1
|
Dai P, Xin Y, Qin X, Ma H, Zhuang C. Advances in MLKL-targeted inhibitors and PROTACs for necroptosis therapeutics. Bioorg Med Chem 2025; 128:118246. [PMID: 40409166 DOI: 10.1016/j.bmc.2025.118246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Necroptosis is a highly regulated form of cell death. Mixed lineage kinase domain-like protein (MLKL) serves as its central effector and plays a critical role in various physiological and pathological processes. Given its close association with multiple diseases, MLKL has emerged as a promising therapeutic target. This review highlights recent advances in the development of necroptosis inhibitors and degraders targeting MLKL. The optimization of active compounds, structural modifications, and the applications of proteolysis-targeting chimeras (PROTACs) are emphasized. Furthermore, this study systematically evaluates the structural characteristics and biological activities of these compounds, thereby providing critical insights to inform future investigations and pharmaceutical development within this field.
Collapse
Affiliation(s)
- Pengcheng Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yufeng Xin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiuting Qin
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hao Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
3
|
Ros U, Martinez-Osorio V, Valiente PA, Abdelwahab Y, Gojkovic M, Shalaby R, Zanna S, Saggau J, Wachsmuth L, Nemade HN, Zoeller J, Lottermoser H, Chen YG, Ibrahim M, Kelepouras K, Vasilikos L, Bedoya P, Espiritu RA, Müller S, Altmannova V, Tieleman DP, Weir J, Langer J, Adam M, Walczak H, Wong WWL, Liccardi G, Mollenhauer M, Pasparakis M, Peltzer N, García-Sáez AJ. MLKL activity requires a splicing-regulated, druggable intramolecular interaction. Mol Cell 2025; 85:1589-1605.e12. [PMID: 40209701 DOI: 10.1016/j.molcel.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Necroptosis is an inflammatory form of regulated cell death implicated in a range of human pathologies, whose execution depends on the poorly understood pseudokinase mixed lineage kinase domain-like (MLKL). Here, we report that splicing-dependent insertion of a short amino acid sequence in the C-terminal α-helix (Hc) of MLKL abolishes cell killing activity and creates an anti-necroptotic isoform that counteracts cell death induced by the necroptosis-proficient protein in mice and humans. We show that interaction of Hc with a previously unrecognized hydrophobic groove is essential for necroptosis, which we exploited in a strategy to identify small molecules that inhibit MLKL and substantially ameliorate disease in murine models of necroptosis-driven dermatitis and abdominal aortic aneurysm. Thus, alternative splicing of microexons controls the ability of MLKL to undergo an intramolecular rearrangement essential for necroptosis with potential to guide the development of allosteric MLKL inhibitors for the treatment of human disease.
Collapse
Affiliation(s)
- Uris Ros
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| | - Veronica Martinez-Osorio
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, Havana University, Havana 10400, Cuba
| | - Yasmin Abdelwahab
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Milos Gojkovic
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Raed Shalaby
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Silvia Zanna
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Julia Saggau
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Laurens Wachsmuth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Harshal N Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Jonathan Zoeller
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Hannah Lottermoser
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK; Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mohamed Ibrahim
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Konstantinos Kelepouras
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Paula Bedoya
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Rafael A Espiritu
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Müller
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Veronika Altmannova
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | - John Weir
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - Julian Langer
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Henning Walczak
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Gianmaria Liccardi
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Manolis Pasparakis
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Nieves Peltzer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany; Department of Genome Editing, Institute of Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart 70569, Germany
| | - Ana J García-Sáez
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| |
Collapse
|
4
|
Chen K, Shen S, Lv Z, Guo M, Shao Y, Li C. Lytic coelomocyte death is tuned by cleavage but not phosphorylation of MLKL in echinoderms. PLoS Pathog 2025; 21:e1012991. [PMID: 40085533 PMCID: PMC11932488 DOI: 10.1371/journal.ppat.1012991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Lytic cell death including necroptosis and pyroptosis is induced by mixed lineage kinase domain-like protein (MLKL) phosphorylation and inflammatory caspase specific cleavage Gasdermins in higher mammals, respectively. In this study, we identified a novel MLKL homolog containing a tetrapeptide recognition motif (14-LVAD-17) of inflammatory caspase from Apostichopus japonicus,which was absent of Gasdermins member by genome screening. Functional analysis revealed that AjMLKL was involved in the regulation of Vibrio splendidus AJ01 infection induced lytic coelomocyte death in a cleavage-dependent manner, but not through RIPK3-dependent phosphorylation as mammals. Mechanistically, the activated form of cysteine-aspartic specific proteases-1 (AjCASP-1) bound to the tetrapeptide site of AjMLKL and cleaved it at Asp17. Cleaved AjMLKL18-491 displayed higher binding affinities towards phosphatidylinositol phosphate and cardiolipin compared to those of un-cleaved form. In addition, cleaved AjMLKL18-491 exerted stronger ability in disrupting the membrane integrity of liposome. More importantly, AjMLKL18-491 caused a large non-selective ionic coelomocyte pore and could directly kill the invasive AJ01. Moreover, activation of inflammatory AjCASP-1 was further found to be dependent on forming an inflammasome-like complex via CASc domain of AjCASP-1 and the N-terminal Ig domains of internalized AjNLRC4. All our results proved first evidence that lytic cell death was activated through MLKL cleavage, not MLKL phosphorylation in echinoderm, which offered insights into the functional, evolutionary mechanisms of lytic cell death in invertebrates.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Sikou Shen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Ming Guo
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Wei W, Zhang Y, Miao J, Bao X, Lu C. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front Pharmacol 2025; 16:1512968. [PMID: 40070567 PMCID: PMC11893596 DOI: 10.3389/fphar.2025.1512968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase featured by a protein kinase-like domain without catalytic activity. MLKL was originally discovered to be phosphorylated by receptor-interacting protein kinase 1/3, typically increase plasma membrane permeabilization, and disrupt the membrane integrity, ultimately executing necroptosis. Recent evidence uncovers the association of MLKL with diverse cellular organelles, including the mitochondrion, lysosome, endosome, endoplasmic reticulum, and nucleus. Thus, this review mainly focuses on the regulatory functions, mechanisms, and targets of MLKL in organelles rather than necroptosis and summarize the medical significance in multiple diseases. On this basis, we conclude and analyze the current progress and prospect for the development of MLKL-related drugs, from natural products, small-molecule chemical compounds, to proteolysis-targeting chimera. This review is aimed to propel the development of MLKL as a valid drug target and the discovery of novel MLKL-related drugs, and promote their further applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Liu Z, Wang S, Wang W, Lv R, Sun C. Necroptosis in obesity: a complex cell death event. Apoptosis 2025; 30:466-487. [PMID: 39702812 DOI: 10.1007/s10495-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Obesity is an exceedingly prevalent and frequent health issue in today's society. Fat deposition is accompanied by low-grade inflammation in fat tissue and throughout the body, leading to metabolic disorders that ultimately promote the onset of obesity-related diseases. The development of obesity is accompanied by cell death events such as apoptosis as well as pyroptosis, however, the role of necroptosis in obesity has been widely reported in recent years. Necroptosis, a mode of cell death distinct from apoptosis and necrosis, is associated with developing many inflammatory conditions and their associated diseases. It also exhibits modulation of apoptosis and pyroptosis. It is morphologically similar to necroptosis, characterized by the inhibition of caspase-8, the formation of membrane pores, and the subsequent rupture of the plasma membrane. This paper focuses on the key pathways and molecules of necroptosis, exploring its connections with apoptosis and pyroptosis, and its implications in obesity. This paper posits that the modulation of necroptosis-related targets may represent a novel potential therapeutic avenue for the prevention and treatment of obesity-induced systemic inflammatory responses, and provides a synopsis of potential molecular targets that may prove beneficial in obesity-associated inflammatory diseases.
Collapse
Affiliation(s)
- Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Zhang Z, Chen S, Jun S, Xu X, Hong Y, Yang X, Zou L, Song YQ, Chen Y, Tu J. MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis. Autophagy 2025; 21:424-446. [PMID: 39193909 PMCID: PMC11759533 DOI: 10.1080/15548627.2024.2395727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Individuals with genetic elimination of MLKL (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of mlkl knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) as the binding partner of MLKL under physiological conditions. Loss of Mlkl induced a decrease in ubiquitin levels by preventing UBA52 cleavage. Furthermore, we demonstrated that the deubiquitinase (DUB) USP7 (ubiquitin specific peptidase 7) mediates the processing of UBA52, which is regulated by MLKL. Moreover, our results indicated that the reduction of BECN1 and ULK1 upon Mlkl loss is attributed to a decrease in their lysine 63 (K63)-linked polyubiquitination. Additionally, single-nucleus RNA sequencing revealed that the loss of Mlkl resulted in the disruption of multiple neurodegenerative disease-related pathways, including those associated with AD. These results were consistent with the observation of cognitive impairment in mlkl KO mice and exacerbation of AD pathologies in an AD mouse model with mlkl deletion. Taken together, our findings demonstrate that MLKL-USP7-UBA52 signaling is required for autophagy in brain through maintaining ubiquitin homeostasis, and highlight the contribution of Mlkl loss-induced ubiquitin deficits to the development of neurodegeneration. Thus, the maintenance of adequate levels of ubiquitin may provide a novel perspective to protect individuals from multiple neurodegenerative diseases through regulating autophagy.Abbreviations: 4HB: four-helix bundle; AAV: adeno-associated virus; AD: Alzheimer disease; AIF1: allograft inflammatory factor 1; APOE: apolipoprotein E; APP: amyloid beta precursor protein; Aβ: amyloid β; BECN1: beclin 1; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DLG4: discs large MAGUK scaffold protein 4; DUB: deubiquitinase; EBSS: Earle's balanced salt solution; GFAP: glial fibrillary acidic protein; HRP: horseradish peroxidase; IL1B: interleukin 1 beta; IL6: interleukin 6; IPed: immunoprecipitated; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MLKL: mixed lineage kinase domain like pseudokinase; NSA: necrosulfonamide; OPCs: oligodendrocyte precursor cells; PFA: paraformaldehyde; PsKD: pseudo-kinase domain; SYP: synaptophysin; UB: ubiquitin; UBA52: ubiquitin A-52 residue ribosomal protein fusion product 1; UCHL3: ubiquitin C-terminal hydrolase L3; ULK1: unc-51 like autophagy activating kinase 1; UMAP: uniform manifold approximation and projection; UPS: ubiquitin-proteasome system; USP7: ubiquitin specific peptidase 7; USP9X: ubiquitin specific peptidase 9 X-linked.
Collapse
Affiliation(s)
- Zhigang Zhang
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
| | - Shuai Chen
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Shirui Jun
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
| | - Xirong Xu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Yuchuan Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical College, Jinan University), Shenzhen, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yu Chen
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Tu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
9
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Inhibition of RIPK1 or RIPK3 kinase activity post ischemia-reperfusion reduces the development of chronic kidney injury. Biochem J 2025; 482:73-86. [PMID: 39705008 DOI: 10.1042/bcj20240569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/21/2024]
Abstract
Ischemia-reperfusion injury (IRI) occurs when the blood supply to an organ is temporarily reduced and then restored. Kidney IRI is a form of acute kidney injury (AKI), which often progresses to kidney fibrosis. Necroptosis is a regulated necrosis pathway that has been implicated in kidney IRI. Necroptotic cell death involves the recruitment of the RIPK1 and RIPK3 kinases and the activation of the terminal effector, the mixed lineage kinase domain-like (MLKL) pseudokinase. Phosphorylated MLKL causes cell death by plasma membrane rupture, driving 'necroinflammation'. Owing to their apical role in the pathway, RIPK1 and RIPK3 have been implicated in the development of kidney fibrosis. Here, we used a mouse model of unilateral kidney IRI to assess whether the inhibition of RIPK1 or RIPK3 kinase activity reduces AKI and the progression to kidney fibrosis. Mice treated with the RIPK1 inhibitor Nec-1s, either before or after IR, showed reduced kidney injury at 24 hr compared with controls, whereas no protection was offered by the RIPK3 inhibitor GSK´872. In contrast, treatment with either inhibitor from days 3 to 9 post-IR reduced the degree of kidney fibrosis at day 28. These findings further support the role of necroptosis in IRI and provide important validation for the contribution of both RIPK1 and RIPK3 catalytic activities in the progression of kidney fibrosis. Targeting the necroptosis pathway could be a promising therapeutic strategy to mitigate kidney disease following IR.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Anjan K Bongoni
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Jennifer L McRae
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Francesco L Ierino
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
11
|
Davies KA, Czabotar PE, Murphy JM. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Curr Opin Struct Biol 2024; 88:102891. [PMID: 39059047 DOI: 10.1016/j.sbi.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.
Collapse
Affiliation(s)
- Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
12
|
Garnish SE, Horne CR, Meng Y, Young SN, Jacobsen AV, Hildebrand JM, Murphy JM. Inhibitors identify an auxiliary role for mTOR signalling in necroptosis execution downstream of MLKL activation. Biochem J 2024; 481:1125-1142. [PMID: 39136677 PMCID: PMC11555701 DOI: 10.1042/bcj20240255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death. Here, we screened a library of 429 kinase inhibitors for their capacity to block R30E MLKL-mediated cell death, to identify co-effectors in the terminal steps of necroptotic signalling. We identified 13 compounds - ABT-578, AR-A014418, AZD1480, AZD5363, Idelalisib, Ipatasertib, LJI308, PHA-793887, Rapamycin, Ridaforolimus, SMI-4a, Temsirolimus and Tideglusib - each of which inhibits mammalian target of rapamycin (mTOR) signalling or regulators thereof, and blocked constitutive cell death executed by R30E MLKL. Our study implicates mTOR signalling as an auxiliary factor in promoting the transport of activated MLKL oligomers to the plasma membrane, where they accumulate into hotspots that permeabilise the lipid bilayer to cause cell death.
Collapse
Affiliation(s)
- Sarah E. Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel N. Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Annette V. Jacobsen
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joanne M. Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Yadav S, El Hamra R, Alturki NA, Ariana A, Bhan A, Hurley K, Gaestel M, Blackshear PJ, Blais A, Sad S. Regulation of Zfp36 by ISGF3 and MK2 restricts the expression of inflammatory cytokines during necroptosis stimulation. Cell Death Dis 2024; 15:574. [PMID: 39117638 PMCID: PMC11310327 DOI: 10.1038/s41419-024-06964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Necrosome activation following TLR- or cytokine receptor-signaling results in cell death by necroptosis which is characterized by the rupture of cell membranes and the consequent release of intracellular contents to the extracellular milieu. While necroptosis exacerbates various inflammatory diseases, the mechanisms through which the inflammatory responses are regulated are not clear. We show that the necrosome activation of macrophages results in an upregulation of various pathways, including the mitogen-activated protein kinase (MAPK) cascade, which results in an elevation of the inflammatory response and consequent expression of several cytokines and chemokines. Programming for this upregulation of inflammatory response occurs during the early phase of necrosome activation and proceeds independently of cell death but depends on the activation of the receptor-interacting protein kinase-1 (RipK1). Interestingly, necrosome activation also results in an upregulation of IFNβ, which in turn exerts an inhibitory effect on the maintenance of inflammatory response through the repression of MAPK-signaling and an upregulation of Zfp36. Activation of the interferon-induced gene factor-3 (ISGF3) results in the expression of ZFP36 (TTP), which induces the post-transcriptional degradation of mRNAs of various inflammatory cytokines and chemokines through the recognition of AU-rich elements in their 3'UTR. Furthermore, ZFP-36 inhibits IFNβ-, but not TNFα- induced necroptosis. Overall, these results reveal the molecular mechanism through which IFNβ, a pro-inflammatory cytokine, induces the expression of ZFP-36, which in turn inhibits necroptosis and halts the maintenance of the inflammatory response.
Collapse
Affiliation(s)
- Sahil Yadav
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rayan El Hamra
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Avni Bhan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kate Hurley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America
| | - Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
- University of Ottawa, Centre for Infection Immunity and Inflammation, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa, Centre for Infection Immunity and Inflammation, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Ramos S, Hartenian E, Broz P. Programmed cell death: NINJ1 and mechanisms of plasma membrane rupture. Trends Biochem Sci 2024; 49:717-728. [PMID: 38906725 DOI: 10.1016/j.tibs.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.
Collapse
Affiliation(s)
- Saray Ramos
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C, Rajasekhar P, Zhu L, Hempel A, Lin A, Rickard JA, Hall C, Gangatirkar P, Yip RK, Cawthorne W, Jacobsen AV, Horne CR, Martin KR, Ioannidis LJ, Hansen DS, Day J, Wicks IP, Law C, Ritchie ME, Bowden R, Hildebrand JM, O'Reilly LA, Silke J, Giulino-Roth L, Tsui E, Rogers KL, Hawkins ED, Christensen B, Murphy JM, Samson AL. An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med 2024; 16:1717-1749. [PMID: 38750308 PMCID: PMC11250867 DOI: 10.1038/s44321-024-00074-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.
Collapse
Affiliation(s)
- Shene Chiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Aysha H Al-Ani
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Yi Pan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Isabella Y Kong
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marilou Barrios
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Callum Sargeant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Leah Zhu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Anne Hempel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ann Lin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James A Rickard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Austin Hospital, Heidelberg, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Raymond Kh Yip
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa J Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Diana S Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Day
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Charity Law
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa Giulino-Roth
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Ellen Tsui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Britt Christensen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
| |
Collapse
|
17
|
Kelepouras K, Saggau J, Varanda AB, Zrilic M, Kiefer C, Rakhsh-Khorshid H, Lisewski I, Uranga-Murillo I, Arias M, Pardo J, Tonnus W, Linkermann A, Annibaldi A, Walczak H, Liccardi G. The importance of murine phospho-MLKL-S345 in situ detection for necroptosis assessment in vivo. Cell Death Differ 2024; 31:897-909. [PMID: 38783091 PMCID: PMC11239901 DOI: 10.1038/s41418-024-01313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.
Collapse
Grants
- Wellcome Trust
- G.L. is funded by the Center for Biochemistry, Univeristy of Cologne - 956400, Köln Fortune, CANcer TARgeting (CANTAR) project NW21-062A, two collaborative research center grants: SFB1399-413326622 Project C06, SFB1530-455784452 Project A03 both funded by the Deutsche Forschungsgemeinschaft (DFG)) and associated to the collaborative SFB1403 also funded by the DFG
- H.W. is funded by the Alexander von Humboldt Foundation, a Wellcome Trust Investigator Award (214342/Z/18/Z), a Medical Research Council Grant (MR/S00811X/1), a Cancer Research UK Programme Grant (A27323) and three collaborative research center grants (SFB1399, Project C06, SFB1530-455784452, Project A03 and SFB1403–414786233) funded by the Deutsche Forschungsgemeinschaft (DFG) and CANcer TARgeting (CANTAR) funded by Netzwerke 2021.
- AA is funded by the Center for Molecular Medine Cologne (CMMC) Junior Research Group program, Deutsche Forschungsgemeinschaft (DFG) (project number AN1717/1-1), the Jürgen Manchot Stiftung foundation, the collaborative research center SFB1530 (Project A5, ID: 455784452)
- JP is funded by FEDER (Fondo Europeo de Desarrollo Regional), Gobierno de Aragón (Group B29_23R), CIBERINFEC (CB21/13/00087), Ministerio de Ciencia, Innovación y Universidades (MCNU)/Agencia Estatal de Investigación (PID2020-113963RBI00)
- MA is funded by a Postdoctoral Juan de la Cierva Contract.
- Work in the Linkermann Lab was funded by the German Research Foundation SFB-TRR205, SFB-TRR 127, SPP2306, and a Heisenberg-Professorship to A.L., project number 324141047, and the international research training group (IRTG) 2251. It was further supported by the BMBF (FERROPath consortium), the TU Dresden / Kings College London transcampus initiative and the DFG-Sachbeihilfe LI 2107/10-1.
Collapse
Affiliation(s)
- Konstantinos Kelepouras
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Julia Saggau
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Ana Beatriz Varanda
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Christine Kiefer
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hassan Rakhsh-Khorshid
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Iratxe Uranga-Murillo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maykel Arias
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julian Pardo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Henning Walczak
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, WC1E 6BT, London, UK
| | - Gianmaria Liccardi
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
18
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Gary AS, Amouret S, Montoni A, Rochette PJ. MLKL, a new actor of UVB-induced apoptosis in human diploid dermal fibroblasts. Cell Death Discov 2024; 10:232. [PMID: 38744823 PMCID: PMC11093999 DOI: 10.1038/s41420-024-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Ultraviolet radiation (UVR) is a major environmental mutagen. In skin, UVR can initiate cancer through the induction of mutagenic DNA damage and promote its progression. An important cancer prevention mechanism is the regulated cell death (RCD), which can safely dispose of damaged cells. Apoptosis, a well-known RCD, is known to be activated by UVR, but part of the mechanism and proteins involved in UVR-induced apoptosis are still to be discovered. Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) are two proteins involved in necroptosis, a form of RCD. Here, we have evaluated the implication of RIPK3 and MLKL in UVB-induced cell death in human diploid dermal fibroblasts. Our results show that RIPK3 and MLKL play opposite roles in UVB-induced cell death, in a necroptosis independent pathway. We showed that RIPK3 protects cells from UVB cell death, while MLKL sensitizes cells to UVB-induced apoptosis. Taken together these results are the first to show the implication of RIPK3 and MLKL in survival and apoptosis, respectively, bringing two new actors in UVB-induced cell death pathway.
Collapse
Affiliation(s)
- Anne-Sophie Gary
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Sophie Amouret
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Alicia Montoni
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada.
- Département d'Ophtalmologie et ORL - chirurgie cervico-faciale, Université Laval, Québec, QC, Canada.
| |
Collapse
|
20
|
Shen Q, Hasegawa K, Oelerich N, Prakken A, Tersch LW, Wang J, Reichhardt F, Tersch A, Choo JC, Timmers T, Hofmann K, Parker JE, Chai J, Maekawa T. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 2024; 32:453-465.e6. [PMID: 38513655 DOI: 10.1016/j.chom.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The plant homolog of vertebrate necroptosis inducer mixed-lineage kinase domain-like (MLKL) contributes to downstream steps in Toll-interleukin-1 receptor domain NLR (TNL)-receptor-triggered immunity. Here, we show that Arabidopsis MLKL1 (AtMLKL1) clusters into puncta at the plasma membrane upon TNL activation and that this sub-cellular reorganization is dependent on the TNL signal transducer, EDS1. We find that AtMLKLs confer TNL-triggered immunity in parallel with RPW8-type HeLo-domain-containing NLRs (RNLs) and that the AtMLKL N-terminal HeLo domain is indispensable for both immunity and clustering. We show that the AtMLKL HeLo domain mediates cytoplasmic Ca2+ ([Ca2+]cyt) influx in plant and human cells, and AtMLKLs are responsible for sustained [Ca2+]cyt influx during TNL-triggered, but not CNL-triggered, immunity. Our study reveals parallel immune signaling functions of plant MLKLs and RNLs as mediators of [Ca2+]cyt influx and a potentially common role of the HeLo domain fold in the Ca2+-signal relay of diverse organisms.
Collapse
Affiliation(s)
- Qiaochu Shen
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Keiichi Hasegawa
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany
| | - Nicole Oelerich
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Anna Prakken
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Lea Weiler Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Junli Wang
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Frowin Reichhardt
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Alexandra Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Je Cuan Choo
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Jijie Chai
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany.
| |
Collapse
|
21
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
22
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Atilla-Gokcumen GE. Acylation of MLKL Impacts Its Function in Necroptosis. ACS Chem Biol 2024; 19:407-418. [PMID: 38301282 DOI: 10.1021/acschembio.3c00603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization, which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize the acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, with C184, C269, and C286 as possible acylation sites. Using all-atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane levels. Through investigations of the S-palmitoyltransferases that might acylate pMLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating the necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ricardo X Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Wang L, Zhang Y, Huang M, Yuan Y, Liu X. RIP3 in Necroptosis: Underlying Contributions to Traumatic Brain Injury. Neurochem Res 2024; 49:245-257. [PMID: 37743445 DOI: 10.1007/s11064-023-04038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Traumatic brain injury (TBI) is a global public safety issue that poses a threat to death, characterized by high fatality rates, severe injuries and low recovery rates. There is growing evidence that necroptosis regulates the pathophysiological processes of a variety of diseases, particularly those affecting the central nervous system. Thus, moderate necroptosis inhibition may be helpful in the management of TBI. Receptor-interacting protein kinase (RIP) 3 is a key mediator in the necroptosis, and its absence helps restore the microenvironment at the injured site and improve cognitive impairment after TBI. In this report, we review different domains of RIP3, multiple analyses of necroptosis, and associations between necroptosis and TBI, RIP3, RIP1, and mixed lineage kinase domain-like. Next, we elucidate the potential involvement of RIP3 in TBI and highlight how RIP3 deficiency enhances neuronal function.
Collapse
Affiliation(s)
- Lvxia Wang
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yiling Yuan
- Department of Biosciences, Durham University, Durham, UK
| | - Xuehong Liu
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China.
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
24
|
Weinelt N, Wächtershäuser KN, Celik G, Jeiler B, Gollin I, Zein L, Smith S, Andrieux G, Das T, Roedig J, Feist L, Rotter B, Boerries M, Pampaloni F, van Wijk SJL. LUBAC-mediated M1 Ub regulates necroptosis by segregating the cellular distribution of active MLKL. Cell Death Dis 2024; 15:77. [PMID: 38245534 PMCID: PMC10799905 DOI: 10.1038/s41419-024-06447-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Biological Sciences (IZN), Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Gulustan Celik
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Birte Jeiler
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Isabelle Gollin
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Laura Zein
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Tonmoy Das
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Jens Roedig
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Leonard Feist
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Biological Sciences (IZN), Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
25
|
Hao K, Xu H, Jiang S, Sun L. Paralichthys olivaceus MLKL-mediated necroptosis is activated by RIPK1/3 and involved in anti-microbial immunity. Front Immunol 2024; 15:1348866. [PMID: 38292869 PMCID: PMC10825024 DOI: 10.3389/fimmu.2024.1348866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Necroptosis is a type of proinflammatory programmed necrosis essential for innate immunity. The receptor interacting protein kinases 1/3 (RIPK1/3) and the substrate mixed lineage kinase domain-like protein (MLKL) are core components of the necroptotic axis. The activation and immunological function of necroptosis in fish remain elusive. Herein, we studied the function and activation of RIPK1/3 (PoRIPK1/3) and MLKL (PoMLKL) in teleost Paralichthys olivaceus. Bacterial infection increased the expression of RIPK1/3 and MLKL. The N-terminal four-helix bundle (4HB) domain of PoMLKL exhibited necroptosis-inducing activity, and the C-terminal pseudokinase domain exerted auto-inhibitory effect on the 4HB domain. PoRIPK3 was capable of phosphorylating the T360/S361 residues in the PoMLKL C-terminal domain and initiated necroptosis, and this necroptosis-inducing activity was enhanced by PoRIPK1. PoRIPK1/3 interacted with PoMLKL in a manner that depended on the RIP homotypic interaction motif (RHIM), and deletion of RHIM from PoRIPK1/3 led to the dissociation of PoRIPK1/3 with PoMLKL. Inhibition of PoMLKL-mediated necroptosis increased Edwardsiella tarda infection in fish cells and tissues, and led to significantly enhanced lethality of the host. Taken together, these results revealed the activation mechanism of PoRIPK1/3-PoMLKL signaling pathway and the immunological function of necroptosis in the immune defense of teleost.
Collapse
Affiliation(s)
- Kangwei Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol 2023; 14:1324996. [PMID: 38077379 PMCID: PMC10704359 DOI: 10.3389/fimmu.2023.1324996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease (CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are limited and mostly relate to replacement of kidney function until the kidneys recover spontaneously. Furthermore, there is no treatment that prevents the AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in kidney injury. Specifically, there is functional evidence for a role of necroptosis, ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated necrosis may be proinflammatory and immunogenic, triggering subsequent waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model, a first wave of ferroptosis was followed by recruitment of inflammatory cytokines such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led to persistent kidney injury and decreased kidney function. A correct understanding of the specific forms of regulated necrosis, their timing and intracellular molecular pathways may help design novel therapeutic strategies to prevent or treat AKI at different stages of the condition, thus improving patient survival and the AKI-to-CKD transition. We now review key regulated necrosis pathways and their role in AKI and the AKI-to-CKD transition both at the time of the initial insult and during the repair phase following AKI.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Natalia Villar-Gómez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Sandra Rayego-Mateos
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
| | - Adrian M. Ramos
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Marta Ruiz-Ortega
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Reina Sofia en Investigación en Nefrología (IRSIN), Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| |
Collapse
|
28
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Dynamics of necroptosis in kidney ischemia-reperfusion injury. Front Immunol 2023; 14:1251452. [PMID: 38022500 PMCID: PMC10652410 DOI: 10.3389/fimmu.2023.1251452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Necroptosis, a pathway of regulated necrosis, involves recruitment and activation of RIPK1, RIPK3 and MLKL, leading to cell membrane rupture, cell death and release of intracellular contents causing further injury and inflammation. Necroptosis is believed to play an important role in the pathogenesis of kidney ischemia-reperfusion injury (IRI). However, the dynamics of necroptosis in kidney IRI is poorly understood, in part due to difficulties in detecting phosphorylated MLKL (pMLKL), the executioner of the necroptosis pathway. Here, we investigated the temporal and spatial activation of necroptosis in a mouse model of unilateral warm kidney IRI, using a robust method to stain pMLKL. We identified the period 3-12 hrs after reperfusion as a critical phase for the activation of necroptosis in proximal tubular cells. After 12 hrs, the predominant pattern of pMLKL staining shifted from cytoplasmic to membrane, indicating progression to the terminal phase of necroptotic cell death. Mlkl-ko mice exhibited reduced kidney inflammation at 12 hrs and lower serum creatinine and tubular injury at 24 hrs compared to wild-type littermates. Interestingly, we observed increased apoptosis in the injured kidneys of Mlkl-ko mice, suggesting a relationship between necroptosis and apoptosis in kidney IRI. Together, our findings confirm the role of necroptosis and necroinflammation in kidney IRI, and identify the first 3 hrs following reperfusion as a potential window for targeted treatments.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Anjan K. Bongoni
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jennifer L. McRae
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Francesco L. Ierino
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Hao M, Han X, Yao Z, Zhang H, Zhao M, Peng M, Wang K, Shan Q, Sang X, Wu X, Wang L, Lv Q, Yang Q, Bao Y, Kuang H, Zhang H, Cao G. The pathogenesis of organ fibrosis: Focus on necroptosis. Br J Pharmacol 2023; 180:2862-2879. [PMID: 36111431 DOI: 10.1111/bph.15952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouhui Yao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Han Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Meng Y, Garnish SE, Davies KA, Black KA, Leis AP, Horne CR, Hildebrand JM, Hoblos H, Fitzgibbon C, Young SN, Dite T, Dagley LF, Venkat A, Kannan N, Koide A, Koide S, Glukhova A, Czabotar PE, Murphy JM. Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization. Nat Commun 2023; 14:6804. [PMID: 37884510 PMCID: PMC10603135 DOI: 10.1038/s41467-023-42255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina A Black
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Aarya Venkat
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
31
|
Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, Eng VV, Chiou S, Meng Y, Frank D, Tovey Crutchfield EC, Patel KM, Jacobsen AV, Atkin-Smith GK, Di Rago L, Doerflinger M, Horne CR, Hall C, Young SN, Cook M, Athanasopoulos V, Vinuesa CG, Lawlor KE, Wicks IP, Ebert G, Ng AP, Slade CA, Pearson JS, Samson AL, Silke J, Murphy JM, Hildebrand JM. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. Nat Commun 2023; 14:6046. [PMID: 37770424 PMCID: PMC10539340 DOI: 10.1038/s41467-023-41724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-β induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.
Collapse
Affiliation(s)
- Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Victoria E Jackson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Rebecca Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Yanxiang Meng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Georgia K Atkin-Smith
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Christopher R Horne
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew Cook
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The Francis Crick Institute, London, UK
- University College London, London, UK
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Ashley P Ng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Clinical Haematology Department, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Charlotte A Slade
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - André L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
32
|
Huang F, Liang J, Lin Y, Chen Y, Hu F, Feng J, Zeng Q, Han Z, Lin Q, Li Y, Li J, Wu L, Li L. Repurposing of Ibrutinib and Quizartinib as potent inhibitors of necroptosis. Commun Biol 2023; 6:972. [PMID: 37741898 PMCID: PMC10517925 DOI: 10.1038/s42003-023-05353-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Necroptosis is a form of regulated cell death that has been implicated in multiple diseases. TNF-induced necroptosis is regulated by necrosomes, complexes consisting of RIPK1, RIPK3 and MLKL. In this study, by screening of a small-compound library, we identified dozens of compounds that inhibited TNF-induced necroptosis. According to the mechanisms by which they inhibited necroptosis, these compounds were classified into different groups. We then identified Ibrutinib as an inhibitor of RIPK3 and found that Quizartinib protected against the TNF-induced systemic inflammatory response syndrome in mice by inhibiting the activation of RIPK1. Altogether, our work revealed dozens of necroptosis inhibitors, suggesting new potential approaches for treating necroptosis-related diseases.
Collapse
Affiliation(s)
- Fangmin Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiankun Liang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yingying Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yushi Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fen Hu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jianting Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiang Zeng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeteng Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaofa Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jingyi Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lanqin Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| |
Collapse
|
33
|
Rathje OH, Perryman L, Payne RJ, Hamprecht DW. PROTACs Targeting MLKL Protect Cells from Necroptosis. J Med Chem 2023; 66:11216-11236. [PMID: 37535857 DOI: 10.1021/acs.jmedchem.3c00665] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mixed Lineage Kinase domain-Like pseudokinase (MLKL) is implicated in a broad range of diseases due to its role as the ultimate effector of necroptosis and has therefore emerged as an attractive drug target. Here, we describe the development of PROteolysis TArgeting Chimeras (PROTACs) as a novel approach to knock down MLKL through chemical means. A series of candidate degraders were synthesized from a high-affinity pyrazole carboxamide-based MLKL ligand leading to the identification of a PROTAC molecule that effectively degraded MLKL and completely abrogated cell death in a TSZ model of necroptosis. By leveraging the innate ability of these PROTACs to degrade MLKL in a dose-dependent manner, the quantitative relationship between MLKL levels and necroptosis was interrogated. This work demonstrates the feasibility of targeting MLKL using a PROTAC approach and provides a powerful tool to further our understanding of the role of MLKL within the necroptotic pathway.
Collapse
Affiliation(s)
- Oliver H Rathje
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Perryman
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
34
|
Ekhlak M, Kulkarni PP, Singh V, Chaurasia SN, Mohapatra SK, Chaurasia RN, Dash D. Necroptosis executioner MLKL plays pivotal roles in agonist-induced platelet prothrombotic responses and lytic cell death in a temporal order. Cell Death Differ 2023; 30:1886-1899. [PMID: 37301927 PMCID: PMC10406901 DOI: 10.1038/s41418-023-01181-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Necroptosis is a form of programmed cell death executed by receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL). Platelets are circulating cells that play central roles in haemostasis and pathological thrombosis. In this study we demonstrate seminal contribution of MLKL in transformation of agonist-stimulated platelets to active haemostatic units progressing eventually to necrotic death on a temporal scale, thus attributing a yet unrecognized fundamental role to MLKL in platelet biology. Physiological agonists like thrombin instigated phosphorylation and subsequent oligomerization of MLKL in platelets in a RIPK3-independent but phosphoinositide 3-kinase (PI3K)/AKT-dependent manner. Inhibition of MLKL significantly curbed agonist-induced haemostatic responses in platelets that included platelet aggregation, integrin activation, granule secretion, procoagulant surface generation, rise in intracellular calcium, shedding of extracellular vesicles, platelet-leukocyte interactions and thrombus formation under arterial shear. MLKL inhibition, too, prompted impairment in mitochondrial oxidative phosphorylation and aerobic glycolysis in stimulated platelets, accompanied with disruption in mitochondrial transmembrane potential, augmented proton leak and drop in both mitochondrial calcium as well as ROS. These findings underscore the key role of MLKL in sustaining OXPHOS and aerobic glycolysis that underlie energy-intensive platelet activation responses. Prolonged exposure to thrombin provoked oligomerization and translocation of MLKL to plasma membranes forming focal clusters that led to progressive membrane permeabilization and decline in platelet viability, which was prevented by inhibitors of PI3K/MLKL. In summary, MLKL plays vital role in transitioning of stimulated platelets from relatively quiescent cells to functionally/metabolically active prothrombotic units and their ensuing progression to necroptotic death.
Collapse
Affiliation(s)
- Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Paresh P Kulkarni
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Singh
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Susheel N Chaurasia
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
35
|
Patankar JV, Bubeck M, Acera MG, Becker C. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Front Immunol 2023; 14:1203903. [PMID: 37409125 PMCID: PMC10318896 DOI: 10.3389/fimmu.2023.1203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.
Collapse
Affiliation(s)
- Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
36
|
Valenti M, Molina M, Cid VJ. Human gasdermin D and MLKL disrupt mitochondria, endocytic traffic and TORC1 signalling in budding yeast. Open Biol 2023; 13:220366. [PMID: 37220793 PMCID: PMC10205182 DOI: 10.1098/rsob.220366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Gasdermin D (GSDMD) and mixed lineage kinase domain-like protein (MLKL) are the pore-forming effectors of pyroptosis and necroptosis, respectively, with the capacity to disturb plasma membrane selective permeability and induce regulated cell death. The budding yeast Saccharomyces cerevisiae has long been used as a simple eukaryotic model for the study of proteins associated with human diseases by heterologous expression. In this work, we expressed in yeast both GSDMD and its N-terminal domain (GSDMD(NT)) to characterize their cellular effects and compare them to those of MLKL. GSDMD(NT) and MLKL inhibited yeast growth, formed cytoplasmic aggregates and fragmented mitochondria. Loss-of-function point mutants of GSDMD(NT) showed affinity for this organelle. Besides, GSDMD(NT) and MLKL caused an irreversible cell cycle arrest through TORC1 inhibition and disrupted endosomal and autophagic vesicular traffic. Our results provide a basis for a humanized yeast platform to study GSDMD and MLKL, a useful tool for structure-function assays and drug discovery.
Collapse
Affiliation(s)
- Marta Valenti
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Víctor J. Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
37
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
38
|
Liu X, Tu H, Peng J. Progress in study on the final executor of necroptosis MLKL and its inhibitors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:242-251. [PMID: 36999471 PMCID: PMC10930346 DOI: 10.11817/j.issn.1672-7347.2023.220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 04/01/2023]
Abstract
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| | - Hua Tu
- Department of Pharmacy, Fourth Hospital of Changsha, Changsha 410006, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
39
|
Gardner C, Davies KA, Zhang Y, Brzozowski M, Czabotar PE, Murphy JM, Lessene G. From (Tool)Bench to Bedside: The Potential of Necroptosis Inhibitors. J Med Chem 2023; 66:2361-2385. [PMID: 36781172 PMCID: PMC9969410 DOI: 10.1021/acs.jmedchem.2c01621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.
Collapse
Affiliation(s)
- Christopher
R. Gardner
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Katherine A. Davies
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ying Zhang
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Brzozowski
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E. Czabotar
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M. Murphy
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guillaume Lessene
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia,Department
of Pharmacology and Therapeutics, University
of Melbourne, Parkville, VIC 3052, Australia,Email;
| |
Collapse
|
40
|
The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ 2023; 30:1033-1046. [PMID: 36739334 PMCID: PMC10070280 DOI: 10.1038/s41418-023-01122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eμ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.
Collapse
|
41
|
Liccardi G, Annibaldi A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 2023; 30:269-278. [PMID: 36175538 PMCID: PMC9520111 DOI: 10.1038/s41418-022-01061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Necroptosis is a caspase-independent modality of cell death that requires the activation of the executioner MLKL. In the last ten years the field gained a substantial amount of evidence regarding its involvement in host response to pathogens, TNF-induced inflammatory diseases as well as pathogen recognition receptors (PRR)-induced inflammation. However, there are still a lot of questions that remain unanswered. While it is clear that there are specific events needed to drive MLKL activation, substantial differences between human and mouse MLKL not only highlight different evolutionary pressure, but also provide potential insights on alternative modalities of activation. While in TNF-induced necroptosis it is clear the involvement of the RIPK3 mediated phosphorylation, it still remains to be understood how certain inflammatory in vivo phenotypes are not equally rescued by either RIPK3 or MLKL loss. Moreover, the plethora of different reported phosphorylation events on MLKL, even in cells that do not express RIPK3, suggest indeed that there is more to MLKL than RIPK3-mediated activation, not only in the execution of necroptosis but perhaps in other inflammatory conditions that include IFN response. The recent discovery of MLKL ubiquitination has highlighted a new checkpoint in the regulation of MLKL activation and the somewhat conflicting evidence reported certainly require some untangling. In this review we will highlight the recent findings on MLKL activation and involvement to pathogen response with a specific focus on MLKL post-translational modifications, in particular ubiquitination. This review will highlight the outstanding main questions that have risen from the last ten years of research, trying at the same time to propose potential avenues of research.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany.
| |
Collapse
|
42
|
Horne CR, Samson AL, Murphy JM. The web of death: the expanding complexity of necroptotic signaling. Trends Cell Biol 2023; 33:162-174. [PMID: 35750616 DOI: 10.1016/j.tcb.2022.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation. Here, we describe the emerging picture of the web of proteins that tune necroptotic signal transduction and how these events have diverged across species, presumably owing to selective pressures of pathogens upon the RIPK3-MLKL protein pair.
Collapse
Affiliation(s)
- Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
43
|
Ramirez RX, Campbell O, Pradhan AJ, Atilla-Gokcumen GE, Monje-Galvan V. Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers. Front Chem 2023; 10:1088058. [PMID: 36712977 PMCID: PMC9877227 DOI: 10.3389/fchem.2022.1088058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Lipids, the structural part of membranes, play important roles in biological functions. However, our understanding of their implication in key cellular processes such as cell division and protein-lipid interaction is just emerging. This is the case for molecular interactions in mechanisms of cell death, where the role of lipids for protein localization and subsequent membrane permeabilization is key. For example, during the last stage of necroptosis, the mixed lineage kinase domain-like (MLKL) protein translocates and, eventually, permeabilizes the plasma membrane (PM). This process results in the leakage of cellular content, inducing an inflammatory response in the microenvironment that is conducive to oncogenesis and metastasis, among other pathologies that exhibit inflammatory activity. This work presents insights from long all-atom molecular dynamics (MD) simulations of complex membrane models for the PM of mammalian cells with an MLKL protein monomer. Our results show that the binding of the protein is initially driven by the electrostatic interactions of positively charged residues. The protein bound conformation modulates lipid recruitment to the binding site, which changes the local lipid environment recruiting PIP lipids and cholesterol, generating a unique fingerprint. These results increase our knowledge of protein-lipid interactions at the membrane interface in the context of molecular mechanisms of the necroptotic pathway, currently under investigation as a potential treatment target in cancer and inflamatory diseases.
Collapse
Affiliation(s)
- Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Apoorva J. Pradhan
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States,*Correspondence: Viviana Monje-Galvan,
| |
Collapse
|
44
|
Yuan G, Cao C, Cao D, Li B, Li X, Li H, Shen H, Wang Z, Chen G. Receptor-interacting protein 3-phosphorylated Ca 2+ /calmodulin-dependent protein kinase II and mixed lineage kinase domain-like protein mediate intracerebral hemorrhage-induced neuronal necroptosis. J Neurochem 2023; 164:94-114. [PMID: 36424866 DOI: 10.1111/jnc.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 11/26/2022]
Abstract
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+ /calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood-brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.
Collapse
Affiliation(s)
- Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
46
|
Onal T, Ozgul-Onal M, Chefetz I. Mixed lineage kinase domain-like pseudokinase: Conventional (necroptosis) and unconventional (necroptosis-independent) functions and features. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:225-243. [PMID: 36858737 DOI: 10.1016/bs.apcsb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) is the terminal and indispensable mediator of necroptosis. Necroptosis, also known as programmed cell necrosis, is a caspase-independent cell death mechanism involved in various pathologic and inflammatory processes. Triggering necroptosis could be an alternative approach in treating apoptosis-resistant cancer cells to prevent recurrent disease. In addition to its function in necroptosis, MLKL plays a role as a regulator in many cellular processes independent of necroptosis. A better understanding of the intracellular function of MLKL and its role in various diseases and pathologic conditions is needed to enable discovery of new targeted therapies. Various necroptosis-dependent and independent functions of MLKL are reviewed in this chapter, with a focus on functions of MLKL in necroptosis, autophagy, inflammation, tissue regeneration, and endosomal trafficking.
Collapse
Affiliation(s)
- Tuna Onal
- Faculty of Medicine, Department of Histology and Embryology, Bandirma Onyedi Eylul University, Balikesir, Turkey; The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Melike Ozgul-Onal
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Faculty of Medicine, Department of Histology and Embryology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
47
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
48
|
Generation of transgenic mice expressing a FRET biosensor, SMART, that responds to necroptosis. Commun Biol 2022; 5:1331. [PMID: 36471162 PMCID: PMC9722793 DOI: 10.1038/s42003-022-04300-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Necroptosis is a regulated form of cell death involved in various pathological conditions, including ischemic reperfusion injuries, virus infections, and drug-induced tissue injuries. However, it is not fully understood when and where necroptosis occurs in vivo. We previously generated a Forster resonance energy transfer (FRET) biosensor, termed SMART (the sensor for MLKL activation by RIPK3 based on FRET), which monitors conformational changes of MLKL along with progression of necroptosis in human and murine cell lines in vitro. Here, we generate transgenic (Tg) mice that express the SMART biosensor in various tissues. The FRET ratio is increased in necroptosis, but not apoptosis or pyroptosis, in primary cells. Moreover, the FRET signals are elevated in renal tubular cells of cisplatin-treated SMART Tg mice compared to untreated SMART Tg mice. Together, SMART Tg mice may provide a valuable tool for monitoring necroptosis in different types of cells in vitro and in vivo.
Collapse
|
49
|
Wan P, Yan J, Liu Z. Methodological advances in necroptosis research: from challenges to solutions. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:291-297. [PMID: 36532841 PMCID: PMC9757602 DOI: 10.1016/j.jncc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Necroptosis is currently attracting the attention of the scientific community for its broad implications in inflammatory diseases and cancer. However, detecting ongoing necroptosis in vivo under both experimental and clinical disease conditions remains challenging. The technical barrier lies in four aspects, namely tissue sampling, real-time in vivo monitoring, specific markers, and distinction between different types of cell death. In this review, we presented the latest methodological advances for in vivo necroptosis identification. The advances highlighted the multi-parameter flow cytometry, sA5-YFP tool, radiolabeled Annexin V/Duramycin, Gallium-68-labeled IRDye800CW contrast agent, and SMART platform in vivo. We also discussed the up-to-date research models in studying necroptosis, particularly the mice models for manipulating and monitoring necroptosis. Based on these recent advances, this review aims to provide some advice on current necroptosis techniques and approaches.
Collapse
Affiliation(s)
- Peixing Wan
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jiong Yan
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Zhenggang Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
50
|
Pseudokinase NRP1 facilitates endocytosis of transferrin in the African trypanosome. Sci Rep 2022; 12:18572. [PMID: 36329148 PMCID: PMC9633767 DOI: 10.1038/s41598-022-22054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis (HAT) and nagana in cattle. During infection of a vertebrate, endocytosis of host transferrin (Tf) is important for viability of the parasite. The majority of proteins involved in trypanosome endocytosis of Tf are unknown. Here we identify pseudokinase NRP1 (Tb427tmp.160.4770) as a regulator of Tf endocytosis. Genetic knockdown of NRP1 inhibited endocytosis of Tf without blocking uptake of bovine serum albumin. Binding of Tf to the flagellar pocket was not affected by knockdown of NRP1. However the quantity of Tf per endosome dropped significantly, consistent with NRP1 promoting robust capture and/or retention of Tf in vesicles. NRP1 is involved in motility of Tf-laden vesicles since distances between endosomes and the kinetoplast were reduced after knockdown of the gene. In search of possible mediators of NRP1 modulation of Tf endocytosis, the gene was knocked down and the phosphoproteome analyzed. Phosphorylation of protein kinases forkhead, NEK6, and MAPK10 was altered, in addition to EpsinR, synaptobrevin and other vesicle-associated proteins predicted to be involved in endocytosis. These candidate proteins may link NRP1 functionally either to protein kinases or to vesicle-associated proteins.
Collapse
|