. As a case study, we used data from the Global Invasive Species Database of IUCN and attempted to reveal factors contributing to invasiveness. The most prevalent features are that the dispersal is strongly human assisted, many species are used as ornamentals, disturbed habitats are favored, and most species are perennial. Distribution features show that the worst invasive species typically have a narrower native distribution, but both groups, i.e., most serious invasive and other listed invasive species, have commonly developed a multicontinental distribution. The change in the multicontinental distribution from 6% to 63% in most serious invasive species reflects their effectiveness in global dispersal and establishment. High proportions of invasive species in both groups have mixed reproduction systems, i.e., they have the ability to propagate both sexually and asexually (57% and 50%, respectively). This provides flexibility for spreading and establishment. A lower proportion of the worst invasive species was mainly/only sexual (23%, often hermaphrodites) when compared to other invasive plants (40%). In the case of sexual reproduction, hermaphroditism combined with self-compatibility may enhance invasiveness, since selfing allows fertilization and recombination even under low population densities. Overall, the ability for asexual propagation and, in the case of sexuality, hermaphroditism, is an asset in the invasion process.
Collapse
Affiliation(s)
- Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Maria Pietiläinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
7
|
Martin PR, Ghalambor CK. A Case for the "Competitive Exclusion-Tolerance Rule" as a General Cause of Species Turnover along Environmental Gradients. Am Nat 2023; 202:1-17. [PMID: 37384767 DOI: 10.1086/724683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractClosely related, ecologically similar species often segregate their distributions along environmental gradients of time, space, and resources, but previous research suggests diverse underlying causes. Here, we review reciprocal removal studies in nature that experimentally test the role of interactions among species in determining their turnover along environmental gradients. We find consistent evidence for asymmetric exclusion coupled with differences in environmental tolerance causing the segregation of species pairs, where a dominant species excludes a subordinate from benign regions of the gradient but is unable to tolerate challenging regions to which the subordinate species is adapted. Subordinate species were consistently smaller and performed better in regions of the gradient typically occupied by the dominant species compared with their native distribution. These results extend previous ideas contrasting competitive ability with adaptation to abiotic stress to include a broader diversity of species interactions (intraguild predation, reproductive interference) and environmental gradients, including gradients of biotic challenge. Collectively, these findings suggest that adaptation to environmental challenge compromises performance in antagonistic interactions with ecologically similar species. The consistency of this pattern across diverse organisms, environments, and biomes suggests generalizable processes structuring the segregation of ecologically similar species along disparate environmental gradients, a phenomenon that we propose should be named the competitive exclusion-tolerance rule.
Collapse
|
8
|
Mullins LR, Brown DJ, Lovsey SR, Bowers TA, Gershman SN. Roundup and immune challenge have different effects on a native field cricket and its introduced competitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27866-6. [PMID: 37284949 DOI: 10.1007/s11356-023-27866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Animals face many natural challenges, and humans have added to this burden by applying potentially harmful herbicides and unintentionally introducing competitors. We examine the recently introduced Velarifictorus micado Japanese burrowing cricket which shares the same microhabitat and mating season as the native Gryllus pennsylvanicus field cricket. In this study, we assess the combined effects of Roundup (glyphosate-based herbicide) and a lipopolysaccharide (LPS) immune challenge on both crickets. In both species, an immune challenge reduced the numbers of eggs that the female laid; however, this effect was much larger in G. pennsylvanicus. Conversely, Roundup caused both species to increase egg production, potentially representing a terminal investment strategy. When exposed to both an immune challenge and herbicide, G. pennsylvanicus fecundity was harmed more than V. micado fecundity. Furthermore, V. micado females laid significantly more eggs than G. pennsylvanicus, suggesting that introduced V. micado may have a competitive edge in fecundity over native G. pennsylvanicus. LPS and Roundup each had differing effects on male G. pennsylvanicus and V. micado calling effort. Overall, introduced male V. micado spent significantly more time calling than native G. pennsylvanicus, which could potentially facilitate the spread of this introduced species. Despite the population-level spread of introduced V. micado, in our study, this species did not outperform native G. pennsylvanicus in tolerating immune and chemical challenge. Although V. micado appears to possess traits that make this introduced species successful in colonizing new habitats, it may be less successful in traits that would allow it to outcompete a native species.
Collapse
Affiliation(s)
- Lydia R Mullins
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Dylan J Brown
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA
| | - Shelly R Lovsey
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA
| | - Troy A Bowers
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Susan N Gershman
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA.
| |
Collapse
|
9
|
Lim BS, Seok JE, Lim CH, Kim GS, Shin HC, Lee CS. Distribution, Effect, and Control of Exotic Plants in Republic of Korea. BIOLOGY 2023; 12:826. [PMID: 37372111 DOI: 10.3390/biology12060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
This study was carried out to clarify the spatial distribution of exotic plants at national, regional, and local levels, as well as their ecological impacts, and to prepare a strategy to reduce the impacts in Republic of Korea. This study was attempted at the national, regional, and local levels throughout Republic of Korea. Compositae occupied the highest percentage among invading exotic plants in Republic of Korea. A review of the biological attributes of exotic plants based on the dormancy form, longevity, disseminule form, growth form, and radicoid form showed that therophytes, annual plants, plants that disperse seeds by gravity (D4), erect form (E), and nonclonal growth form (R5) occupied the highest proportion. At the national level, the spatial distribution of exotic plants tended to depend on topographic conditions such as elevation and slope degree, and to increase around urbanized areas, agricultural fields, and coastal areas. The habitat types that exotic plants established were similar in their native habitat and in Korea, where they invaded. They preferred disturbed land such as roadsides, bare ground, agricultural fields, and so on. The spatial distribution of vegetation types dominated by exotic plants was restricted in the lowland. The proportion of the exotic/native plants tended to proportionate reversely to the vegetation type richness (the number of vegetation types); that is, the ecological diversity. The proportion of the exotic plants was higher in artificial plantations, vegetation due to disturbance, and vegetation established on lower slopes compared with upper slopes. Even at the local level, the exotic plants appeared abundantly in the introduced vegetation, while they were rare in the native ones. In the vegetation infected by exotic species, not only the species composition changed significantly, but the species diversity also decreased. Restorative treatment by introducing mantle vegetation around the hiking trail inhibited the establishment of exotic plants. Further, the restoration practice recovered the similarity of the species composition compared to the reference vegetation and increased the species diversity.
Collapse
Affiliation(s)
- Bong Soon Lim
- Department of Bio & Environmental Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Ji Eun Seok
- Department of Bio & Environmental Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Chi Hong Lim
- Department of Bio & Environmental Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Gyung Soon Kim
- National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Hyun Chul Shin
- National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Chang Seok Lee
- Department of Bio & Environmental Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
10
|
Gutierrez GM, LeCroy KA, Roulston TH, Biddinger DJ, López-Uribe MM. Osmia taurus (Hymenoptera: Megachilidae): A Non-native Bee Species With Invasiveness Potential in North America. ENVIRONMENTAL ENTOMOLOGY 2023; 52:149-156. [PMID: 36806615 DOI: 10.1093/ee/nvad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/18/2023]
Abstract
Bees are important pollinators and are essential for the reproduction of many plants in natural and agricultural ecosystems. However, bees can have adverse ecological effects when introduced to areas outside of their native geographic ranges. Dozens of non-native bee species are currently found in North America and have raised concerns about their potential role in the decline of native bee populations. Osmia taurus Smith (Hymenoptera: Megachilidae) is a mason bee native to eastern Asia that was first reported in the United States in 2002. Since then, this species has rapidly expanded throughout the eastern part of North America. Here, we present a comprehensive review of the natural history of O. taurus, document its recent history of spread through the United States and Canada, and discuss the evidence suggesting its potential for invasiveness. In addition, we compare the biology and history of colonization of O. taurus to O. cornifrons (Radoszkowski), another non-native mason bee species now widespread in North America. We highlight gaps of knowledge and future research directions to better characterize the role of O. taurus in the decline of native Osmia spp. Panzer and the facilitation of invasive plant-pollinator mutualisms.
Collapse
Affiliation(s)
- Grace M Gutierrez
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kathryn A LeCroy
- Department of Entomology, Cornell University, Ithaca, NY, 2126, USA
| | - T'ai H Roulston
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - David J Biddinger
- Penn State Fruit Research and Extension Center, Biglerville, PA, 17207, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Geppert C, Bertolli A, Prosser F, Marini L. Red-listed plants are contracting their elevational range faster than common plants in the European Alps. Proc Natl Acad Sci U S A 2023; 120:e2211531120. [PMID: 36913570 PMCID: PMC10041064 DOI: 10.1073/pnas.2211531120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 03/14/2023] Open
Abstract
Mountain ecosystems are exposed to multiple anthropogenic pressures that are reshaping the distribution of plant populations. Range dynamics of mountain plants exhibit large variability with species expanding, shifting, or shrinking their elevational range. Using a dataset of more than 1 million records of common and red-listed native and alien plants, we could reconstruct range dynamics of 1,479 species of the European Alps over the last 30 y. Red-listed species were not able to track climate warming at the leading edge of their distribution, and further experienced a strong erosion of rear margins, resulting in an overall rapid range contraction. Common natives also contracted their range, albeit less drastically, through faster upslope shift at the rear than at the leading edge. By contrast, aliens quickly expanded upslope by moving their leading edge at macroclimate change speed, while keeping their rear margins almost still. Most red-listed natives and the large majority of aliens were warm-adapted, but only aliens showed high competitive abilities to thrive under high-resource and disturbed environments. Rapid upward shifts of the rear edge of natives were probably driven by multiple environmental pressures including climate change as well as land-use change and intensification. The high environmental pressure that populations encounter in the lowlands might constrain the ability of expanding species to shift their range into more natural areas at higher elevations. As red-listed natives and aliens mostly co-occurred in the lowlands, where human pressures are at their highest, conservation should prioritize low-elevation areas of the European Alps.
Collapse
Affiliation(s)
- Costanza Geppert
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020Legnaro, Padova, Italy
| | - Alessio Bertolli
- Fondazione Museo Civico di Rovereto, 38068Rovereto, Trento, Italy
| | - Filippo Prosser
- Fondazione Museo Civico di Rovereto, 38068Rovereto, Trento, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020Legnaro, Padova, Italy
| |
Collapse
|
12
|
Stanek M, Kushwaha P, Murawska-Wlodarczyk K, Stefanowicz AM, Babst-Kostecka A. Quercus rubra invasion of temperate deciduous forest stands alters the structure and functions of the soil microbiome. GEODERMA 2023; 430:116328. [PMID: 37600960 PMCID: PMC10438910 DOI: 10.1016/j.geoderma.2023.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Invasive plants can modify the diversity and taxonomical structure of soil microbiomes. However, it is difficult to generalize the underlying factors as their influence often seems to depend on the complex plant-soil-microbial interactions. In this paper, we investigated how Quercus rubra impacts on the soil microbiome across two soil horizons in relation to native woodland. Five paired adjacent invaded vs native vegetation plots in a managed forest in southern Poland were investigated. Soil microbial communities were assessed along with soil enzyme activities and soil physicochemical parameters, separately for both organic and mineral horizons, as well as forest stand characteristics to explore plant-soil-microbe interactions. Although Q. rubra did not significantly affect pH, organic C, total N, available nutrients nor enzymatic activity, differences in soil abiotic properties (except C to N ratio) were primarily driven by soil depth for both vegetation types. Further, we found significant differences in soil microbiome under invasion in relation to native vegetation. Microbial richness and diversity were lower in both horizons of Q. rubra vs control plots. Moreover, Q. rubra increased relative abundance of unique amplicon sequence variants in both horizons and thereby significantly changed the structure of the core soil microbial communities, in comparison to the control plots. In addition, predicted microbial functional groups indicated a predominant soil depth effect in both vegetation plots with higher abundance of aerobic chemoheterotrophic bacteria and endophytic fungi in the organic horizon and greater abundance of methanotrophic and methylotrophic bacteria, and ectomycorrhizal fungi in the mineral horizon. Overall, our results indicate strong associations between Q. rubra invasion and changes in soil microbiome and associated functions, a finding that needs to be further investigated to predict modifications in ecosystem functioning caused by this invasive species.
Collapse
Affiliation(s)
- Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Priyanka Kushwaha
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Anna M. Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
de Carvalho-Junior L, Neves LM, Teixeira-Neves TP, Cardoso SJ. Long-term changes in benthic communities following the invasion by an alien octocoral in the Southwest Atlantic, Brazil. MARINE POLLUTION BULLETIN 2023; 186:114386. [PMID: 36462420 DOI: 10.1016/j.marpolbul.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Invasive alien species are considered one of the main threats to marine biodiversity. We used a BACI design to investigate the changes in rocky reef benthic communities related to the invasion of the octocoral Latissimia ningalooensis in the Southwest Atlantic. Drastic changes in benthic community structure were restricted to the invaded site and associated with the growth of L. ningalooensis on turf algae. Conversely, the zoanthid Palythoa caribaeorum remained stable coverage along the 9-year study period, indicating a greater biotic resistance against the octocoral. Latissimia ningalooensis spread from large and well-established patches to new areas of the reef, increasing turf-octocoral interactions. This study warns of the great invasive potential of the octocoral, due to its high abundance, competitive and expansion ability. The decline in abundance of turf-forming algae following the emergence of L. ningalooensis threatens the structure and functioning of macroalgal-dominated rocky reefs.
Collapse
Affiliation(s)
- Lécio de Carvalho-Junior
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Leonardo M Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil.
| | - Tatiana P Teixeira-Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
14
|
De Diego FC, Robbiati FO, Gaitán JJ, Fortunato RH. Morphological and distributional patterns of native and invasive Trifolium (Papilionoideae, Leguminosae) species in southern South America. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2126022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Carlos De Diego
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Instituto de Recursos Biológicos, CIRN, INTA, Nicolás Repetto y de Los Reseros s/n°, Hurlingham, 1686, Buenos Aires, Argentina
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón 1708, Buenos Aires, Argentina
| | - Federico Omar Robbiati
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, Córdoba, X5000JJC, Prov. Córdoba, Argentina
| | - Juan José Gaitán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Instituto de Suelos, CIRN, INTA, Nicolás Repetto y de Los Reseros s/n°, Hurlingham, 1686, Buenos Aires, Argentina
- Departamento de Tecnología, Universidad Nacional de Luján, Luján, 6700, Buenos Aires, Argentina
| | - Renée Hersilia Fortunato
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón 1708, Buenos Aires, Argentina
- Instituto de Botánica Darwinion (CONICET/ANCEFN), Labardén 200, Acassuso, 1641, Buenos Aires, Argentina
| |
Collapse
|
15
|
Godsoe W, Murray R, Iritani R. Species interactions and diversity: a unified framework using Hill numbers. OIKOS 2022. [DOI: 10.1111/oik.09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- William Godsoe
- Dept of Pest Managament and Conservation, Lincoln Univ. Lincoln New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, Univ. of Canterbury Christchurch New Zealand
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Wako Japan
| |
Collapse
|
16
|
Liu Y, Li W, Sui X, Li A, Li K, Gong Y. An exotic plant successfully invaded as a passenger driven by light availability. FRONTIERS IN PLANT SCIENCE 2022; 13:1047670. [PMID: 36570959 PMCID: PMC9767969 DOI: 10.3389/fpls.2022.1047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Invasive exotic plant species (IEPs) are widely distributed across the globe, but whether IEPs are drivers or passengers of habitat change in the invaded spaces remains unclear. Here, we carried out a vegetation and soil survey in 2018 and two independent field experiments (Pedicularis kansuensis removal in 2014 and 2015, and fertilization experiment since 2012) and found that the invasive annual P. kansuensis was at a disadvantage in light competition compared with perennial native grasses, but the successful invasion of P. kansuensis was due to the sufficient light resources provided by the reduced coverage of the native species. Conversely, nitrogen enrichment can effectively inhibit P. kansuensis invasion by increasing the photocompetitive advantage of the native species. sP. kansuensis invasion did not reduce species richness, but did increase plant community coverage, productivity and soil nutrients. Furthermore, the removal of P. kansuensis had little effect on the plant community structure and soil properties. Our results suggest that the passenger model perfectly explains the benign invasive mechanism of P. kansuensis. The invasion "ticket" of P. kansuensis is a spare ecological niche for light resources released by overgrazing.
Collapse
Affiliation(s)
- Yanyan Liu
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaolin Sui
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Airong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Kaihui Li
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Yanming Gong
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| |
Collapse
|
17
|
Santamarina S, Montesinos D, Alfaro‐Saiz E, Acedo C. Drought affects the performance of native oak seedlings more strongly than competition with invasive crested wattle seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1297-1305. [PMID: 35344631 PMCID: PMC10078637 DOI: 10.1111/plb.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Two of the most important processes threatening vulnerable plant species are competitive displacement by invasive alien species and water stress due to global warming. Quercus lusitanica, an oak shrub species with remarkable conservation interest, could be threatened by the expansion of the invasive alien tree Paraserianthes lophantha. However, it is unclear how competition would interact with predicted reductions in water availability due to global climate change. We set up a full factorial experiment to examine the direct interspecific competition between P. lophantha and Q. lusitanica seedlings under control and water-limited conditions. We measured seed biomass, germination, seedling emergence, leaf relative growth rate, biomass, root/shoot ratio, predawn shoot water potential and mortality to assess the individual and combined effects of water stress and interspecific competition on both species. Our results indicate that, at seedling stage, both species experience competitive effects and responses. However, water stress exhibited a stronger overall effect than competition. Although both species responded strongly to water stress, the invasive P. lophantha exhibited significantly less drought stress than the native Q. lusitanica based on predawn shoot water potential measurements. The findings of this study suggest that the competition with invasive P. lophantha in the short term must not be dismissed, but that the long-term conservation of the native shrub Q. lusitanica could be compromised by increased drought as a result of global change. Our work sheds light on the combined effects of biological invasions and climate change that can negatively affect vulnerable plant species.
Collapse
Affiliation(s)
- S. Santamarina
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Present address:
Department of Biodiversity and Environmental ManagementFaculty of Biological and Environmental SciencesUniversity of LeónCampus de VegazanaLeón24071Spain
| | - D. Montesinos
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversitySmithfieldQueenslandAustralia
| | - E. Alfaro‐Saiz
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Herbarium LEB Jaime Andrés RodríguezCRAI ExperimentalUniversity of LeónLeónSpain
| | - C. Acedo
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
| |
Collapse
|
18
|
Kimmel K, Clark M, Tilman D. Impact of multiple small and persistent threats on extinction risk. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13901. [PMID: 35212024 PMCID: PMC9790556 DOI: 10.1111/cobi.13901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Many species may face multiple distinct and persistent drivers of extinction risk, yet theoretical and empirical studies tend to focus on the single largest driver. This means that existing approaches potentially underestimate and mischaracterize future risks to biodiversity. We synthesized existing knowledge on how multiple drivers of extinction can interact to influence a species' overall extinction probability in a probabilistic model of extinction risk that incorporated the impacts of multiple drivers of extinction risk, their interactions, and their accumulative effects through time. We then used this model framework to explore how different threats, interactions between them, and time trends may affect a species' overall extinction probability. Multiple small threats together had potential to pose a large cumulative extinction risk; for example, 10 individual threats posed a 1% extinction risk each and cumulatively posed a 9.7% total extinction risk. Interactions among drivers resulted in escalated risk in some cases, and persistent threats with a small (1%) extinction risk each decade ultimately posed large extinction risk over 100 (9.6% total extinction risk) to 200 years (18.2% total extinction risk). By estimating long-term extinction risk posed by several different factors and their interactions, this approach provides a framework to identify drivers of extinction risk that could be proactively targeted to help prevent species currently of least concern from becoming threatened with extinction.
Collapse
Affiliation(s)
- Kaitlin Kimmel
- Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael Clark
- Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Oxford Martin SchoolUniversity of OxfordOxfordUK
- Department of ZoologyUniversity of OxfordOxfordUK
- Interdisciplinary Centre for Conservation ScienceUniversity of OxfordOxfordUK
| | - David Tilman
- Ecology, Evolution and Behavior DepartmentUniversity of MinnesotaSt. PaulMinnesotaUSA
- Bren School of Environmental Science and ManagementUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
19
|
Jiménez-Ramos R, Tomas F, Reynés X, Romera-Castillo C, Pérez-Lloréns JL, Egea LG. Carbon metabolism and bioavailability of dissolved organic carbon (DOC) fluxes in seagrass communities are altered under the presence of the tropical invasive alga Halimeda incrassata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156325. [PMID: 35649455 DOI: 10.1016/j.scitotenv.2022.156325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Seagrass beds act as blue carbon sinks globally as they enhance the trapping of recalcitrant (i.e., low biodegradability) organic carbon in their sediments. Recent studies also show that the recalcitrant fraction of the dissolved organic carbon (DOC) pool in seawater has an important role as long-term carbon sequestration in oceans. Although seagrasses are known for the large amount of DOC they export, little attention has been given to its biodegradability, which ultimately determinates its fate in the coastal carbon cycle. In turn, invasive algae are a major global concern in seagrass ecosystems since they can deeply modify their structure and functions, which may affect carbon metabolism and DOC release. This work assesses how the presence of Halimeda incrassata, an invasive tropical calcareous macroalga, modifies carbon metabolism and DOC fluxes in invaded areas dominated by the seagrass Cymodocea nodosa. Our results show that stands with the presence of this seagrass (i.e., both monospecific and mixed meadow) had the highest production values, acting as high DOC producers in both winter (mainly of labile DOC; DOCL) and summer (mainly as recalcitrant DOC; DOCR). In contrast, monospecific H. incrassata beds exhibited low production values, and the presence of this macroalga (either as monospecific beds or mixed with C. nodosa) triggered the shift from a net DOC-producing-system in summer (mainly DOCL) to a net DOC-consuming-system in winter. This work thus suggests that C. nodosa meadows have the potential to export a significant fraction of both labile and recalcitrant DOC, and that the spread of this invasive alga might decrease the C export capacity of seagrass meadows. Such shift would imply the reduction of a quick and efficient transfer of carbon and energy to higher trophic levels, and might reduce the blue carbon potential of seagrasses as dissolved form in the water column.
Collapse
Affiliation(s)
- R Jiménez-Ramos
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain.
| | - F Tomas
- Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain.
| | - X Reynés
- Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain
| | | | - J L Pérez-Lloréns
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain.
| | - L G Egea
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
20
|
Sirbu C, Miu IV, Gavrilidis AA, Gradinaru SR, Niculae IM, Preda C, Oprea A, Urziceanu M, Camen-Comanescu P, Nagoda E, Sirbu IM, Memedemin D, Anastasiu P. Distribution and pathways of introduction of invasive alien plant species in Romania. NEOBIOTA 2022. [DOI: 10.3897/neobiota.75.84684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biological invasions are one of the main drivers of modern human-induced species losses. Research on the distribution of alien species and their pathways of introduction is essential for understanding and tackling the invasion process. A comprehensive overview on invasive alien plant (IAP) species in Romania is lacking. With this paper, we aim to contribute to filling this gap and to provide a visualization of national patterns regarding plant species invasions, geographical origins and pathways of introductions. Based on plant species occurrence records in the published literature and herbaria we compiled a national database of 102 invasive and potentially invasive alien plant species. We georeferenced 42776 IAP species occurrences and performed an analysis of their spatial patterns. The spatial analyses revealed a biased sampling, with clear hotspots of increased sampling efforts around urban areas. We used chord diagrams to visualize the pathway of introduction and geographical origins of the IAP species, which revealed that species in Romania originate mainly in North and Central America, while the dominant pathway of plant introduction was horticulture. Our results provide an important baseline in drafting management and action plans, as invasive alien plant species represent a priority for the European Union through the Biodiversity Strategy for 2030, and a good starting point for various analyses as the database is further developed and regularly updated.
Collapse
|
21
|
Molecular Evidence Reveals the Sympatric Distribution of Cervus nippon yakushimae and Cervus nippon taiouanus on Jeju Island, South Korea. Animals (Basel) 2022; 12:ani12080998. [PMID: 35454244 PMCID: PMC9029077 DOI: 10.3390/ani12080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-native species threaten native ecosystems and species, particularly on islands where rates of endemism and vulnerability to threats are high. Understanding species invasion will aid in providing insights into ecological and evolutionary processes. To identify the non-native sika deer (Cervus nippon) population in Jeju, South Korea, and their phylogenetic affinities, we collected tissue samples from roadkill and the World Natural Heritage Headquarters in Jeju. Mitochondrial DNA cytochrome B (CytB) gene sequences were analyzed to determine two distinct CytB haplotypes. Phylogenetic analysis using maximum likelihood tree revealed two haplotypes of CytB clustered into two different groups representing two subspecies: C. n. yakushimae, native to Japan, and C. n. taiouanus, native to Taiwan. The tentative divergence time between the two subspecies was estimated at 1.81 million years. Our study confirmed that the two subspecies of sika deer are sympatric in the natural ecosystem of Jeju Island. This study provides valuable information to help government and conservation agencies understand alien species and determine control policies for conserving native biodiversity in South Korea.
Collapse
|
22
|
Furey GN, Hawthorne PL, Tilman D. Might field experiments also be inadvertent metacommunities? Ecology 2022; 103:e3694. [PMID: 35353386 DOI: 10.1002/ecy.3694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Metacommunity theory predicts that the composition and diversity of a site depends on its characteristics and those of its neighborhood. Dispersal between plots in a field experiment could link responses observed in a focal plot to both its treatment and those of its neighbors. However, the diversity, composition and treatments of neighboring plots are rarely included in analyses of experimental treatments. We analyzed a spatially gridded grassland nitrogen addition experiment and found that plant species richness and the composition of focal plots were influenced not just by their nitrogen treatment but also by the number of species in neighboring plots and their abundances. For each additional species in a focal plot's neighborhood, the species richness of the focal plot increased by 0.30 species per 0.3 m2 . Control plots had a significant loss of species, at a rate of ~0.23 species per 0.3 m2 per year during the 23-year experiment, but only when their neighborhoods had low species richness. Changes in the abundance of the three dominant species depended both on the nitrogen treatment of a focal plot and on their abundance in adjacent plots. Our analyses suggested that both the experimental nitrogen treatments and metacommunity processes co-determined plant species richness and plant species' abundances. Our findings suggested that analyzing many traditional field experiments with a metacommunity perspective may reveal confounding of experimental treatments and provide empirical data to test metacommunity theory.
Collapse
Affiliation(s)
- George N Furey
- Ecology Evolution and Behavior, College of Biological Science, University of Minnesota, St. Paul, MN
| | - Peter L Hawthorne
- Institute on the Environment, University of Minnesota, Saint Paul, MN
| | - David Tilman
- Bren School of Environmental Management, University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
23
|
Di B, Firn J, Buckley YM, Lomas K, Pausas JG, Smith AL. The impact of roadside burning on genetic diversity in a high‐biomass invasive grass. Evol Appl 2022; 15:790-803. [PMID: 35603028 PMCID: PMC9108304 DOI: 10.1111/eva.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Binyin Di
- School of Agriculture and Food Sciences University of Queensland Gatton 4343 Australia
| | - Jennifer Firn
- School of Biology & Environmental Science Queensland University of Technology Brisbane 4000 Australia
| | - Yvonne M. Buckley
- School of Natural Sciences, Zoology Trinity College Dublin The University of Dublin Dublin 2 Ireland
| | - Kate Lomas
- School of Biology & Environmental Science Queensland University of Technology Brisbane 4000 Australia
| | - Juli G. Pausas
- Centro de Investigaciones sobre Desertificación (CIDE‐CSIC) 46113 Montcada, Valencia Spain
| | - Annabel L. Smith
- School of Agriculture and Food Sciences University of Queensland Gatton 4343 Australia
| |
Collapse
|
24
|
Wang A, Melton AE, Soltis DE, Soltis PS. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. PLANT DIVERSITY 2022; 44:11-19. [PMID: 35281122 PMCID: PMC8897188 DOI: 10.1016/j.pld.2021.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios. Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics. Here, we focused on six species of allelopathic flowering plants-Ailanthus altissima, Casuarina equisetifolia, Centaurea stoebe ssp. micranthos, Dioscorea bulbifera, Lantana camara, and Schinus terebinthifolia-that are invasive in North America and examined their potential to spread further during projected climate change. We used Species Distribution Models (SDMs) to predict future suitable areas for these species in North America under several proposed future climate models. ENMEval and Maxent were used to develop SDMs, estimate current distributions, and predict future areas of suitable climate for each species. Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America. Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States, while new areas may become suitable in the northeastern United States and southeastern Canada. These findings show an overall northward shift of suitable climate during the next few decades, given projected changes in temperature and precipitation. Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.
Collapse
Affiliation(s)
- Anson Wang
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony E. Melton
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
25
|
Armoškaitė A, Aigars J, Andersone I, Hansen HS, Schrøder L, Strāķe S. Assessing change in habitat composition, ecosystem functioning and service supply in Latvian protected stony reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113537. [PMID: 34426214 DOI: 10.1016/j.jenvman.2021.113537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Healthy and diverse marine ecosystems are a source of a whole range of ecosystem services (ES) and social, and economic benefits. To preserve and restore biodiversity, and sustain service supply, an international goal was set to protect at least 10 % of the global coastal and marine area by 2020. The goal has been achieved mainly through the designation of marine protected areas (MPAs). Whilst activities within the MPAs can be restricted to manage local pressures, the protected habitats and species are still exposed to stressors that originate outside MPA borders (e.g., non-native species, eutrophication). This study investigates the change in the protected stony reef habitat composition using underwater video observation in the coastal area of the eastern Baltic Sea known to be under the pressure of a non-native fish species. Further, assesses what the observed changes have meant for ecosystem functioning and ES supply adopting a tailor-made, expert judgement-based ES supply assessment method developed during the BONUS BASMATI project. The results suggest that the quality of the protected habitats in the case study sites has deteriorated and the transformation in species composition has altered ecosystem functioning and ES supply. The study highlights the importance of rich and diverse habitats for human wellbeing and livelihoods. Further, emphasises the need for more stringent MPA management plans, as well as a wider ecosystem-based approach to decision making in order to limit the impacts of stressors on marine ecosystems and secure ES supply.
Collapse
Affiliation(s)
- Aurelija Armoškaitė
- Latvian Institute of Aquatic Ecology, Voleru iela 4, Riga, Latvia; Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, Denmark.
| | - Juris Aigars
- Latvian Institute of Aquatic Ecology, Voleru iela 4, Riga, Latvia
| | | | | | - Lise Schrøder
- Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, Denmark
| | - Solvita Strāķe
- Latvian Institute of Aquatic Ecology, Voleru iela 4, Riga, Latvia
| |
Collapse
|
26
|
Complex community responses underpin biodiversity change following invasion. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.
Collapse
|
27
|
Peterson K, Bode M. Using ensemble modeling to predict the impacts of assisted migration on recipient ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:678-687. [PMID: 32538472 DOI: 10.1111/cobi.13571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Assisted migration is a controversial conservation measure that aims to protect threatened species by moving part of their population outside its natural range. Although this could save species from extinction, it also introduces a range of risks. The magnitude of the threat to recipient ecosystems has not been investigated quantitatively, despite being the most common criticism leveled at the action. We used an ensemble modeling framework to estimate the risks of assisted migration to existing species within ecosystems. With this approach, we calculated the consequences of an assisted migration project across a very large combination of translocated species and recipient ecosystems. We predicted the probability of a successful assisted migration and the number of local extinctions would result from establishment of the translocated species. Using an ensemble of 1.5×106 simulated 15-species recipient ecosystems, we estimated that translocated species will successfully establish in 83% of cases if introduced to stable, high-quality habitats. However, assisted migration projects were estimated to cause an average of 0.6 extinctions and 5% of successful translocations triggered 4 or more local extinctions. Quantifying the impacts to species within recipient ecosystems is critical to help managers weigh the benefits and negative consequences of assisted migration.
Collapse
Affiliation(s)
- Katie Peterson
- ARC Centre of Excellence for Coral Reef Studies, Sir George Fisher Research Building, James Cook University, 1 James Cook Drive, Douglas, QLD, 4814, Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
28
|
Wang H, Xie D, Bowler PA, Zeng Z, Xiong W, Liu C. Non-indigenous species in marine and coastal habitats of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143465. [PMID: 33203561 DOI: 10.1016/j.scitotenv.2020.143465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The South China Sea (SCS) sustains and is a regional center of high marine and coastal biodiversity. It is also one of the most important mariculture and marine fisheries regions in the world. Many non-indigenous species (NIS) were introduced into the SCS as artifacts of increasing mariculture production and fishery harvests. Little information exists about NIS in the SCS. In this study, research examining NIS and their threats in the SCS are reviewed. Current NIS conditions assessed include their status, threat to native biodiversity, contribution to mariculture and fisheries harvest, management, and the need for future research in specific areas are identified. A total of 90 NIS including 17 algae, 6 vascular plants, 3 bryozoans, 23 molluscs, 6 crustacea, 3 ascidians, and 32 fishes were introduced into the SCS from 1600 to the present. The primary pathways of introduction are through aquaculture, followed by shipping, ecological restoration, and biocontrol. The main introduced country is China. Some NIS have caused negative impacts on the environment and economy. Some NIS are potential threats to humans as well as biodiversity in the SCS. More research focused upon monitoring and managing NIS in the SCS is needed.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture & Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agriculture University, Wuhan 430070, China
| | - Dong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peter A Bowler
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | - Zhangfan Zeng
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China.
| | - Wen Xiong
- College of Fisheries, Guangdong Ocean University, 524088, China.
| | | |
Collapse
|
29
|
Butt N, Wenger AS, Lohr C, Woodberry O, Morris K, Pressey RL. Predicting and managing plant invasions on offshore islands. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nathalie Butt
- School of Biological Sciences The University of Queensland Saint Lucia Queensland Australia
| | - Amelia S. Wenger
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
| | - Cheryl Lohr
- Department of Biodiversity, Conservation, and Attractions, Animal Science Program Woodvale Western Australia Australia
| | - Owen Woodberry
- Bayesian Intelligence Pty Ltd Monash University Melbourne Victoria Australia
| | - Keith Morris
- Department of Biodiversity, Conservation, and Attractions, Animal Science Program Woodvale Western Australia Australia
| | - Robert L. Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| |
Collapse
|
30
|
Leclerc JC, Brante A, Viard F. Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105231. [PMID: 33302154 DOI: 10.1016/j.marenvres.2020.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat-builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France; ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
31
|
Villon S, Mouillot D, Chaumont M, Subsol G, Claverie T, Villéger S. A new method to control error rates in automated species identification with deep learning algorithms. Sci Rep 2020; 10:10972. [PMID: 32620873 PMCID: PMC7334229 DOI: 10.1038/s41598-020-67573-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods. Here, we proposed a new framework to control the error rate of DLAs. More precisely, for each species, a confidence threshold was automatically computed using a training dataset independent from the one used to train the DLAs. These species-specific thresholds were then used to post-process the outputs of the DLAs, assigning classification scores to each class for a given image including a new class called “unsure”. We applied this framework to a study case identifying 20 fish species from 13,232 underwater images on coral reefs. The overall rate of species misclassification decreased from 22% with the raw DLAs to 2.98% after post-processing using the thresholds defined to minimize the risk of misclassification. This new framework has the potential to unclog the bottleneck of information extraction from massive digital data while ensuring a high level of accuracy in biodiversity assessment.
Collapse
Affiliation(s)
- Sébastien Villon
- MARBEC, Univ of Montpellier, CNRS, IRD, Ifremer, Montpellier, France. .,Research-Team ICAR, LIRMM, Univ of Montpellier, CNRS, Montpellier, France.
| | - David Mouillot
- MARBEC, Univ of Montpellier, CNRS, IRD, Ifremer, Montpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Marc Chaumont
- Research-Team ICAR, LIRMM, Univ of Montpellier, CNRS, Montpellier, France.,University of Nîmes, Nîmes, France
| | - Gérard Subsol
- Research-Team ICAR, LIRMM, Univ of Montpellier, CNRS, Montpellier, France
| | - Thomas Claverie
- MARBEC, Univ of Montpellier, CNRS, IRD, Ifremer, Montpellier, France.,CUFR Mayotte, Dembeni, France
| | | |
Collapse
|
32
|
Trindade DPF, Carmona CP, Pärtel M. Temporal lags in observed and dark diversity in the Anthropocene. GLOBAL CHANGE BIOLOGY 2020; 26:3193-3201. [PMID: 32282128 DOI: 10.1111/gcb.15093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding biodiversity changes in the Anthropocene (e.g. due to climate and land-use change) is an urgent ecological issue. This important task is challenging because global change effects and species responses are dependent on the spatial scales considered. Furthermore, responses are often not immediate. However, both scale and time delay issues can be tackled when, at each study site, we consider dynamics in both observed and dark diversity. Dark diversity includes those species in the region that can potentially establish and thrive in the local sites' conditions but are currently locally absent. Effectively, dark diversity connects biodiversity at the study site to the regional scales and defines the site-specific species pool (observed and dark diversity together). With dark diversity, it is possible to decompose species gains and losses into two space-related components: one associated with local dynamics (species moving from observed to dark diversity and vice versa) and another related to gains and losses of site-specific species pool (species moving to and from the pool after regional immigration, regional extinction or change in local ecological conditions). Extinction debt and immigration credit are useful to understand dynamics in observed diversity, but delays might happen in species pool changes as well. In this opinion piece we suggest that considering both observed and dark diversity and their temporal dynamics provides a deeper understanding of biodiversity changes. Considering both observed and dark diversity creates opportunities to improve conservation by allowing to identify species that are likely to go regionally extinct as well as foreseeing which of the species that newly arrive to the region are more likely to colonize local sites. Finally, by considering temporal lags and species gains and losses in observed and dark diversity, we combine phenomena at both spatial and temporal scales, providing a novel tool to examine biodiversity change in the Anthropocene.
Collapse
Affiliation(s)
- Diego P F Trindade
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
33
|
Chase JM, Jeliazkov A, Ladouceur E, Viana DS. Biodiversity conservation through the lens of metacommunity ecology. Ann N Y Acad Sci 2020; 1469:86-104. [PMID: 32406120 DOI: 10.1111/nyas.14378] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 01/09/2023]
Abstract
Metacommunity ecology combines local (e.g., environmental filtering and biotic interactions) and regional (e.g., dispersal and heterogeneity) processes to understand patterns of species abundance, occurrence, composition, and diversity across scales of space and time. As such, it has a great potential to generalize and synthesize our understanding of many ecological problems. Here, we give an overview of how a metacommunity perspective can provide useful insights for conservation biology, which aims to understand and mitigate the effects of anthropogenic drivers that decrease population sizes, increase extinction probabilities, and threaten biodiversity. We review four general metacommunity processes-environmental filtering, biotic interactions, dispersal, and ecological drift-and discuss how key anthropogenic drivers (e.g., habitat loss and fragmentation, and nonnative species) can alter these processes. We next describe how the patterns of interest in metacommunities (abundance, occupancy, and diversity) map onto issues at the heart of conservation biology, and describe cases where conservation biology benefits by taking a scale-explicit metacommunity perspective. We conclude with some ways forward for including metacommunity perspectives into ideas of ecosystem functioning and services, as well as approaches to habitat management, preservation, and restoration.
Collapse
Affiliation(s)
- Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany
| | - Alienor Jeliazkov
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany
| | - Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Duarte S Viana
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Leipzig University, Leipzig, Germany
| |
Collapse
|
34
|
First mussel settlement observed in Antarctica reveals the potential for future invasions. Sci Rep 2020; 10:5552. [PMID: 32218472 PMCID: PMC7099062 DOI: 10.1038/s41598-020-62340-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Global biodiversity is both declining and being redistributed in response to multiple drivers characterizing the Anthropocene, including synergies between biological invasions and climate change. The Antarctic marine benthos may constitute the last biogeographic realm where barriers (oceanographic currents, climatic gradients) have not yet been broken. Here we report the successful settlement of a cohort of Mytilus cf. platensis in a shallow subtidal habitat of the South Shetland Islands in 2019, which demonstrates the ability of this species to complete its early life stages in this extreme environment. Genetic analyses and shipping records show that this observation is consistent with the dominant vectors and pathways linking southern Patagonia with the Antarctic Peninsula and demonstrates the potential for impending invasions of Antarctic ecosystems.
Collapse
|
35
|
Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM, Blomberg SP, Crone EE, Ehrlén J, Garcia MB, Laine AL, Roach DA, Salguero-Gómez R, Wardle GM, Childs DZ, Elderd BD, Finn A, Munné-Bosch S, Baudraz MEA, Bódis J, Brearley FQ, Bucharova A, Caruso CM, Duncan RP, Dwyer JM, Gooden B, Groenteman R, Hamre LN, Helm A, Kelly R, Laanisto L, Lonati M, Moore JL, Morales M, Olsen SL, Pärtel M, Petry WK, Ramula S, Rasmussen PU, Enri SR, Roeder A, Roscher C, Saastamoinen M, Tack AJM, Töpper JP, Vose GE, Wandrag EM, Wingler A, Buckley YM. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc Natl Acad Sci U S A 2020; 117:4218-4227. [PMID: 32034102 PMCID: PMC7049112 DOI: 10.1073/pnas.1915848117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
Collapse
Affiliation(s)
- Annabel L Smith
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland;
- School of Agriculture and Food Science, University of Queensland, Gatton, 4343, Australia
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Jesus Villellas
- Departamento Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (MNCN-CSIC), E-28006 Madrid, Spain
| | - Jane A Catford
- Department of Geography, King's College London, WC2B 4BG London, United Kingdom
| | - Anna Mária Csergő
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department of Botany, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
- Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
| | - Simone P Blomberg
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria B Garcia
- Pyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Deborah A Roach
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | | | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Alain Finn
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, 08028 Barcelona, Spain
| | - Maude E A Baudraz
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Judit Bódis
- Georgikon Faculty, University of Pannonia, H-8360 Keszthely, Hungary
| | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, M1 5GD Manchester, United Kingdom
| | - Anna Bucharova
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 72074 Tübingen, Germany
- Ecosystem and Biodiversity Research Group, Institute of Landscape Ecology, University of Münster, 48149 Münster, Germany
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - John M Dwyer
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- CSIRO Land & Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| | - Ben Gooden
- CSIRO Health & Biosecurity, CSIRO, Black Mountain, ACT 2601, Australia
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Liv Norunn Hamre
- Department of Environmental Sciences, Western Norway University of Applied Sciences, N-6856 Sogndal, Norway
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Ruth Kelly
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Lauri Laanisto
- Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Michele Lonati
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Melanie Morales
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Research Group of Plant Biology under Mediterranean Conditions, Faculty of Biology, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Siri Lie Olsen
- Norwegian Institute for Nature Research, N-0349 Oslo, Norway
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - William K Petry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Satu Ramula
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Pil U Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- The National Research Centre for the Working Environment, 2100 København Ø, Denmark
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Anna Roeder
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Marjo Saastamoinen
- Helsinki Institute of Life Science, University of Helsinki, 00100 Helsinki, Finland
- Organismal and Evolutionary Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Elizabeth M Wandrag
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork T23 N73K, Ireland
| | - Yvonne M Buckley
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
36
|
Aizen MA, Arbetman MP, Chacoff NP, Chalcoff VR, Feinsinger P, Garibaldi LA, Harder LD, Morales CL, Sáez A, Vanbergen AJ. Invasive bees and their impact on agriculture. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Van Daele E, Knol J, Belzer C. Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Crit Rev Microbiol 2019; 45:613-648. [DOI: 10.1080/1040841x.2019.1680601] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Emmy Van Daele
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Gut Biology and Microbiology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Leclerc J, Viard F, González Sepúlveda E, Díaz C, Neira Hinojosa J, Pérez Araneda K, Silva F, Brante A. Habitat type drives the distribution of non‐indigenous species in fouling communities regardless of associated maritime traffic. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jean‐Charles Leclerc
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Frédérique Viard
- CNRS UMR 7144 AD2M Station Biologique de Roscoff Sorbonne Université Roscoff France
| | - Elizabeth González Sepúlveda
- Departmento de Química Ambiental Facultad de Ciencias Universidad Católica de la Santísima Concepción Concepción Chile
| | - Christian Díaz
- Departamento de Medio Ambiente y Energía Facultad de Ingeniería Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - José Neira Hinojosa
- Departamento de Análisis Instrumental Facultad de Farmacia Universidad de Concepción Concepción Chile
| | - Karla Pérez Araneda
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Francisco Silva
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Antonio Brante
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| |
Collapse
|
39
|
Different approaches to assess the local invasion risk on a threatened species: Opportunities of using high-resolution species distribution models by selecting the optimal model complexity. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Veresoglou SD, Peñuelas J. Variance in biomass-allocation fractions is explained by distribution in European trees. THE NEW PHYTOLOGIST 2019; 222:1352-1363. [PMID: 30636348 DOI: 10.1111/nph.15686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 05/04/2023]
Abstract
Intraspecific variability in ecological traits confers the ability of a species to adapt to an ever-changing environment. Fractions of biomass allocation in plants (BAFs) represent both ecological traits and direct expressions of investment strategies and so have important implications on plant fitness, particularly under current global change. We combined data on BAFs of trees in > 10 000 forest plots with their distributions in Europe. We aimed to test whether plant species with wider distributions have more or less variable intraspecific variance of the BAFs foliage-woody biomass and shoot-root ratios than species with limited distribution. Irrespective of corrections for tree age and phylogenetic relatedness, the standard deviation in BAFs was up to three times higher in species with the most extensive distributions than in those with the least extensive distribution due to a higher genetic diversity. Variance in BAFs also increased with latitude. We show that a combination of 36% tree genetic diversity and 64% environmental variability explains variance in BAFs and implies that changes in genetic diversity occur quickly. Genetic diversity should thus play a key role in regulating species responses to future climate change. Loss of habitat, even if transient, could induce a loss of genetic diversity and hinder species survival.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany
- Faculty of Agriculture, Laboratory of Ecology and Environmental Protection, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
41
|
Anton A, Geraldi NR, Lovelock CE, Apostolaki ET, Bennett S, Cebrian J, Krause-Jensen D, Marbà N, Martinetto P, Pandolfi JM, Santana-Garcon J, Duarte CM. Global ecological impacts of marine exotic species. Nat Ecol Evol 2019; 3:787-800. [DOI: 10.1038/s41559-019-0851-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/24/2019] [Indexed: 11/09/2022]
|
42
|
Catford JA, Smith AL, Wragg PD, Clark AT, Kosmala M, Cavender-Bares J, Reich PB, Tilman D. Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol Lett 2019; 22:593-604. [PMID: 30779414 DOI: 10.1111/ele.13220] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Much uncertainty remains about traits linked with successful invasion - the establishment and spread of non-resident species into existing communities. Using a 20-year experiment, where 50 non-resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader-community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high-specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long-term. Our results indicate that invasion is context-dependent and long-term experiments are required to comprehensively understand invasions.
Collapse
Affiliation(s)
- Jane A Catford
- Department of Geography, King's College London, Strand, London, WC2R 2LS, UK.,School of BioSciences, The University of Melbourne, Vic, 3010, Australia.,Fenner School of Environment & Society, Australian National University, Canberra, ACT, 2601, Australia.,Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Annabel L Smith
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Peter D Wragg
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
| | - Adam T Clark
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Physiological Diversity, Helmholtz Center for Environmental Research (UFZ), Permoserstrasse 15, Leipzig, 04318, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Margaret Kosmala
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - David Tilman
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Bren School of Environmental Science and Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, CA, 93106, USA
| |
Collapse
|