1
|
Yu H, Zhang G, Ma Y, Ma T, Wang S, Ding J, Liu J, Zhao Z, Zhou Z, Jiao S, Dong G, Cai Z. Single-cell and spatial transcriptomics reveal the pathogenesis of chronic granulomatous disease in a natural model. Cell Rep 2025; 44:115612. [PMID: 40272982 DOI: 10.1016/j.celrep.2025.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Genetic defects in NADPH oxidase 2 (NOX2) cause chronic granulomatous disease (CGD), which is characterized by increased susceptibility to infections and excessive inflammation leading to granuloma formation. We developed a CGD model using Ncf2-/- mice through controlled environmental exposure. Unlike in specific-pathogen-free environments, these mice spontaneously developed pulmonary granulomas under clean-grade conditions. In the affected lung tissue, significant changes in microbial communities were observed, accompanied by the infiltration of neutrophils and monocyte-derived macrophages (MDMs). Specific nitric oxide synthase 2 (NOS2)high neutrophils with a pro-inflammatory transcriptional profile localize at the granuloma core, while an MDM subpopulation marked by MMP12 at the periphery exhibits a pro-fibrotic signature. Pharmacological inhibition of macrophage migration inhibitory factor (MIF), deletion of the pro-survival gene myeloid RNA regulator of Bim-induced death (Morrbid), and knockout of Il1r1 all suppressed granuloma formation by mitigating inflammation. This study underscores the establishment of a natural CGD model through environmental control, elucidates the mechanisms of granuloma formation, and develops potent therapeutic interventions.
Collapse
Affiliation(s)
- Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yunxi Ma
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Tianrui Ma
- State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shanshan Wang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jiayu Ding
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zilong Zhao
- State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Pressley KR, Naseem Y, Nalawade S, Forsthuber TG. The distinct functions of MIF in inflammatory cardiomyopathy. Front Immunol 2025; 16:1544484. [PMID: 40092999 PMCID: PMC11906721 DOI: 10.3389/fimmu.2025.1544484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The immune system plays a crucial role in cardiac homeostasis and disease, and the innate and adaptive immune systems can be beneficial or detrimental in cardiac injury. The pleiotropic proinflammatory cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of many human disease conditions, including heart diseases and inflammatory cardiomyopathies. Inflammatory cardiomyopathies are frequently observed after microbial infection but can also be caused by systemic immune-mediated diseases, drugs, and toxic substances. Immune cells and MIF are implicated in many of these conditions and may affect progression of inflammatory cardiomyopathy (ICM) to myocardial remodeling and dilated cardiomyopathy (DCM). The potential for targeting MIF therapeutically in patients with inflammatory diseases is an active area of investigation. Here we review the current literature supporting the role(s) of MIF in ICM and cardiac dysfunction. We posit that future research to further elucidate the underlying functions of MIF in cardiac pathologies is warranted.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yashfa Naseem
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Saisha Nalawade
- Department of Pre-clinical Immunology, Corner Therapeutics, Watertown, MA, United States
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Cheng Y, Dong X, Shi J, Wu G, Tao P, Ren N, Zhao Y, Li F, Wang Z. Immunomodulation with M2 macrophage-derived extracellular vesicles for enhanced titanium implant osseointegration under diabetic conditions. Mater Today Bio 2025; 30:101385. [PMID: 39742145 PMCID: PMC11683253 DOI: 10.1016/j.mtbio.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
M2 macrophage-derived extracellular vesicles (M2-EVs) demonstrate the capacity to reduce pro-inflammatory M1 macrophage formation, thereby restoring the M1-M2 macrophage balance and promoting immunoregulation. However, the efficacy of M2-EVs in regulating macrophage polarization and subsequently enhancing osseointegration around titanium (Ti) implants in patients with diabetes mellitus (DM) remains to be elucidated. In this study, Ti implants were coated with polydopamine to facilitate M2-EVs adherence. In vitro experiment results demonstrated that M2-EVs could carry miR-23a-3p, inhibiting NOD-like receptor protein3(NLRP3) inflammasome activation in M1 macrophage and reducing the levels of inflammatory cytokines such as IL-1β by targeting NEK7. This improved the M1-M2 macrophage balance and enhanced mineralization on the Ti implant surfaces. The in vivo experiment results demonstrated that in diabetic conditions, the nanocoated M2-EVs significantly promoted high-quality bone deposition around the Ti implants. The current results provide a novel perspective for simple and effective decoration of M2-EVs on Ti implants; clinically, the method may afford osteoimmunomodulatory effects enhancing implant osseointegration in patients with DM.
Collapse
Affiliation(s)
- Yuzhao Cheng
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Xin Dong
- Department of Orthopedic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jing Shi
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guangsheng Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- Department of Stomatology, Qingdao Special Servicemen Recuperation Center of PLA Navy, No.18 Yueyang Road, Qingdao, 266071, China
| | - Pei Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, 336000, China
| | - Nan Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Fenglan Li
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhongshan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| |
Collapse
|
4
|
Szabo A, Akkouh I, Osete JR, de Assis DR, Kondratskaya E, Hughes T, Ueland T, Andreassen OA, Djurovic S. NLRP3 inflammasome mediates astroglial dysregulation of innate and adaptive immune responses in schizophrenia. Brain Behav Immun 2025; 124:144-156. [PMID: 39617069 DOI: 10.1016/j.bbi.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Mounting evidence indicates the involvement of neuroinflammation in the development of schizophrenia (SCZ), but the potential role of astroglia in this phenomenon remains poorly understood. We assessed the molecular and functional consequences of inflammasome activation using induced pluripotent stem cell (iPSC)-derived astrocytes generated from SCZ patients and healthy controls (CTRL). Screening protein levels in astrocytes at baseline identified lower expression of the NLRP3-ASC complex in SCZ, but increased Caspase-1 activity upon specific NLRP3 stimulation compared to CTRL. Using transcriptional profiling, we found corresponding downregulations of NLRP3 and ASC/PYCARD in both iPSC-derived astrocytes, and in a large (n = 429) brain postmortem case-control sample. Functional analyses following NLRP3 activation revealed an inflammatory phenotype characterized by elevated production of IL-1β/IL-18 and skewed priming of helper T lymphocytes (Th1/Th17) by SCZ astrocytes. This phenotype was rescued by specific inhibition of NLRP3 activation, demonstrating its dependence on the NLRP3 inflammasome. Taken together, SCZ iPSC-astrocytes display unique, NLRP3-dependent inflammatory characteristics that are manifested via various cellular functions, as well as via dysregulated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Attila Szabo
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ibrahim Akkouh
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elena Kondratskaya
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
6
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Zhang F, Meng T, Feng R, Jin C, Zhang S, Meng J, Zhang M, Liang C. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway. Int Immunopharmacol 2024; 141:112891. [PMID: 39153310 DOI: 10.1016/j.intimp.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China; Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Jin
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Song Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
8
|
Smyth T, Payton A, Hickman E, Rager JE, Jaspers I. Leveraging a comprehensive unbiased RNAseq database to characterize human monocyte-derived macrophage gene expression profiles within commonly employed in vitro polarization methods. Sci Rep 2024; 14:26753. [PMID: 39500943 PMCID: PMC11538326 DOI: 10.1038/s41598-024-78000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct gene expression profiles in macrophage subsets that remained poorly described until now. Our analyses confirm existing knowledge on broad macrophage polarization, while expanding nuanced differences between M2a and M2c subsets, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we characterize divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- , 116 Manning Drive, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|
9
|
Chen VCW, Joseph CR, Chan WOY, Sia WR, Su Q, Sam XX, Tamilarasan H, Mah YY, Ng WL, Yeong J, Wang LF, Krishnamoorthy TL, Leow WQ, Ahn M, Chow WC. Inflammasome-Driven Fatal Acute-on-Chronic Liver Failure Triggered by Mild COVID-19. Viruses 2024; 16:1646. [PMID: 39459978 PMCID: PMC11512379 DOI: 10.3390/v16101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammasome is linked to many inflammatory diseases, including COVID-19 and autoimmune liver diseases. While severe COVID-19 was reported to exacerbate liver failure, we report a fatal acute-on-chronic liver failure (ACLF) in a stable primary biliary cholangitis-autoimmune hepatitis overlap syndrome patient triggered by a mild COVID-19 infection. Postmortem liver biopsy showed sparse SARS-CoV-2-infected macrophages with extensive ASC (apoptosis-associated speck-like protein containing a CARD) speck-positive hepatocytes, correlating with elevated circulating ASC specks and inflammatory cytokines, and depleted blood monocyte subsets, indicating widespread liver inflammasome activation. This first report of a fatal inflammatory cascade in an autoimmune liver disease triggered by a mild remote viral infection hopes to elucidate a less-described pathophysiology of ACLF that could prompt consideration of new diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Vivian Chih-Wei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Wharton O. Y. Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Qi Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Xin Xiu Sam
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Hemavathi Tamilarasan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Yun Yan Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Immunology & Serology Section, Department of Microbiology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Thinesh L. Krishnamoorthy
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608, Singapore
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore (L.-F.W.)
- SingHealth Duke-NUS Medicine Academic Clinical Program, Singapore 168753, Singapore
- SingHealth Internal Medicine Residency Program, Singapore 169608, Singapore
| | - Wan Cheng Chow
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Program, Singapore 168753, Singapore
| |
Collapse
|
10
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
12
|
Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H, Jensen GJ. Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612739. [PMID: 39314395 PMCID: PMC11419111 DOI: 10.1101/2024.09.12.612739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The NLRP3 inflammasome is a multi-protein molecular machine that mediates inflammatory responses in innate immunity. Its dysregulation has been linked to a large number of human diseases. Using cryogenic fluorescence-guided focused-ion-beam (cryo-FIB) milling and electron cryo-tomography (cryo-ET), we obtained 3-D images of the NLRP3 inflammasome in situ at various stages of its activation at macromolecular resolution. The cryo-tomograms unexpectedly reveal dense condensates of the human macrophage NLRP3 inflammasome that form within and around the microtubule organizing center (MTOC). We also find that following activation, the trans-Golgi network disperses and 50-nm NLRP3-associated vesicles appear which likely ferry NLRP3 to the MTOC. At later time points after activation, the electron-dense condensates progressively solidify and the cells undergo pyroptosis with widespread damaged mitochondria and autophagasomal structures.
Collapse
Affiliation(s)
- Jue Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Man Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Venkat G Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
13
|
Carata E, Muci M, Mariano S, Panzarini E. BV2 Microglial Cell Activation/Polarization Is Influenced by Extracellular Vesicles Released from Mutated SOD1 NSC-34 Motoneuron-like Cells. Biomedicines 2024; 12:2069. [PMID: 39335582 PMCID: PMC11428949 DOI: 10.3390/biomedicines12092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Microglia-mediated neuroinflammation is a key player in the pathogenesis of amyotrophic lateral sclerosis (ALS) as it can contribute to the progressive degeneration of motor neurons (MNs). Here, we investigated the role of mSOD1 NSC-34 MN-like cell-derived extracellular vesicles (EVs) in inducing the activation of BV2 microglial cells. NSC-34-released EVs were isolated by culture medium differential ultracentrifugation to obtain two fractions, one containing small EVs (diameter < 200 nm) and the other containing large EVs (diameter > 200 nm). BV2 cells were incubated with the two EV fractions for 12, 24, and 48 h to evaluate 1) the state of microglial inflammation through RT-PCR of IL-1β, IL-6, IL-4, and IL-10 and 2) the expression of proteins involved in inflammasome activation (IL-β and caspase 1), cell death (caspase 3), and glial cell recruitment (CXCR1), and presence of the TGFβ cytokine receptor (TGFβ-R2). The obtained results suggest a mSOD1 type-dependent polarization of BV2 cells towards an early neurotoxic phenotype and a late neuroprotective status, with an appearance of mixed M1 and M2 microglia subpopulations. A significant role in driving microglial cell activation is played by the TGFβ/CX3CR1 axis. Therefore, targeting the dysregulated microglial response and modulating neuroinflammation could hold promise as a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
14
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Liu X, Xi R, Du X, Wang Y, Cheng L, Yan G, Lu H, Liu T, Li F. Thymopentapeptide Affects T-Cell Subsets by Modulating the Flora of the Skin Surface to Alleviate Psoriasis. Drug Des Devel Ther 2024; 18:2775-2791. [PMID: 38984208 PMCID: PMC11231030 DOI: 10.2147/dddt.s448550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/25/2024] [Indexed: 07/11/2024] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin condition. The emergence of psoriasis has been linked to dysbiosis of the microbiota on the skin surface and an imbalance in the immunological microenvironment. In this study, we investigated the therapeutic impact of topical thymopentin (TP5) on imiquimod (IMQ)-induced psoriasis in mice, as well as the modulatory influence of TP5 on the skin immune milieu and the skin surface microbiota. Methods The IMQ-induced psoriasis-like lesion mouse model was used to identify the targets and molecular mechanisms of TP5. Immunofluorescence was employed to identify differences in T-cell subset expression before and after TP5 therapy. Changes in the expression of NF-κB signaling pathway components were assessed using Western blotting (WB). 16S rRNA sequencing and network pharmacology were used to detect changes in the skin flora before and after TP5 administration. Results In vivo, TP5 reduced IMQ-induced back inflammation in mice. H&E staining revealed decreased epidermal thickness and inflammatory cell infiltration with TP5. Masson staining revealed decreased epidermal and dermal collagen infiltration after TP5 administration. Immunohistochemistry showed that TP5 treatment dramatically reduced IL-17 expression. Results of the immunoinfiltration analyses showed psoriatic lesions with more T-cell subsets. According to the immunofluorescence results, TP5 dramatically declined the proportions of CD4+, Th17, ROR+, and CD8+ T cells. WB revealed that TP5 reduced NF-κB pathway expression in skin tissues from IMQ-induced psoriasis model mice. 16S rRNA sequencing revealed a significant increase in Burkholderia and Pseudomonadaceae_Pseudomonas and a significant decrease in Staphylococcaceae_Staphylococcus, Aquabacterium, Herbaspirillum, and Balneimonas. Firmicutes dominated the skin microbial diversity after TP5 treatment, while Bacteroidetes, Verrucomicrobia, TM7, Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, and other species dominated in the IMQ group. Conclusion TP5 may treat psoriasis by modulating the epidermal flora, reducing NF-κB pathway expression, and influencing T-cell subsets.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ruofan Xi
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinran Du
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Li T, Qu J, Hu C, Pang J, Qian Y, Li Y, Peng Z. Macrophage migration inhibitory factor (MIF) suppresses mitophagy through disturbing the protein interaction of PINK1-Parkin in sepsis-associated acute kidney injury. Cell Death Dis 2024; 15:473. [PMID: 38956064 PMCID: PMC11220046 DOI: 10.1038/s41419-024-06826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.
Collapse
Affiliation(s)
- Tianlong Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Jiachen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Jingjing Pang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China.
| |
Collapse
|
17
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
18
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
19
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
Liukang C, Zhao J, Tian J, Huang M, Liang R, Zhao Y, Zhang G. Deciphering infected cell types, hub gene networks and cell-cell communication in infectious bronchitis virus via single-cell RNA sequencing. PLoS Pathog 2024; 20:e1012232. [PMID: 38743760 PMCID: PMC11125504 DOI: 10.1371/journal.ppat.1012232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.
Collapse
Affiliation(s)
- Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Di Martino E, Ambikan A, Ramsköld D, Umekawa T, Giatrellis S, Vacondio D, Romero AL, Galán MG, Sandberg R, Ådén U, Lauschke VM, Neogi U, Blomgren K, Kele J. Inflammatory, metabolic, and sex-dependent gene-regulatory dynamics of microglia and macrophages in neonatal hippocampus after hypoxia-ischemia. iScience 2024; 27:109346. [PMID: 38500830 PMCID: PMC10945260 DOI: 10.1016/j.isci.2024.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Anoop Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Takashi Umekawa
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sarantis Giatrellis
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Davide Vacondio
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Marta Gómez Galán
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Team Neurovascular Biology and Health, Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
22
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
23
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
24
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
25
|
Zhang H, Zhang X, Li H, Wang B, Chen P, Meng J. The roles of macrophage migration inhibitory factor in retinal diseases. Neural Regen Res 2024; 19:309-315. [PMID: 37488883 PMCID: PMC10503606 DOI: 10.4103/1673-5374.379020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 07/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a multifunctional cytokine, is secreted by various cells and participates in inflammatory reactions, including innate and adaptive immunity. There are some evidences that MIF is involved in many vitreoretinal diseases. For example, MIF can exacerbate many types of uveitis; measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment. MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage. Furthermore, MIF is critical for retinal/choroidal neovascularization, especially complex neovascularization. MIF exacerbates retinal degeneration; thus, anti-MIF therapy may help to mitigate retinal degeneration. MIF protects uveal melanoma from attacks by natural killer cells. The mechanism underlying the effects of MIF in these diseases has been demonstrated: it binds to cluster of differentiation 74, inhibits the c-Jun N-terminal kinase pathway, and triggers mitogen-activated protein kinases, extracellular signal-regulated kinase-1/2, and the phosphoinositide-3-kinase/Akt pathway. MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway. This review focuses on the structure and function of MIF and its receptors, including the effects of MIF on uveal inflammation, retinal degeneration, optic neuropathy, retinal/choroidal neovascularization, and uveal melanoma.
Collapse
Affiliation(s)
- Hongbing Zhang
- Shaanxi Institute of Ophthalmology, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Xianjiao Zhang
- Department of Pathology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Hongsong Li
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Bing Wang
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Pei Chen
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Jiamin Meng
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| |
Collapse
|
26
|
Yigit S, Nursal AF, Keskin A, Kaya S, Kuruca N, Sezer O. Association of MIF-173G/C, IL-4 VNTR, and IL-1RA VNTR variants with FMF-related amyloidosis in a Turkish cohort. J Investig Med 2024; 72:17-25. [PMID: 37803493 DOI: 10.1177/10815589231207789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The most important complication of familial Mediterranean fever (FMF) is secondary amyloidosis. The aim of this study is to investigate the risk of developing FMF-related amyloidosis with macrophage migration inhibitory factor (MIF), interleukin 4 (IL-4), and IL-1 receptor antagonist (IL-1RA) variants. This study included 62 FMF patients with amyloidosis, 110 FMF patients without amyloidosis, and 120 controls. The clinical information of the patient groups was compared. MIF-173G/C, IL-4 variant number tandem repeat (VNTR), and IL-1RA VNTR variants were analyzed for all participants. The use of colchicine, pleurisy, and appendectomy was more common in FMF patients with amyloidosis than in FMF patients without amyloidosis. MIF-173G/C C/C genotype and C allele were higher in both patient groups compared to controls. IL-1RA VNTR A1/A2 and A1/A4 genotypes and A1-A4 alleles were more common in both patient groups than controls. The IL-4 VNTR P1 allele was more common in FMF patients with amyloidosis compared to controls. The MIF-173G/C allele and the IL-1RA VNTR A1-A4 allele are associated with FMF in the Turkish population but not with amyloidosis risk in FMF patients. The IL-4 VNTR P1 allele is more common in FMF patients with amyloidosis than in healthy individuals.
Collapse
Affiliation(s)
- Serbulent Yigit
- Department of Genetics, Faculty of Veterinary, Ondokuz Mayis University, Samsun, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Adem Keskin
- Department of Biochemistry (Medicine), Institute of Health Sciences, Aydın Adnan Menderes University, Aydin, Turkey
| | - Suheyla Kaya
- Department of Internal Medicine, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Faculty of Veterinary, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Faculty of Medicine, Samsun University, Turkey
| |
Collapse
|
27
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Zheng Q, Wang D, Lin R, Chen Y, Xu Z, Xu W. Quercetin is a Potential Therapy for Rheumatoid Arthritis via Targeting Caspase-8 Through Ferroptosis and Pyroptosis. J Inflamm Res 2023; 16:5729-5754. [PMID: 38059150 PMCID: PMC10697095 DOI: 10.2147/jir.s439494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is one of the most common chronic inflammatory autoimmune diseases. However, the underlying molecular mechanisms of its pathogenesis are unknown. This study aimed to identify the common biomarkers of ferroptosis and pyroptosis in RA and screen potential drugs. Methods The RA-related differentially expressed genes (DEGs) in GSE55235 were screened by R software and intersected with ferroptosis and pyroptosis gene libraries to obtain differentially expressed ferroptosis-related genes (DEFRGs) and differentially expressed pyroptosis-related genes (DEPRGs). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), ClueGO, and Protein-Protein Interaction (PPI) analysis for DEFRGs and DEPRGs and validated them by machine learning. The microRNA/transcription factor (TF)-hub genes regulatory network was further constructed. The key gene was validated using the GSE77298 validation set, cellular validation was performed in in vitro experiments, and immune infiltration analysis was performed using CIBERSORT. Network pharmacology was used to find key gene-targeting drugs, followed by molecular docking and molecular dynamics simulations to analyze the binding stability between small-molecule drugs and large-molecule proteins. Results Three hub genes (CASP8, PTGS2, and JUN) were screened via bioinformatics, and the key gene (CASP8) was validated and obtained through the validation set, and the diagnostic efficacy was verified to be excellent through the receiver operating characteristic (ROC) curves. The ferroptosis and pyroptosis phenotypes were constructed by fibroblast-like synoviocytes (FLS), and caspase-8 was detected and validated as a common biomarker for ferroptosis and pyroptosis in RA, and quercetin can reduce caspase-8 levels. Quercetin was found to be a potential target drug for caspase-8 by network pharmacology, and the stability of their binding was further verified using molecular docking and molecular dynamics simulations. Conclusion Caspase-8 is an important biomarker for ferroptosis and pyroptosis in RA, and quercetin is a potential therapy for RA via targeting caspase-8 through ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, People’s Republic of China
| | - Zixing Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weihong Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
29
|
Jafari N, Shahabi Rabori V, Zolfi Gol A, Saberiyan M. Crosstalk of NLRP3 inflammasome and noncoding RNAs in cardiomyopathies. Cell Biochem Funct 2023; 41:1060-1075. [PMID: 37916887 DOI: 10.1002/cbf.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Cardiovascular diseases (CVDs) identified as a serious public health problem. Although there is a lot of evidence that inflammatory processes play a significant role in the progression of CVDs, however, the precise mechanism is not fully understood. Nevertheless, recent studies have focused on inflammation and its related agents. Nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) is a type of pattern recognition receptor (PRR) that can recognize pathogen-associated molecular patterns and trigger innate immune response. NLRP3 is a component of the NOD-like receptor (NLR) family and have a pivotal role in detecting damage to cardiovascular tissue. It is suggested that activation of NLRP3 inflammasome leads to initiating and propagating the inflammatory response in cardiomyopathy. So, late investigations have highlighted the NLRP3 inflammasome activation in various forms of cardiomyopathy. On the other side, it was shown that noncoding RNAs (ncRNAs), particularly, microRNAs, lncRNAs, and circRNAs possess a regulatory function in the immune system's inflammatory response, implicating their involvement in various inflammatory disorders. In addition, their role in different cardiomyopathies was indicated in recent studies. This review article provides a summary of recent advancements focusing on the function of the NLRP3 inflammasome in common CVDs, especially cardiomyopathy, while also discussing the therapeutic potential of inhibiting the NLRP3 inflammasome regulated by ncRNAs.
Collapse
Affiliation(s)
- Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ali Zolfi Gol
- Department of Pediatrics Cardiology, Shahid Motahari Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
30
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
31
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
32
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
33
|
Wei Y, Zheng X, Huang T, Zhong Y, Sun S, Wei X, Liu Q, Wang T, Zhao Z. Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding. PLoS One 2023; 18:e0288281. [PMID: 37616250 PMCID: PMC10449177 DOI: 10.1371/journal.pone.0288281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and participates in important biological mechanisms. However, few studies have reported whether MIF is expressed in human Embryonic stem cells (ESCs) and its effect on human ESCs. Two human ESCs cell lines, H1 and H9 were used. The expression of MIF and its receptors CD74, CD44, CXCR2, CXCR4 and CXCR7 were detected by an immunofluorescence assay, RT-qPCR and western blotting, respectively. The autocrine level of MIF was measured via enzyme-linked immunosorbent assay. The interaction between MIF and its main receptor was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Finally, the effect of MIF on the proliferation and survival of human ESCs was preliminarily explored by incubating cells with exogenous MIF, MIF competitive ligand CXCL12 and MIF classic inhibitor ISO-1. We reported that MIF was highly expressed in H1 and H9 human ESCs. MIF was positively expressed in the cytoplasm, cell membrane and culture medium. Several surprising results emerge. The autosecreted concentration of MIF was 22 ng/mL, which was significantly higher than 2 ng/mL-6 ng/mL in normal human serum, and this was independent of cell culture time and cell number. Human ESCs mainly expressed the MIF receptors CXCR2 and CXCR7 rather than the classical receptor CD74. The protein receptor that interacts with MIF on human embryonic stem cells is CXCR7, and no evidence of interaction with CXCR2 was found. We found no evidence that MIF supports the proliferation and survival of human embryonic stem cells. In conclusion, we first found that MIF was highly expressed in human ESCs and at the same time highly expressed in associated receptors, suggesting that MIF mainly acts in an autocrine form in human ESCs.
Collapse
Affiliation(s)
- Yanzhao Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Department of Human Functioning, Department of Health Services, Logistics University of Chinese People’s Armed Police Force, Tianjin, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xiaohan Zheng
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Ting Huang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Yuanji Zhong
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Shengtong Sun
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xufang Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Qibing Liu
- Department of Pharmacy, Hainan Medical University, Hainan, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| |
Collapse
|
34
|
Li W, Xie J, Yang L, Yang Y, Yang L, Li L. 15-deoxy-Δ 12,14-prostaglandin J 2 relieved acute liver injury by inhibiting macrophage migration inhibitory factor expression via PPARγ in hepatocyte. Int Immunopharmacol 2023; 121:110491. [PMID: 37329807 DOI: 10.1016/j.intimp.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jieshi Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
35
|
Honda TSB, Ku J, Anders HJ. Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol 2023; 14:1214289. [PMID: 37564649 PMCID: PMC10411525 DOI: 10.3389/fimmu.2023.1214289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
The NLRP3 inflammasome transforms a wide variety of infectious and non-infectious danger signals that activate pro-inflammatory caspases, which promote the secretion of IL-1β and IL-18, and pyroptosis, a pro-inflammatory form of cell necrosis. Most published evidence documents the presence and importance of the NLRP3 inflammasome in monocytes, macrophages, and neutrophils during host defense and sterile forms of inflammation. In contrast, in numerous unbiased data sets, NLRP3 inflammasome-related transcripts are absent in non-immune cells. However, an increasing number of studies report the presence and functionality of the NLRP3 inflammasome in almost every cell type. Here, we take a closer look at the reported cell type-specific expression of the NLRP3 inflammasome components, review the reported inflammasome-dependent and -independent functions, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
36
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
37
|
Altê GA, Rodrigues ALS. Exploring the Molecular Targets for the Antidepressant and Antisuicidal Effects of Ketamine Enantiomers by Using Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2023; 16:1013. [PMID: 37513925 PMCID: PMC10383558 DOI: 10.3390/ph16071013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Ketamine, a racemic mixture of esketamine (S-ketamine) and arketamine (R-ketamine), has received particular attention for its rapid antidepressant and antisuicidal effects. NMDA receptor inhibition has been indicated as one of the main mechanisms of action of the racemic mixture, but other pharmacological targets have also been proposed. This study aimed to explore the possible multiple targets of ketamine enantiomers related to their antidepressant and antisuicidal effects. To this end, targets were predicted using Swiss Target Prediction software for each ketamine enantiomer. Targets related to depression and suicide were collected by the Gene Cards database. The intersections of targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Network pharmacology analysis was performed using Gene Mania and Cytoscape software. Molecular docking was used to predict the main targets of the network. The results indicated that esketamine and arketamine share some biological targets, particularly NMDA receptor and phosphodiesterases 3A, 7A, and 5A but have specific molecular targets. While esketamine is predicted to interact with the GABAergic system, arketamine may interact with macrophage migration inhibitory factor (MIF). Both ketamine enantiomers activate neuroplasticity-related signaling pathways and show addiction potential. Our results identified novel, poorly explored molecular targets that may be related to the beneficial effects of esketamine and arketamine against depression and suicide.
Collapse
Affiliation(s)
- Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| |
Collapse
|
38
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
39
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
40
|
Lok HC, Katzeff JS, Hodges JR, Piguet O, Fu Y, Halliday GM, Kim WS. Elevated GRO-α and IL-18 in serum and brain implicate the NLRP3 inflammasome in frontotemporal dementia. Sci Rep 2023; 13:8942. [PMID: 37268663 DOI: 10.1038/s41598-023-35945-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Neuroinflammation is a hallmark of frontotemporal dementia (FTD), a heterogeneous group of proteinopathies characterized by the progressive degeneration of the frontal and temporal lobes. It is marked by microglial activation and subsequent cytokine release. Although cytokine levels in FTD brain and CSF have been examined, the number of cytokines measured in each study is limited and knowledge on cytokine concentrations in FTD serum is scarce. Here, we assessed 48 cytokines in FTD serum and brain. The aim was to determine common cytokine dysregulation pathways in serum and brain in FTD. Blood samples and brain tissue samples from the superior frontal cortex (SFC) were collected from individuals diagnosed with behavioral variant FTD (bvFTD) and healthy controls, and 48 cytokines were measured using a multiplex immunological assay. The data were evaluated by principal component factor analysis to determine the contribution from different components of the variance in the cohort. Levels of a number of cytokines were altered in serum and SFC in bvFTD compared to controls, with increases in GRO-α and IL-18 in both serum and SFC. These changes could be associated with NLRP3 inflammasome activation or the NFκB pathway, which activates NLRP3. The results suggest the possible importance of the NLRP3 inflammasome in FTD. An improved understanding of the role of inflammasomes in FTD could provide valuable insights into the pathogenesis, diagnosis and treatment of FTD.
Collapse
Affiliation(s)
- Hiu Chuen Lok
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jared S Katzeff
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Wang L, Wang C, Tao Z, Zhu W, Su Y, Choi WS. Tumor-associated macrophages facilitate oral squamous cell carcinomas migration and invasion by MIF/NLRP3/IL-1β circuit: A crosstalk interrupted by melatonin. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166695. [PMID: 36958712 DOI: 10.1016/j.bbadis.2023.166695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Invasion and migration are significant challenges for treatment of oral squamous cell carcinomas (OSCCs). Tumor-associated macrophages (TAMs) interact with cancer cells and are involved in tumor progression. Our recent study demonstrated that melatonin inhibits OSCC invasion and migration; however, the mechanism by which melatonin influences crosstalk between TAMs and OSCCs is poorly understood. In this study, a co-culture system was established to explore the interactions between human monocytic cells (THP-1 cells) and human tongue squamous cell carcinoma cells (SCC-15 cells). The results were verified using monocyte-derived macrophages (MDMs) isolated and differentiated from primary peripheral blood mononuclear cells. In vivo, assays were performed to confirm the anticancer effects of melatonin. SCC-15 cells co-cultured with THP-1 cells or MDMs exhibited increased migration and invasion, which was reversed by melatonin. Co-culture also increased the expression of macrophage migration inhibitory factor (MIF), CD40, CD163 and IL-1β, and these changes were also reversed by melatonin. Moreover, IL-1β secretion in THP-1 cells was MIF- and NLR family pyrin domain-containing 3 (NLRP3)-dependent, and treated with IL-1β enhanced the invasion and migration of SCC-15 cells. Furthermore, melatonin treatment significantly decreased tumor volumes and weights, and tumors from mice treated with melatonin had lower levels of MIF, NLRP3, and IL-1β than tumor from control mice. These results demonstrate that macrophages facilitate the progression of OSCCs by promoting the MIF/NLRP3/IL-1β signaling axis, which can be interrupted by melatonin. Therefore, melatonin could act as an alternative anticancer agent for OSCCs by targeting this signaling axis.
Collapse
Affiliation(s)
- Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuoying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Wangyong Zhu
- Department of Dental Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Wing Shan Choi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
43
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
44
|
Xuan W, Xie W, Li F, Huang D, Zhu Z, Lin Y, Lu B, Yu W, Li Y, Li P. Dualistic roles and mechanistic insights of macrophage migration inhibitory factor in brain injury and neurodegenerative diseases. J Cereb Blood Flow Metab 2023; 43:341-356. [PMID: 36369735 PMCID: PMC9941868 DOI: 10.1177/0271678x221138412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in various immune-mediated pathologies and regulates both innate and adaptive immune reactions, thus being related to several acute and chronic inflammatory diseases such as rheumatoid arthritis, septic shock, and atherosclerosis. Its role in acute and chronic brain pathologies, such as stroke and neurodegenerative diseases, has attracted increasing attention in recent years. In response to stimuli like hypoxia, inflammation or infection, different cell types can rapidly release MIF, including immune cells, endothelial cells, and neuron cells. Notably, clinical data from past decades also suggested a possible link between serum MIF levels and the severity of stroke and the evolving of neurodegenerative diseases. In this review, we summarize the major and recent findings focusing on the mechanisms of MIF modulating functions in brain injury and neurodegenerative diseases, which may provide important therapeutic targets meriting further investigation.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Fengshi Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yuxuan Lin
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Binwei Lu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| |
Collapse
|
45
|
Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B, Du M. STAT3/Mitophagy Axis Coordinates Macrophage NLRP3 Inflammasome Activation and Inflammatory Bone Loss. J Bone Miner Res 2023; 38:335-353. [PMID: 36502520 DOI: 10.1002/jbmr.4756] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a cytokine-responsive transcription factor, is known to play a role in immunity and bone remodeling. However, whether and how STAT3 impacts macrophage NLR family pyrin domain containing 3 (NLRP3) inflammasome activation associated with inflammatory bone loss remains unknown. Here, STAT3 signaling is hyperactivated in macrophages in the context of both non-sterile and sterile inflammatory osteolysis, and this was highly correlated with the cleaved interleukin-1β (IL-1β) expression pattern. Strikingly, pharmacological inhibition of STAT3 markedly blocks macrophage NLRP3 inflammasome activation in vitro, thereby relieving inflammatory macrophage-amplified osteoclast formation and bone-resorptive activity. Mechanistically, STAT3 inhibition in macrophages triggers PTEN-induced kinase 1 (PINK1)-dependent mitophagy that eliminates dysfunctional mitochondria, reverses mitochondrial membrane potential collapse, and inhibits mitochondrial reactive oxygen species release, thus inactivating the NLRP3 inflammasome. In vivo, STAT3 inhibition effectively protects mice from both infection-induced periapical lesions and aseptic titanium particle-mediated calvarial bone erosion with potent induction of PINK1 and downregulation of inflammasome activation, macrophage infiltration, and osteoclast formation. This study reveals the regulatory role of the STAT3/mitophagy axis at the osteo-immune interface and highlights a potential therapeutic intervention to prevent inflammatory bone loss. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Parmar DV, Kansagra KA, Momin T, Patel HB, Jansari GA, Bhavsar J, Shah C, Patel JM, Ghoghari A, Barot A, Sharma B, Viswanathan K, Patel HV, Jain MR. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Oral NLRP3 Inflammasome Inhibitor ZYIL1: First-in-Human Phase 1 Studies (Single Ascending Dose and Multiple Ascending Dose). Clin Pharmacol Drug Dev 2023; 12:202-211. [PMID: 36065092 PMCID: PMC10087697 DOI: 10.1002/cpdd.1162] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 02/03/2023]
Abstract
ZYIL1 is a nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome inhibitor, which prevents NLRP3-induced apoptosis-associated speck-like protein containing a caspase activation and recruitment domain oligomerization, thus inhibiting NLRP3 inflammasome pathway. We investigated the safety, tolerability, pharmacokinetic, and pharmacodynamic profiles of ZYIL1 after single and multiple doses in healthy subjects. The subjects aged 18-55 years were enrolled in 2 different studies: single and multiple ascending dose. Blood/urine samples were collected at designated time points for pharmacokinetic and pharmacodynamic analysis. In the single-ascending-dose study, 30 subjects were enrolled (6 subjects each in 5 dose groups). One adverse event was reported during the study. ZYIL1 was well absorbed with median time to maximum plasma concentration at 1-1.5 hours. The exposures were dose proportional across the dose ranges. ZYIL1 is excreted as an unchanged form via the renal route. The mean elimination half-life was 6-7 hours. In the multiple-ascending-dose study, 18 subjects were enrolled (6 subjects each in 3 dose groups). Eleven adverse events were reported by 6 subjects during the study. The accumulation index at steady state for area under the plasma concentration-time curve indicated that ZYIL1 has a marginal accumulation upon repeated dosing. Dose-proportional exposure was observed across the dose ranges. All subjects showed >90% interleukin (IL)-1β inhibition in all dose groups for both studies. Inhibition in IL-1β and IL-18 was observed throughout the 14 days of treatment in the multiple-dose study. The safety profile, rapid absorption, marginal accumulation, and significant inhibition of IL-1β and IL-18 level support its development for the management of inflammatory disorders.
Collapse
Affiliation(s)
| | | | - Taufik Momin
- Zydus Therapeutics Inc, Pennington, New Jersey, USA
| | - Hardik B Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Gaurav A Jansari
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Jay Bhavsar
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Chintan Shah
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Jayesh M Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Ashok Ghoghari
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Ajay Barot
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Bhavesh Sharma
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | - Harilal V Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | - Mukul R Jain
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| |
Collapse
|
47
|
Qin G, Chao C, Lattery LJ, Lin H, Fu W, Richdale K, Cai C. Tear proteomic analysis of young glasses, orthokeratology, and soft contact lens wearers. J Proteomics 2023; 270:104738. [PMID: 36191803 DOI: 10.1016/j.jprot.2022.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
Contact lens-related ocular surface complications occur more often in teenagers and young adults. The purpose of this study was to determine changes in tear proteome of young patients wearing glasses (GL), orthokeratology lenses (OK), and soft contact lenses (SCL). Twenty-two young subjects (10-26 years of age) who were established GL, OK, and SCL wearers were recruited. Proteomic data were collected using a data-independent acquisition-parallel accumulation serial fragmentation workflow. In total, 3406 protein groups were identified, the highest number of proteins identified in Schirmer strip tears to date. Eight protein groups showed higher abundance, and 11 protein groups showed lower abundance in the SCL group compared to the OK group. In addition, the abundance of 82 proteins significantly differed in children compared to young adult GL wearers, among which 67 proteins were higher, and 15 proteins were lower in children. These 82 proteins were involved in inflammation, immune, and glycoprotein metabolic biological processes. In summary, this work identified over 3000 proteins in Schirmer Strip tears. The results indicated that tear proteomes were altered by orthokeratology and soft contact wear and age, which warrants further larger-scale study on the ocular surface responses of teenagers and young adults separately to contact lens wear. SIGNIFICANCE: In this work, we examined the tear proteomes of young patients wearing glasses, orthokeratology lenses, and soft contact lenses using a data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) workflow and identified 3406 protein groups in Schirmer strip tears. Nineteen protein groups showed significant abundance changes between orthokeratology and soft contact lens wearers. Moreover, eighty-two protein groups significantly differed in abundance in children and young adult glasses wearers. As a pilot study, this work provides a deep coverage of tear proteome and suggests the need to investigate ocular responses to contact lens wear separately for children and young adults.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| | - Cecilia Chao
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2023, Australia
| | - Lauren J Lattery
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Hong Lin
- Department of Computer Science & Engineering Technology, University of Houston - Downtown, Houston, TX 77002, United States of America
| | - Wenjiang Fu
- Department of Mathematics, University of Houston, Houston, TX 77204, United States of America
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Chengzhi Cai
- Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| |
Collapse
|
48
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
49
|
Supti KF, Asaduzzaman M, Suhee FI, Shahriar M, Islam SMA, Bhuiyan MA, Qusar MMAS, Islam MR. Elevated Serum Macrophage Migration Inhibitory Factor Levels are Associated With Major Depressive Disorder. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231220841. [PMID: 38144435 PMCID: PMC10748934 DOI: 10.1177/2632010x231220841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Background Previous studies have suggested the involvement of an activated inflammatory process in major depressive disorder (MDD), as altered expression of inflammatory cytokines is observed in depression. This alteration can be the cause or a consequence of MDD. However, acknowledging inflammatory cytokines as prospective biomarkers would aid in diagnosing or guiding better therapeutic options. Therefore, we designed this study to assess the macrophage migration inhibitory factor (MIF) in depression. Method We collected blood samples from 115 MDD patients and 113 healthy controls (HCs) matched by age and sex. MDD patients were diagnosed by a qualified psychiatrist based on the symptoms mentioned in the diagnostic and statistical manual of mental disorders (DSM-5). We applied the Hamilton depression (Ham-D) rating scale to assess the severity of depression. We assessed serum levels of MIF using ELISA kit (Boster Bio, USA). Result We detected increased serum MIF levels in MDD patients compared to HCs (6.15 ± 0.23 ng/mL vs 3.95 ± 0.21 ng/mL, P < 0.001). Moreover, this increase is more among female patients than female controls. Also, we noticed a positive correlation between altered MIF levels and the Ham-D scores (r = 0.233; P = 0.012), where we found that patients who scored higher on the Ham-D scale had higher MIF levels in serum. Moreover, the area under the curve (AUC) of receiver operating characteristic (ROC) curve represented the good diagnostic performance of altered serum MIF. Conclusion Our study findings indicate the association of pro-inflammatory cytokine MIF in the pathophysiology of depression as we identified elevated serum MIF levels in depressive patients compared to HCs. However, more researches are required to confirm whether this alteration of cytokine is the causative factor or a consequence of depression. We recommend conducting further studies to understand the pattern of this alteration of MIF levels in MDD patients.
Collapse
Affiliation(s)
| | - Md. Asaduzzaman
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | | | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | | | | | - MMA Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahbagh, Ramna, Dhaka, Bangladesh
| | | |
Collapse
|
50
|
Mao Y, Jiang F, Xu XJ, Zhou LB, Jin R, Zhuang LL, Juan CX, Zhou GP. Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway. Int J Biol Sci 2023; 19:593-609. [PMID: 36632449 PMCID: PMC9830505 DOI: 10.7150/ijbs.78348] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Septic acute kidney injury (AKI) is characterized by inflammation. Pyroptosis often occurs during AKI and is associated with the development of septic AKI. This study found that induction of insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to a higher level can induce pyroptosis in renal tubular cells. Meanwhile, macrophage migration inhibitory factor (MIF), a subunit of NLRP3 inflammasomes, was essential for IGF2BP1-induced pyroptosis. A putative m6A recognition site was identified at the 3'-UTR region of E2F transcription factor 1 (E2F1) mRNA via bioinformatics analyses and validated using mutation and luciferase experiments. Further actinomycin D (Act D) chase experiments showed that IGF2BP1 stabilized E2F1 mRNA dependent on m6A. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) indicated that E2F1 acted as a transcription factor to promote MIF expression. Thus, IGF2BP1 upregulated MIF through directly upregulating E2F1 expression via m6A modification. Experiments on mice with cecum ligation puncture (CLP) surgery verified the relationships between IGF2BP1, E2F1, and MIF and demonstrated the significance of IGF2BP1 in MIF-associated pyroptosis in vivo. In conclusion, IGF2BP1 was a potent pyroptosis inducer in septic AKI through targeting the MIF component of NLRP3 inflammasomes. Inhibiting IGF2BP1 could be an alternate pyroptosis-based treatment for septic AKI.
Collapse
Affiliation(s)
- Yan Mao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xue-Jiao Xu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lan-Bo Zhou
- Department of Dermatology, Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,✉ Corresponding authors: Guo-Ping Zhou, Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. E-mail: ; Chen-Xia Juan, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. E-mail:
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Guo-Ping Zhou, Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. E-mail: ; Chen-Xia Juan, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. E-mail:
| |
Collapse
|