1
|
Dai Z, Wang K, Bai C, Li Y, Yu Q, Chen Z, Liao J, Ding J, Wang Y. Discovery of a novel Thiazole amide inhibitor of Inflammasome and Pyroptosis pathways. Bioorg Chem 2025; 160:108477. [PMID: 40252370 DOI: 10.1016/j.bioorg.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Upon the activation of inflammasomes, inflammatory caspases cleave and activate gasdermin D (GSDMD), leading to pore formation that causes cell membrane rupture and amplifies downstream inflammatory responses. Dysregulated inflammasome activation and pyroptosis signaling pathways are implicated in numerous inflammatory diseases. In our work, a set of novel thiazole amide compounds with inhibitory activity against NLRP3 inflammasome-induced pyroptosis was identified. Of all the compounds tested, compound 21 demonstrated the most potent anti-pyroptotic effects. It suppressed GSDMD cleavage and decreased IL-1β and lactate dehydrogenase (LDH) release in a concentration-dependent manner. Compound 21 bound to NLRP3 protein and increased the thermal stability of NLRP3 concentration-dependently. The molecular docking and dynamics simulations revealed that compound 21 binds to the NLRP3 protein's active site, suppressing inflammasome activation. Further investigations showed that compound 21 also partially blocked upstream NF-κB signaling and downstream GSDMD N-terminal domain (GSDMD-NT) oligomerization, which explains its broad inhibitory effects on pyroptosis driven by multiple inflammasomes. Overall, this study presents a promising thiazole amide compound with inhibitory activity against inflammasome activation and subsequent pyroptosis, warranting further exploration.
Collapse
Affiliation(s)
- Zhen Dai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Ke Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chenli Bai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Quanwei Yu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiping Chen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jihong Liao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Nanjing, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Ayyubova G, Madhu LN. Microglial NLRP3 Inflammasomes in Alzheimer's Disease Pathogenesis: From Interaction with Autophagy/Mitophagy to Therapeutics. Mol Neurobiol 2025; 62:7124-7143. [PMID: 39951189 DOI: 10.1007/s12035-025-04758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, discovered 20 years ago, is crucial in controlling innate immune reactions in Alzheimer's disease (AD). By initiating the release of inflammatory molecules (including caspases, IL-1β, and IL-18), the excessively activated inflammasome complex in microglia leads to chronic inflammation and neuronal death, resulting in the progression of cognitive deficiencies. Even though the involvement of NLRP3 has been implicated in neuroinflammation and widely explored in several studies, there are plenty of controversies regarding its precise roles and activation mechanisms in AD. Another prominent feature of AD is impairment in microglial autophagy, which can be either the cause or the consequence of NLRP3 activation and contributes to the aggregation of misfolded proteins and aberrant chronic inflammatory state seen in the disease course. Studies also demonstrate that intracellular buildup of dysfunctional and damaged mitochondria due to defective mitophagy enhances inflammasome activation, further suggesting that restoration of impaired autophagy and mitophagy can effectively suppress it, thereby reducing inflammation and protecting microglia and neurons. This review is primarily focused on the role of NLRP3 inflammasome in the etiopathology of AD, its interactions with microglial autophagy/mitophagy, and the latest developments in NLRP3 inflammasome-targeted therapeutic interventions being implicated for AD treatment.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
3
|
Zhu T, Hu L, Hu H, Li Y, Zhu J, Wu G, Xu D. Capturing and releasing cucurbitacins with α, β-unsaturated group from Cucumis melo based on reversibility of thia-Michael addition reaction. Bioorg Chem 2025; 159:108404. [PMID: 40132393 DOI: 10.1016/j.bioorg.2025.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Molecules containing α, β-unsaturated carbonyl structure have gained constant attention because of their potential of interacting with nucleophilic amino acid residues and further protein function regulating. However, current methods for finding and isolating such compounds are challenged by lacking of convenience and orientation. Herein we introduce a new strategy for capturing and releasing natural products with α, β-unsaturated group by regulating the direction of thia-Michael addition reaction. Target molecules could be separated from various impurities by means of controlling the association and dissociation with hydrophilic small sulfhydryl molecules and consequently change of polarity and solubleness. Our strategy showed effectiveness that natural products containing α, β-unsaturated esters and ketones could be successfully released from the adducts with cysteine. Finally, nine cucurbitacins with target functional group from the extract of Cucumis melo were enriched and isolated with high selectivity. This strategy may thus help to isolate natural products with α, β-unsaturated group in complex samples.
Collapse
Affiliation(s)
- Tianyu Zhu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Liangyong Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Hang Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yujie Li
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jiangmin Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Guanzhao Wu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
4
|
Tang H, Zou X, Chen P, Wang Y, Gao S, Wang T, Xu Y, Ji SL. Broxyquinoline targets NLRP3 to inhibit inflammasome activation and alleviate NLRP3-associated inflammatory diseases. Int Immunopharmacol 2025; 156:114687. [PMID: 40253767 DOI: 10.1016/j.intimp.2025.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is responsible for various pathogenic and non-pathogenic damage signals and plays a critical role in host defense against pathogens and physiological damage. However, inflammasome activation and its subsequent effects also lead to a variety of inflammatory diseases. In this study, we identified broxyquinoline, an FDA-approved antimicrobial drug, as a effective NLRP3 inflammasome inhibitor. Broxyquinoline suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) release, but did not affect NLRC4 or AIM2 inflammasome activation. Mechanistically, broxyquinoline directly targets Arg165 of NLRP3 protein, thus preventing NEK7-NLRP3 interaction, NLRP3 oligomerization, and ASC speck formation, without affecting the NF-κB pathway. Consequently, broxyquinoline significantly attenuated the progression of monosodium urate (MSU)-induced peritonitis and myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) in murine models. In conclusion, we demonstrated that broxyquinoline directly targets the NLRP3 protein to suppress the activation of NLRP3 inflammasome and provide a promising therapeutic agent for NLRP3 inflammasome-associated diseases.
Collapse
MESH Headings
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Animals
- Inflammasomes/metabolism
- Inflammasomes/antagonists & inhibitors
- Mice
- Peritonitis/drug therapy
- Peritonitis/chemically induced
- Peritonitis/immunology
- Mice, Inbred C57BL
- Humans
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- NIMA-Related Kinases/metabolism
- Interleukin-1beta/metabolism
- Female
- Uric Acid
Collapse
Affiliation(s)
- Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Cabral JE, Wu A, Zhou H, Pham MA, Lin S, McNulty R. Targeting the NLRP3 inflammasome for inflammatory disease therapy. Trends Pharmacol Sci 2025:S0165-6147(25)00073-2. [PMID: 40374417 DOI: 10.1016/j.tips.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/17/2025]
Abstract
The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a megadalton complex implicated in numerous inflammation-driven diseases including COVID-19, Alzheimer's disease, and gout. Although past efforts have focused on inhibiting IL-1β downstream of NLRP3 activation using drugs such as canakinumab, no FDA-approved NLRP3-targeted inhibitors are currently available. MCC950, a direct NLRP3 inhibitor, showed promise but exhibited off-target effects. Recent research has focused on optimizing the sulfonylurea-based MCC950 scaffold by leveraging recent structural and medicinal chemistry insights into the NLRP3 nucleotide-binding and oligomerization (NACHT) domain to improve solubility and clinical efficacy. In addition, oxidized DNA (oxDNA) has emerged as a key inflammasome trigger, and molecules targeting the pyrin domain have shown promise in inhibiting NLRP3 activation. This review discusses the role of NLRP3 in inflammation-related diseases, the status of ongoing clinical trials, and emerging small-molecule therapeutics targeting NLRP3.
Collapse
Affiliation(s)
- Julia Elise Cabral
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Anna Wu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Haitian Zhou
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Minh Anh Pham
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Sophia Lin
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Reginald McNulty
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA.
| |
Collapse
|
6
|
Singh DD. NLRP3 inflammasome: structure, mechanism, drug-induced organ toxicity, therapeutic strategies, and future perspectives. RSC Med Chem 2025:d5md00167f. [PMID: 40370650 PMCID: PMC12070810 DOI: 10.1039/d5md00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Drug-induced toxicity is an important issue in clinical medicine, which typically results in organ dysfunction and adverse health consequences. The family of NOD-like receptors (NLRs) includes intracellular proteins involved in recognizing pathogens and triggering innate immune responses, including the activation of the NLRP3 inflammasome. The NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome is a critical component for both innate and adaptive immune responses and has been implicated in various drug-induced toxicities, including hepatic, renal, and cardiovascular diseases. The unusual activation of the NLRP3 inflammasome causes the release of pro-inflammatory cytokines, such as IL-1β and IL-18, which can lead to more damage to tissues. Targeting NLRP3 inflammasome is a potential therapeutic endeavour for suppressing drug-induced toxicity. This review provides insights into the mechanism, drug-induced organ toxicity, therapeutic strategies, and prospective therapeutic approaches of the NLRP3 inflammasome and summarizes the developing therapies that target the inflammasome unit. This review has taken up one of the foremost endeavours in understanding and inhibiting the NLRP3 inflammasome as a means of generating safer pharmacological therapies.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 India +91 9450078260
| |
Collapse
|
7
|
Cui J, Yang M, Yu C, Zhang H, Gong Y, Hu Y, Wang Y, Yuan Q, Pan A, Li J, Hu Y, Jin Z, Peng X, Wu A, Wang J, Wang Q, Zhang Y, Hu L. Inhibition of RACK1-Mediated NLRP3 Oligomerization (Active Conformation) Ameliorates Acute Respiratory Distress Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411355. [PMID: 40349158 DOI: 10.1002/advs.202411355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Aberrant activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome contributes to the pathogenesis of fatal and perplexing pulmonary diseases. Although pharmacological inhibition of the NLRP3 inflammasome brings potent therapeutic effects in clinical trials and preclinical models, the molecular chaperones and transition governing its transformation from an auto-suppressed state to an active oligomer remain controversial. Here, this work shows that sesquiterpene bigelovin inhibited NLRP3 inflammasome activation and downstream pro-inflammatory cytokines release via canonical, noncanonical, and alternative pathways at nanomolar ranges. Chemoproteomic target identification discloses that bigelovin covalently bound to Cys168 of RACK1, disrupting the interaction between RACK1 and NLRP3 monomer and thereby suppressing NLRP3 inflammasome oligomerization in vitro and in vivo. Bigelovin treatment significantly alleviates the severity of NLRP3-related pulmonary disorders in murine models, such as LPS-induced ARDS and silicosis. These results consolidated the intricate role of RACK1 in transiting the NLRP3 state and provided a new anti-inflammatory lead and therapy for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengli Yu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haidong Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yuan Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxin Yuan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - An Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiepin Li
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yaowen Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zecheng Jin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuemei Peng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anyuan Wu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- China Joint Graduate School of Traditional Chinese Medicine, Suzhou, Jiangsu, 215105, China
| |
Collapse
|
8
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
9
|
Xu S, Wu J, Yang Q, Fang H, Xu T, He B, Chen N, Xing S. Isodon rubescens research literature based on Web of Science database for visual analysis: A review. Medicine (Baltimore) 2025; 104:e41945. [PMID: 40324265 PMCID: PMC12055185 DOI: 10.1097/md.0000000000041945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025] Open
Abstract
Isodon rubescens has been used as an herbal medicine in China for a long time. The significant value of development and utilization is affirmative. Bibliometrics is used as an approach to sort out, analyze, and visualize relevant literature in a particular field. So, it can intuitively express the research trends, hot directions, significant achievements, core journals, and outstanding authors in the field. But there is no bibliometrics analysis of I rubescens. The relevant dataset was retrieved and exported from the Web of Science database, and the results were obtained and visualized using the R Programming Language, CiteSpace, and VOSviewer, with the creation of time zone maps also using Scimago Graphica and Gephi. There were 506 valid data retrieved and 465 analyzed data selected. The country with the most significant number of publications is China, the institution with the largest annual publication volume is China Pharmaceutical University, the publication with the most relevant literature is the International Journal of Oncology, and the author with the most publications is Zhou. The keyword with the greatest intensity is "matastasis," which is also an emerging keyword. The role of I rubescens has been continuously diversifying. It has been proven to play a role in treating major diseases such as multiple cancers, leukemia, liver and kidney function impairment, and cardiovascular and cerebrovascular diseases. This study will highlight the main research direction in this field, namely the use of I rubescens for the treatment of cancer.
Collapse
Affiliation(s)
- Shaowei Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingshan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Huqiang Fang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Teng Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Bozhou, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Agrawal S, Narang S, Shahi Y, Mukherjee S. Inhibitors of inflammasome (NLRP3) signaling pathway as promising therapeutic candidates for oral cancer. Biochim Biophys Acta Gen Subj 2025; 1869:130800. [PMID: 40180112 DOI: 10.1016/j.bbagen.2025.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Inflammasomes are complex protein assemblies responsible for regulating the development and release of proinflammatory cytokines like interleukin-1beta (IL-1β) and interleukin-18 (IL-18) against the intracellular triggers. Among these, the Nod-like receptor protein 3 (NLRP3) inflammasome stands out as the most extensively studied and well-characterized member, implicated in numerous pathological conditions. A systematic literature search was conducted on the PubMed such as PubMed, Scopus, Google Scholar database to identify peer-reviewed publications pertaining to the role of NLRP3 in oral cancer pathogenesis and its inhibitors for targeted therapy. Recent research highlights the emerging significance of the NLRP3 inflammasome in tumorigenesis, garnering attention as a potential target for anticancer therapies. This review delves into the involvement of NLRP3 in cancer development and progression, providing an in-depth overview of its activation (and inhibition) and its impact on oral cancer pathogenesis. The manuscript provides a detailed review of the natural and synthetic compounds inhibiting the NLRP3 signaling pathway, which might act as therapeutic lead molecules in oral cancer. This holds promise to overcome targeted and effective treatment options the development of novel drugs targeting the NLRP3 inflammasome-mediated mechanisms in oral cancer.
Collapse
Affiliation(s)
- Shreya Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Shatakshi Narang
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Yadvendra Shahi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India; Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India.
| |
Collapse
|
11
|
Lu Y, Cheng L, Xiong Y, Huang C, Liu Z, Shen C, Wang H, Qiu Y, Yang SB, Wu M, Zhang X. NLRP3 Inflammasome in Vascular Dementia: Regulatory Mechanisms, Functions, and Therapeutic Implications: A Comprehensive Review. CNS Neurosci Ther 2025; 31:e70403. [PMID: 40326096 PMCID: PMC12052953 DOI: 10.1111/cns.70403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Vascular dementia, the second most common type of dementia globally after Alzheimer's disease, is associated with neuroinflammation. Activation of the NLRP3 inflammasome, an important pattern recognition receptor in human innate immunity, plays a key role in the pathogenesis of vascular dementia. RESULTS The NLRP3 inflammasome pathway destroys neuronal cells primarily through the production of IL-18 and IL-1β. Moreover, it exacerbates vascular dementia by producing IL-18, IL-1β, and the N-terminal fragment of GSDMD, which also contributes to neuronal cell death. Thus, blocking the NLRP3 inflammasome pathway presents a new therapeutic strategy for treating vascular dementia, thereby delaying or curing the disease more effectively and mitigating adverse effects. CONCLUSIONS This review explores the role and mechanisms of the NLRP3 inflammasome in vascular dementia, summarizing current research and therapeutic strategies. Investigating the activation of the NLRP3 inflammasome can reveal the pathogenesis of vascular dementia from a new perspective and propose innovative preventive and treatment strategies.
Collapse
Affiliation(s)
- Yujia Lu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of NeurologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of RehabilitationClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunyan Huang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Chunxiao Shen
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Huaying Wang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Yuemin Qiu
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Seung Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanRepublic of Korea
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Department of PathologyClinical Medical School of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
12
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Guo JW, Lin GQ, Tang XY, Yao JY, Feng CG, Zuo JP, He SJ. Therapeutic potential and pharmacological mechanisms of Traditional Chinese Medicine in gout treatment. Acta Pharmacol Sin 2025; 46:1156-1176. [PMID: 39825190 PMCID: PMC12032366 DOI: 10.1038/s41401-024-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Gout is a systemic metabolic disorder caused by elevated uric acid (UA) levels, affecting over 1% of the population. The most common complication of gout is gouty arthritis (GA), characterized by swelling, pain or tenderness in peripheral joints or bursae, which can lead to the formation of tophi. At present, western medicines like colchicine, febuxostat and allopurinol are the primary treatment strategy to alleviate pain and prevent flare-ups in patients with GA, but they have significant side effects and increased mortality risks. Traditional Chinese medicine (TCM) has been utilized for thousands of years for the prevention and treatment of GA, demonstrating effective control over serum UA (SUA) levels with fewer side effects. Herein we summarized a total of 541 studies published from 2000 to 2023 in sources including PubMed, Web of Science, the Cochrane Library and Embase, highlighting the therapeutic potential of TCM in treating gout and GA, particularly in combination with modern medical strategies. This review focuses on TCM formulas, Chinese herbal extracts, and active compounds derived from TCM, providing an overview of recent clinical application and the pharmacological research based on animal models and cellular systems. Particularly, the current review categorized the clinical and experimental evidence into the strategies for improving hyperuricemia, decreasing the sudden onset of acute GA and retarding chronic GA progression, supplied further coherent reference and enlightenment for clinicians, investigators of natural product chemistry, researchers in TCM and pharmacology. We hope this article will inspire the development of novel formulas and molecular entities for the treatment of gout and GA.
Collapse
Affiliation(s)
- Jing-Wen Guo
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Song X, Chen Y, Cui G, Jin B, Wang J, Ma Y, Xia M, Zhang Y, Guo J, Yuan S, Han Y, Tan H, Jiao D, Su P, Huang L. Functional identification of the diterpene synthases exploring the landscape of diterpene structural diversity in Isodon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109677. [PMID: 40037178 DOI: 10.1016/j.plaphy.2025.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The genus Isodon is recognized as a primary source for the production of ent-kaurane-type diterpenes and previous studies predominantly focused on ent-kaurene and miltiradiene as the most extensively investigated diterpenes in Isodon. The diversity of diterpene synthases within this genus has recently been acknowledged, while such studies have been largely restricted to single species. In this study, we systematically mined and functionally validated diterpene synthases from three Isodon species using transcriptomic and metabolomic analyses. We identified the expression profiles of genes associated with diterpene biosynthesis and integrated these data with metabolomic results to elucidate their roles within the diterpene biosynthetic pathway. By reconstructing the metabolic pathways in Escherichia coli, we functionally characterized 11 diterpene synthases and elucidated the biosynthetic pathways of several diterpene skeletons originated from nor or ent-CPP, including the previously reported skeletons like ent-kaurene and miltiradiene, as well as four skeletons (ent-13-epi-sandaracopimaradiene, ent-neoabietadiene, abieta-8(14)-en-13-ol synthase and sandaracopimaradiene) whose biogenesis was reported in Isodon genus for the first time. This study provides novel insights into the molecular basis underlying diterpene diversity in Isodon and establishes a valuable resource for the development of new bioactive molecules and potential drug lead compounds.
Collapse
Affiliation(s)
- Xinqi Song
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanying Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shijun Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honghu Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dian Jiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Ye L, Huang W, Li W, Yao Y, Peng Q, Fu Z, Xie S, He Q, Liu Y, Wan P, Sun B. Loteprednol etabonate alleviates NLRP3 inflammasome-associated inflammatory diseases in mice by suppressing the transcription of IL-1β. Int J Biol Macromol 2025; 306:141644. [PMID: 40032104 DOI: 10.1016/j.ijbiomac.2025.141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Excessive activation of the NLRP3 inflammasome leads to cellular inflammation and tissue damage. Finding an inhibitor of its activation is urgent need for NLRP3 inflammasome-associated inflammatory diseases. In this study, we identified Loteprednol etabonate (LE), a well-known anti-inflammatory drug for ocular conditions, as a potent inhibitor of NLRP3 inflammasome activation through screening an FDA-approved drug library. In cellular models, LE significantly reduced IL-1β transcription, suppressed NLRP3 inflammasome activation, and finally inhibited the maturation and secretion of IL-1β and GSDMD-mediated pyroptosis. Mechanistic investigations showed that LE might inhibit IL-1β transcription by blocking both NF-κB and AP-1 signaling pathways. Furthermore, in mouse models of NLRP3 inflammasome-associated inflammatory diseases, including LPS-induced sepsis and DSS-induced colitis, intraperitoneal injection of LE significantly suppressed inflammatory response and improved mice survival rate. Collectively, these findings identify LE as a novel inhibitor of NLRP3 inflammasome activation, offering a promising therapeutic strategy for the treatment of NLRP3 inflammasome-associated inflammatory diseases.
Collapse
Affiliation(s)
- Lirui Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weichen Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weiling Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yulin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qian Peng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zhengqi Fu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Shoufeng Xie
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qi He
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuchen Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Immunology, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
16
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025:10.1038/s41423-025-01284-9. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Xu H, Xu H, Li W, Liang Z, Luo W, Sheng S, Liang G, Zhang Z. Modulating the NLRP3 Inflammasome: Acitretin as a potential treatment for Sepsis-induced acute lung injury. Int Immunopharmacol 2025; 153:114504. [PMID: 40187888 DOI: 10.1016/j.intimp.2025.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Acitretin, a well-established dermatological drug primarily used for psoriasis treatment, has been clinically used for several decades. However, its potential role in modulating inflammation in sepsis remains unexplored. OBJECTIVE This study seeks to explore the impact of acitretin on sepsis-induced acute lung injury (ALI) and to elucidate the underlying mechanisms involved. METHODS In a mouse model of sepsis induced by lipopolysaccharide (LPS), we assessed the effects of acitretin on ALI. Transcriptome sequencing of lung tissue was performed to identify relevant signaling pathways. In vitro, bone marrow-derived macrophages (BMDMs) were treated with acitretin (1 μM, 5 μM and 10 μM) to evaluate its impact on NOD-, LRR- and pyrin domain-containing protein 3(NLRP3) inflammasome activation and pyroptosis. In vivo, wild-type, Nlrp3 knockout, and Gsdmd knockout mice were used to confirm the role of the NLRP3 inflammasome in mediating acitretin's effects. RESULTS Acitretin significantly mitigated sepsis-induced ALI, reducing mortality in LPS-challenged mice. Transcriptome analysis revealed that acitretin suppressed the NLRP3 inflammasome pathway in lung tissue. In vitro, acitretin dose-dependently inhibited interleukin (IL)-1β release, caspase-1 p20 production, and GSDMD cleavage in BMDMs. Furthermore, acitretin inhibited inflammasome activation by preventing ASC oligomerization and its interaction with NLRP3. In vivo, acitretin reduced lung tissue inflammation, IL-1β levels in bronchoalveolar lavage fluid, and the ratio of wet to dry in wide-type mice, but these effects were abolished in Nlrp3 and Gsdmd knockout mice. CONCLUSION Acitretin demonstrated significant anti-inflammatory properties through the suppression of the NLRP3 inflammasome, suggesting its potential as a therapeutic strategy for sepsis and related complications.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haowen Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weifeng Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Zhiyu Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China.
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Huong TT, Thong NV, Quang TA, Tram LH, Thuy LT, Thuy My NT, Anh NT, Hiep NT, Linh NN, Le DD, Ha TT, Thanh BV. Chemical constituents from symplocos sumuntia and their anti-inflammatory effect. Nat Prod Res 2025:1-6. [PMID: 40270303 DOI: 10.1080/14786419.2025.2493179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Symplocos sumuntia Buch-Ham ex D Don is traditionally used to relieve inflammation in Vietnam. This study described a chemical investigation that led to isolation and identification of one new and nine known compounds. Their structures were determined by using spectroscopic techniques. Compounds 1 - 10 possessed inhibitory activities on NO production induced by LPS activated macrophages. Among them, compounds 2 and 3 demonstrated strong ability to reduce NO production with IC50 values of 3.91 ± 0.05 and 3.96 ± 0.24 µM, respectively. Some of the other compounds also reduced NO production in LPS stimulated RAW264.7 cells. In-silico study supported hints to the bioactivity of compounds 2 and 3 by analysing the interactions of those when they were docked with protein to create complexes targeting anti-inflammation. Our research revealed the chemical components of this plant and its active ingredients that target inflammation, highlighting its therapeutic potential to improve its value for traditional uses.
Collapse
Affiliation(s)
- Tran Thu Huong
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | - Tran Anh Quang
- Hanoi University of Science and Technology, Hanoi, Vietnam
- Dept. of Extraction Technology, Vietnam National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Le Huyen Tram
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | | | - Nguyen Tuan Hiep
- Dept. of Extraction Technology, Vietnam National Institute of Medicinal Materials, Hanoi, Vietnam
| | | | - Duc-Dat Le
- College of Pharmacy, Thanh Do University, Hanoi, Vietnam
| | - Tran Thu Ha
- Intellectual Property Office of Vietnam, Hanoi, Vietnam
| | - Bui Van Thanh
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
19
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
20
|
Zhang S, Xiao H, Lin Y, Tang X, Tong W, Shao B, Li H, Xu L, Ding X, Chai R. Targeting Programmed Cell Death in Acquired Sensorineural Hearing Loss: Ferroptosis, Necroptosis, and Pyroptosis. Neurosci Bull 2025:10.1007/s12264-025-01370-y. [PMID: 40261527 DOI: 10.1007/s12264-025-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025] Open
Abstract
Sensorineural hearing loss (SNHL), the most commonly-occurring form of hearing loss, is caused mainly by injury to or the loss of hair cells and spiral ganglion neurons in the cochlea. Numerous environmental and physiological factors have been shown to cause acquired SNHL, such as ototoxic drugs, noise exposure, aging, infections, and diseases. Several programmed cell death (PCD) pathways have been reported to be involved in SNHL, especially some novel PCD pathways that have only recently been reported, such as ferroptosis, necroptosis, and pyroptosis. Here we summarize these PCD pathways and their roles and mechanisms in SNHL, aiming to provide new insights and potential therapeutic strategies for SNHL by targeting these PCD pathways.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
| | - Xiaoqiong Ding
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China.
| |
Collapse
|
21
|
Xiaoyang C, Yijun C, Chenguang Z, Wanying D, Zijun C, Jun W, Xuegong X, Wei W, Chun L. Resibufogenin protects against atherosclerosis in ApoE -/- mice through blocking NLRP3 inflammasome assembly. J Adv Res 2025:S2090-1232(25)00272-3. [PMID: 40258472 DOI: 10.1016/j.jare.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025] Open
Abstract
INTRODUCTION Atherosclerosis (AS), a major cause of cardiovascular diseases, is characterized by lipid accumulation and chronic inflammation within arterial walls. Traditional treatments, such as statins, are often ineffective for many patients, highlighting the need for novel therapeutic strategies. OBJECTIVE This study explores the potential of Resibufogenin (RBG) as an NLRP3 inflammasome inhibitor for treating AS in ApoE-/- mice. METHODS We performed experiments encompassing cellular studies, animal model assessments, molecular simulations, and binding assays to assess RBG's impact on the NLRP3 inflammasome, inflammatory cytokine release, and foam cell formation. RESULTS RBG treatment alleviated AS in ApoE-/- mice, evidenced by reduced body weight, smaller atherosclerotic plaques, and improved serum lipid profiles. Transcriptomics and molecular biology demonstrated that RBG suppressed the expression of key inflammatory markers such as NLRP3. RBG also reduced macrophage infiltration and promoted polarization toward the anti-inflammatory M2 phenotype. Molecular docking, SPR, Pull-down studies identified a non-covalent interaction between RBG and the CYS-279 residue of NLRP3, confirming its role as a potent NLRP3 inhibitor. CONCLUSION RBG effectively inhibits NLRP3 inflammasome activation, reduces pro-inflammatory cytokine release, and decreases formation of foamy macrophages, thereby slowing the progression of AS. Although these findings highlight RBG as a promising therapeutic approach for cardiovascular diseases, further research is necessary to assess its safety and effectiveness in humans and to investigate possible synergistic effects with other treatments.
Collapse
Affiliation(s)
- Chen Xiaoyang
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chen Yijun
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhai Chenguang
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Du Wanying
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chen Zijun
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Wang Jun
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xu Xuegong
- Zhengzhou Hospital of TCM Affiliated to Henan University of Chinese Medicine(Zhengzhou Hospital of Traditional Chinese Medicine), Zhengzhou 450007, China; Institute of Geriatric Diseases, Henan Academy of Chinese Medical Sciences, Zhengzhou 451100, China.
| | - Wang Wei
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Li Chun
- State Key Laboratory of Traditional Chinese Medicine Syndrome; School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Formula and Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
22
|
Zhang R, Jiang Y, Zhang G, Zeng W, Suo Y, Zhang F, Jiang X. Mitochondrial DNA in atherosclerosis: Mechanisms, biomarker potential, and therapeutic perspectives. Int Immunopharmacol 2025; 152:114449. [PMID: 40073813 DOI: 10.1016/j.intimp.2025.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease in which mitochondrial DNA (mtDNA) has emerged as a key contributor to its pathogenesis. We synthesized evidence from experimental and clinical studies showing that mtDNA damage, release, and mutation profoundly affect endothelial cells, macrophages, and vascular smooth muscle cells, thereby driving plaque initiation and progression. By activating immune signaling pathways-including cGAS-STING, NLRP3 inflammasome, and TLR9-mtDNA amplifies inflammation and oxidative stress, exacerbating atherosclerotic lesion development. We further highlight that mtDNA copy number variations and specific mtDNA mutations may serve as biomarkers for early atherosclerosis detection and risk stratification. In reviewing these data, we also discuss promising therapeutic interventions aimed at mitigating mtDNA damage, such as mitochondria-targeted antioxidants and enhanced mitophagy, which have shown preliminary efficacy in delaying plaque progression. Overall, this review underscores mtDNA's dual role as both a driver of atherosclerosis and a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifang Jiang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Department of Oncology, Ganzhou People 's Hospital, Jiangxi, China
| | - Yanrong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Jiangxi, China
| | - Fayan Zhang
- Department of Rheumatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
23
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
24
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
25
|
Li Z, Gong C. NLRP3 inflammasome in Alzheimer's disease: molecular mechanisms and emerging therapies. Front Immunol 2025; 16:1583886. [PMID: 40260242 PMCID: PMC12009708 DOI: 10.3389/fimmu.2025.1583886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and neuroinflammation, with no definitive cure currently available. The NLRP3 inflammasome, a key mediator of neuroinflammation, has emerged as a critical player in AD pathogenesis, contributing to the accumulation of β-amyloid (Aβ) plaques, tau hyperphosphorylation, and neuronal damage. This review explores the mechanisms by which the NLRP3 inflammasome is activated in AD, including its interactions with Aβ, tau, reactive oxygen species (ROS), and pyroptosis. Additionally, it highlights the role of the ubiquitin system, ion channels, autophagy, and gut microbiota in regulating NLRP3 activation. Therapeutic strategies targeting the NLRP3 inflammasome, such as IL-1β inhibitors, natural compounds, and novel small molecules, are discussed as promising approaches to mitigate neuroinflammation and slow AD progression. This review underscores the potential of NLRP3 inflammasome inhibition as a therapeutic avenue for AD.
Collapse
Affiliation(s)
- Zhitao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunrong Gong
- Department of Rehabilitation Medicine, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
26
|
Wei X, Wang M, Dong X, He Y, Nan W, Ji S, Zhao M, Chang H, Wei H, Ding D, Chen H. Internal-External Homologous Drug-Loaded Exosome-Like Nanovesicles Released from Semi-IPN Hydrogel Enhancing Wound Healing of Chemoradiotherapy-Induced Oral Mucositis. Int J Nanomedicine 2025; 20:4105-4121. [PMID: 40201151 PMCID: PMC11977572 DOI: 10.2147/ijn.s508530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Background Oral mucositis (OM) is a common acute side effect among patients undergoing chemotherapy and/or radiotherapy, with complex pathogenesis and limited current treatment efficacy. Rabdosia rubescens, a traditional Chinese herb, contains oridonin (ORI) with antibacterial and anti - inflammatory properties. However, ORI's poor solubility and low bioavailability hamper its clinical use. Medicinal plant - derived exosome - like nanovesicles (ENs) are emerging as a promising drug delivery system for wound repair. This study aimed to develop a novel therapeutic approach. Methods We fabricated internally-externally homologous drug-loaded exosome-like nanovesicles (ORI/ENs) derived from Rabdosia rubescens and encapsulated them in a semi-interpenetrating network hydrogel system (ORI/ENs/Gel) to repair chemoradiotherapy-induced OM. The morphology, biocompatibility, and antibacterial properties were evaluated. Moreover, the proliferative and migratory capacity were measured using L929 cells. In addition, the pro-healing effects and the underlying molecular mechanisms of ORI/ENs/Gel were assessed in vivo. Results ENs were extracted and purified from Rabdosia rubescens by sequential ultra-centrifugations. The encapsulation efficiency (EE) and loading capacity (LC) of ORI in ORI/ENs were 76.4 ± 3.2% and 9.21 ± 0.45%, respectively, suggesting that ENs had a high loading efficiency for homologous drug ORI. The evaluation of toxicity and antibacterial effects has been proven that ORI/ENs has biocompatibility and antibacterial properties. In vivo, ORI/ENs/Gel promoted collagen deposition, targeted NLRP3 to reduce inflammation, and accelerated OM wound healing. Conclusion The hydrogel composite incorporating internally-externally homologous drug-loaded ENs offers the potential to provide targeted therapy, improve bioavailability, and promote efficient healing of the OM.
Collapse
Affiliation(s)
- Xiangjuan Wei
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Mengyuan Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xiaocong Dong
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Yichen He
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Wenbin Nan
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Shenglu Ji
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Mengyuan Zhao
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Haodang Chang
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, People’s Republic of China
| | - Dan Ding
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Hongli Chen
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
27
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
28
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
29
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
30
|
Yan LJ, Qi S, Wu C, Jin R, Hu C, Wang AL, Wang BL, Yu HW, Wang L, Liu J, Qi ZP, Wang WC, Liu QS. Hypocrellin A from an ethnic medicinal fungus protects against NLRP3-driven gout in mice by suppressing inflammasome activation. Acta Pharmacol Sin 2025; 46:1016-1029. [PMID: 39681599 PMCID: PMC11950337 DOI: 10.1038/s41401-024-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Abnormal activation of NLRP3 inflammasome causes the progression of gout, and no small-molecule inhibitor of NLRP3 has been approved yet for clinical use. In this study we established a nigericin-induced inflammasome activation cell model for screening of a natural product library by measuring IL-1β secretion in cell supernatants. Among 432 compounds tested, we found that hypocrellin A (HA), one of the major active components of a traditional ethnic medicinal fungus Hypocrella bambusea in the Northwest Yunnan of China, exhibited the highest inhibition on IL-1β production (IC50 = 0.103 μM). In PMA-primed THP-1 cells or bone marrow derived macrophages (BMDMs) treated with multiple stimuli (nigericin, ATP or MSU), HA dose-dependently suppressed the activation of NLRP3 inflammasome, reducing the subsequent release of inflammatory cytokines and LDH. Furthermore, the suppression of inflammasome activation by HA was specific to NLRP3, but not to AIM2 or NLRC4. In LPS-primed BMDMs treated with nigericin, HA inhibited ASC oligomerization and speckle formation, and blocked the NLRP3-NEK7 interaction during inflammasome assembly without influencing the priming stage. Moreover, we demonstrated that HA directly bound to the NACHT domain of NLRP3, and that Arg578 and Glu629 were the critical residues for HA binding to NLRP3. In MSU-induced peritonitis and acute gouty arthritis mouse models, administration of HA (10 mg/kg, i.p., once or twice daily) effectively suppressed the inflammatory responses mediated by NLRP3 inflammasome. We conclude that HA is a broad-spectrum and specific NLRP3 inhibitor, and a valuable lead compound to develop novel therapeutic inhibitors against NLRP3-driven diseases. This study also elucidates the anti-inflammation mechanisms and molecular targets of HA, a major active component in medicinal fungus Hypocrella bambusea that has been long used by Chinese ethnic groups.
Collapse
Affiliation(s)
- Le-Jin Yan
- University of Science and Technology of China, Hefei, 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shuang Qi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China
| | - Chao Wu
- University of Science and Technology of China, Hefei, 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Rui Jin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chen Hu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China
| | - Ao-Li Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China
| | - Bei-Lei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China
| | - Hong-Wei Yu
- University of Science and Technology of China, Hefei, 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China
| | - Jing Liu
- University of Science and Technology of China, Hefei, 230026, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China
| | - Zi-Ping Qi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China.
| | - Wen-Chao Wang
- University of Science and Technology of China, Hefei, 230026, China.
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China.
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China.
| | - Qing-Song Liu
- University of Science and Technology of China, Hefei, 230026, China.
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, 230088, China.
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, 230088, China.
| |
Collapse
|
31
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|
32
|
Zhu RX, Han RX, Chen YH, Huang L, Liu T, Jiang J, Wang C, Cao L, Liu Y, Lu M. Inactivation of NLRP3 inflammasome by dephosphorylation at Serine 658 alleviates glial inflammation in the mouse model of Parkinson's disease. Mol Neurodegener 2025; 20:27. [PMID: 40038816 PMCID: PMC11881452 DOI: 10.1186/s13024-025-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a leading neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, contributing to considerable disability worldwide. Current treatments offer only symptomatic relief, highlighting the need for novel therapeutic strategies targeting disease progression. Neuroinflammation plays a pivotal role in PD pathogenesis, with the NLRP3 inflammasome emerging as a key contributor. METHODS The virtual screening of a natural product library comprising 5,088 compounds was applied to identify five potential NLRP3 inhibitors through molecular docking scores. Then surface plasmon resonance assays were used to detect their binding affinities to the NLRP3 protein. Functional studies in macrophages and glial cells were used to demonstrate the effect of Psoralen on NLRP3 phosphorylation and inflammasome activation. RESULTS Psoralen treatment improved PD-like symptoms and reduced dopaminergic neuronal death by targeting glial NLRP3 inflammasome activation in the MPTP/p mouse model. By performing 4D label-free quantitative phosphorylation proteomics and site mutation assays, we identified that Psoralen prevents NLRP3 phosphorylation at Serine 658 by binding to its NACHT and LRR domains. CONCLUSIONS These findings position Psoralen as a promising NLRP3 inflammasome inhibitor, offering a potential therapeutic avenue for PD and other NLRP3 inflammasome-related diseases. Additionally, this research highlights the innovative approach of targeting specific phosphorylation sites on the NLRP3 protein to reduce neuroinflammation.
Collapse
Affiliation(s)
- Rong-Xin Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Rui-Xue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Yue-Han Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Lei Huang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Jingwei Jiang
- China Pharmaceutical University, Nanjing, 211116, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
33
|
Kaur G, Tiwari P, Singla S, Panghal A, Jena G. The intervention of NLRP3 inflammasome inhibitor: oridonin against azoxymethane and dextran sulfate sodium-induced colitis-associated colorectal cancer in male BALB/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03871-z. [PMID: 40035821 DOI: 10.1007/s00210-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer diagnoses. The dysregulation of the NLRP3 inflammasome is prominently linked to several types of cancers. Oridonin, a principal component of Rabdosia rubescens, exhibits inhibitory activity against NLRP3 and is well-recognized for its diverse pharmacological benefits. However, its role in an animal model of colitis-associated colorectal cancer (CACC) remains unexplored. In the present study, the effectiveness of oridonin was investigated against CACC, developed using azoxymethane (AOM), a tumour initiator, and dextran sulphate sodium (DSS), a tumour promoter, in male BALB/c mice. The two-stage murine model of inflammation-associated cancer was established by administering AOM (10 mg/kg b.w.; i.p., once) followed by DSS (2% w/v) in drinking water (3 cycles, 7 days/cycle). Over a span of 10 weeks, the dose-dependent (2.5, 5, and 10 mg/kg, b.w.; i.p.) effects of oridonin were investigated in BALB/c mice. Oridonin significantly alleviated CACC severity, as evidenced by reduced DAI scores and restored body weight. Moreover, it attenuated surrogate markers of inflammation, including myeloperoxidase, nitrite, plasma LPS, TNF-α, IL-1β, and DNA damage. Histopathological examination revealed diminished tumorigenesis and apoptotic cells, corroborated by reduced Ki-67 and TNF-α, along with increased p53 expression in the colon. Following oridonin treatment, IHC/immunofluorescence analyses demonstrated a significantly reduced expression of the components of NLRP3 inflammasome including NLRP3, ASC-1, and caspase-1. Notably, the high dose of oridonin (10 mg/kg) consistently exhibited significant protective effects against CACC by modulating various molecular targets. Present findings confirmed the potential of oridonin in the protection of colitis-associated colorectal cancer, providing valuable insights into its mechanism of action and clinical significance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Priyanka Tiwari
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Shivani Singla
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Archna Panghal
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
34
|
Hou X, Xie S, Zhou N, Wei S, Yang Y, Luo Z, Liu S, Liu J, Xie N, Li W, Zhang B. Oridonin Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting p38 MAPK/MMP3 Signaling Pathway. Chem Biol Drug Des 2025; 105:e70093. [PMID: 40125705 DOI: 10.1111/cbdd.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Although doxorubicin (DOX) is an efficient chemotherapeutic drug for human tumors, severe cardiotoxicity restricts its clinical use. Oridonin (Ori), a bioactive component isolated from Isodon rubescens (Hemsl.) H. Hara, possesses potent anti-inflammatory and anticancer potentials. Therefore, our study aimed to evaluate the protective effects of Ori against DOX-induced cardiotoxicity. DIC models were established in vivo and in vitro. The action targets and pharmaceutical mechanism of Ori against DIC were comprehensively examined by network pharmacology, RNA-sequencing, and experimental validation. Ori relieved Dox-induced cell apoptosis in vitro and in vivo. A total of 7084 DEGs, 196 Ori, and 8172 DIC targets were screened by transcriptomics and network pharmacology, respectively. The three sets contained 11 intersection genes, including Ccl2, Myc, Mmp3, Egfr, p38 MAPK (MAPK14), Esr1, Tnf, Jun, Cdk1, Alb, and Ccnd1. The experimental results showed that Ori significantly decreased MMP-3 activity and the expression of p38 MAPK, thereby attenuating myocardial apoptosis and inflammatory infiltration. This study suggests that Ori is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by inhibiting the p38 MAPK/MMP-3 signaling pathway.
Collapse
Affiliation(s)
- Xingyuan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ni Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Ou H, Wu Z, Ning J, Huang Q, Wang W, Yang G, Zhou Y, Hou A, Li P, Chen L, Jin WB. In vitro and in vivo characterization of oridonin analogs as anti-inflammatory agents that regulate the NF-κB and NLRP3 inflammasome axis. Front Pharmacol 2025; 16:1512740. [PMID: 40083382 PMCID: PMC11903421 DOI: 10.3389/fphar.2025.1512740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction A series of oridonin hybrids were synthesized and evaluated for anti-inflammatory potential, focusing on their ability to inhibit NO production in RAW264.7 cells and their therapeutic prospects for NLRP3-driven disorders. Methods Anti-inflammatory activity was assessed by measuring NO inhibition in LPS-stimulated RAW264.7 cells. The most active compound, 4c, was further analyzed using ELISA and WB to evaluate its effects on inflammatory proteins (p-NF-κB, p-IκB, NLRP3, IL-6, IL-1β, COX-2, iNOS). In vivo efficacy was tested in a murine acute lung injury model, with RT‒qPCR and WB used to assess inflammatory markers in lung tissues. Molecular docking predicted 4c's binding mode with NLRP3, while RNA-seq and RT‒qPCR identified differentially expressed genes. Results Compound 4c significantly inhibited NO production and suppressed key inflammatory proteins in vitro. In vivo, it alleviated acute lung injury, reduced IL-6 and TNF-α mRNA levels, and inhibited NLRP3, p-NF-κB, and IL-6 protein expression. Docking suggested covalent binding to NLRP3. RNA-seq revealed 4c upregulated Trdc, Stfa2, and Gsta2 while downregulating Spib, Csf2, and Nr4a1. Discussion Compound 4c demonstrates potent anti-inflammatory effects via NLRP3 pathway inhibition and modulation of inflammatory genes. These findings highlight oridonin hybrids, particularly 4c, as promising candidates for NLRP3-driven inflammatory disorders, warranting further investigation.
Collapse
Affiliation(s)
- Huiping Ou
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Zhanpan Wu
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jinhua Ning
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiufeng Huang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Wancun Wang
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Guochun Yang
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yingxun Zhou
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Anguo Hou
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Lingyun Chen
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Bin Jin
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
36
|
Qiao M, Ni J, Qing H, Qiu Y, Quan Z. Role of Peripheral NLRP3 Inflammasome in Cognitive Impairments: Insights of Non-central Factors. Mol Neurobiol 2025:10.1007/s12035-025-04779-8. [PMID: 40000575 DOI: 10.1007/s12035-025-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cognitive impairments are common clinical manifestation of Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and autoimmune diseases. Emerging evidence has suggested a strong correlation between peripheral chronic inflammation and cognitive impairments. For example, nearly 40% of individuals with inflammatory bowel disease also suffer from cognitive impairments. In this condition, NLRP3 inflammasome (NLRP3-I) generating pro-inflammatory cytokines like IL-1β serves as a significant effector, and its persistence exerts adverse effects to both periphery and the brain. Moreover, investigations on serum biomarkers of mild cognitive impairments have shown NLRP3-I components' upregulation, suggesting the involvement of peripheral inflammasome pathway in this disorder. Here, we systematically reviewed the current knowledge of NLRP3-I in inflammatory disease to uncover its potential role in bridging peripheral chronic inflammation and cognitive impairments. This review summarizes the molecular features and ignition process of NLRP3-I in inflammatory response. Meanwhile, various effects of NLRP3-I involved in peripheral inflammation-associated disease are also reviewed, especially its chronic disturbances to brain homeostasis and cognitive function through routes including gut-brain, liver-brain, and kidney-brain axes. In addition, current promising compounds and their targets relative to NLRP3-I are discussed in the context of cognitive impairments. Through the detailed investigation, this review highlights the critical role of peripheral NLRP3-I in the pathogenesis of cognitive disorders, and offers novel perspectives for developing effective therapeutic interventions for diseases associated with cognitive impairments. The present review outlines the current knowledge on the ignition of NLRP3-I in inflammatory disease and more importantly, emphasizes the role of peripheral NLRP3-I as a causal pathway in the development of cognitive disorders. Although major efforts to restrain cognitive decline are mainly focused on the central nervous system, it has become clear that disturbances from peripheral immune are closely associated with the dysfunctional brain. Therefore, attenuation of these inflammatory changes through inhibiting the NLRP3-I pathway in early inflammatory disease may reduce future risk of cognitive impairments, and in the meantime, considerations on such pathogenesis for combined drug therapy will be required in the clinical evaluation of cognitive disorders.
Collapse
Affiliation(s)
- Mengfan Qiao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
37
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
38
|
Zhu W, Bao X, Yang Y, Xing M, Xiong S, Chen S, Zhong Y, Hu X, Lu Q, Wang K, Ling Q, Cui S. Peripheral Evolution of Tanshinone IIA and Cryptotanshinone for Discovery of a Potent and Specific NLRP3 Inflammasome Inhibitor. J Med Chem 2025; 68:3460-3479. [PMID: 39847657 DOI: 10.1021/acs.jmedchem.4c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Natural products (NPs) continue to serve as an invaluable source in drug discovery, and peripheral evolution of NPs is a highly efficient evolution strategy. Herein, we describe a unified "methyl to amide" peripheral evolution of Tanshinone IIA and Cryptotanshinone for discovery of NLRP3 inflammasome inhibitors. There were 54 compounds designed and prepared, while the chemoinformatic analysis revealed that these evolved NP analogues occupy a unique chemical space. Biological evaluation identified 5m as an NLRP3 inflammasome inhibitor, and 5m could directly bind to the NACHT domain of the NLRP3 protein and block the interaction of NLRP3 and ASC, thus suppressing ASC oligomerization and NLRP3 inflammasome assembly. Molecular dynamic stimulations revealed that the amide moiety played a vital role in the binding mode. Moreover, 5m exhibited therapeutical efficacy in sepsis and the NASH mouse model. In conclusion, this protocol provides a new vision of NPs' peripheral evolution and a novel NLRP3 inflammasome inhibitor.
Collapse
Affiliation(s)
- Wenqi Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Muqiong Xing
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Sijie Xiong
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Qianrang Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kairong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Care, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
39
|
Jiang Y, Ruan L, Chen J, Qin Q, Wei S. Oridonin inhibits SGIV infection by regulating glycolipid metabolism and inflammatory response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105324. [PMID: 39848352 DOI: 10.1016/j.dci.2025.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Singapore grouper iridovirus (SGIV) is a significant infectious disease in the grouper aquaculture industry. Currently, there is no effective drug available to prevent or treat SGIV. Oridonin (Ori) is a naturally occurring compound derived from Rabdosia rubescens, exhibiting various biological activities, including anti-tumor, anti-inflammatory, and antioxidant properties. In this study, we examined the anti-SGIV activity of Ori and its potential mechanism of action in vitro. The study results indicate that Ori effectively inhibits SGIV infection at various concentrations. Further studies reveal that Ori inhibits the formation of lipid droplets induced by SGIV infection. Additionally, Ori suppresses the SGIV-induced up-regulation of fatty acid synthesis-related genes (SREBP1, ACC1, SCD1, FASN) and glycolysis-related genes (GLUT1, GLUT2, HK2, PDHX). The mTOR pathway plays a crucial role in regulating glycolipid metabolism. Our findings indicate that Ori suppresses the phosphorylation of AKT and mTOR proteins. Further research revealed that the activation or inhibition of mTOR significantly impacts SGIV protein production and the expression of genes related to glycolipid metabolism. In addition, Ori effectively inhibits the up-regulation of NLRP3, ASC, Caspase-1, and pro-inflammatory cytokines induced by SGIV infection. In conclusion, our experimental findings indicate that Ori effectively inhibits SGIV infection by regulating glycolipid metabolism through the AKT/mTOR pathway and by suppressing the inflammatory responses triggered by SGIV infection.
Collapse
Affiliation(s)
- Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, 510642, China
| | - Leshan Ruan
- College of Marine Sciences, South China Agricultural University, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
40
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
41
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2025; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
42
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
43
|
Zhao P, Jiang Z, Li X, Ainiwaer M, Li L, Wang D, Fan L, Chen F, Liu J. Airway stenosis: classification, pathogenesis, and clinical management. MedComm (Beijing) 2025; 6:e70076. [PMID: 39866837 PMCID: PMC11769711 DOI: 10.1002/mco2.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation. Based on the discovered pathogenesis, including fibrosis, inflammation, epithelial-mesenchymal transition, metabolic reprogramming, microbiome, genetic susceptibility, and other mechanisms, researchers have developed a series of treatments, such as drug therapy, gene therapy, stem cell therapy, growth factor therapy, protein therapy, and photodynamic therapy. This review introduces the classification of AS, explores the existing pathogenesis and preclinical treatments developed based on the pathogenesis, and finally summarizes the current clinical management. In addition, the prospect of exploring the interaction between different types of cells and between microorganisms and cells to identify the intersection of multiple mechanisms based on single-cell RNA sequencing, 16S rRNA gene sequencing and shotgun metagenomic sequencing is worth looking forward to.
Collapse
Affiliation(s)
- Pengwei Zhao
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zheng Jiang
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xuexin Li
- Department of Otolaryngology Head and Neck SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandongChina
| | - Mailudan Ainiwaer
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Leyu Li
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Dejuan Wang
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lixiao Fan
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Fei Chen
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jun Liu
- Department of Otolaryngology ‐ Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Otolaryngology ‐ Head & Neck SurgeryHead and Neck Surgical CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
44
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
45
|
Zhang Y, Pan T, Yang Y, Xu X, Liu Y. Oridonin attenuates diabetic retinopathy progression by suppressing NLRP3 inflammasome pathway. Mol Cell Endocrinol 2025; 596:112419. [PMID: 39577795 DOI: 10.1016/j.mce.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Oridonin (Ori) possesses anti-inflammatory properties. However, its potential to treat diabetic retinopathy (DR) remains unclear. This study aimed to investigate the retinal protective function of Ori and the underlying mechanism. In streptozotocin-induced mice, Ori alleviated visual impairment, reduced retinal and vascular lesions, protected the neuroretinal structure, reversed retinal nerve layer thickening. Addtionnally, Ori reduced TNF-α and IL-1β levels in the peripheral blood, and suppressed retinal NLRP3 inflammasome-related inflammatory factor. In vitro, human retinal endothelial cells (hRECs) were stimulated by high glucose (HG). HG-stimulated hRECs activated the NLRP3 inflammasome, whereas Ori significantly alleviated pyroptosis by enhancing cell viability and reducing IL-1β levels in the supernatant. Ori also inhibited NF-κB/NLRP3 inflammasome pathway. NEK7 depletion alleviated NLRP3 inflammasome activation and, to some extent, mimicked the role of Ori. Indeed, Ori reversed NLRP3 inflammasome activation by suppressing NEK7-NLRP3 interaction. Therefore, Ori may serve as a potential therapeutic agent for attenuating DR progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ting Pan
- Department of Ophthalmology, Nanjing Medical University Affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing, 210006, China
| | - Yanting Yang
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xingzhao Xu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Yao Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| |
Collapse
|
46
|
Huang J, Fu X, Qiu F, Liang Z, Cao C, Wang Z, Chen H, Yue S, Xie D, Liang Y, Lu A, Liang C. Discovery of a Natural Ent-Kaurene Diterpenoid Oridonin as an E3 Ligase Recruiter for PROTACs. J Am Chem Soc 2025; 147:1920-1937. [PMID: 39736140 DOI: 10.1021/jacs.4c14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters. MDM2 is a single-subunit ligase overexpressed in tumors. Nucleolin (NCL) is an MDM2 partner protein that displays a similar tumor-specific overexpression pattern and nuclear-cytoplasmic shuttling role to MDM2. Furthermore, NCL is selectively translocated on the tumor cell surface, where it acts as an internalization receptor for its binders. We reveal that the NCL-binding Oridonin (Ori), a natural ent-kaurene diterpenoid, is capable of recruiting MDM2 by employing NCL as a molecular bridge. We design Ori-based PROTACs for modulating oncogenic POIs, including BRD4 and EGFR. These PROTACs direct the assembly of MDM2-NCL-PROTAC-POI complexes to induce proteasomal degradation of POIs and tumor shrinkage. In addition to its role as a ligase engaged by PROTACs, MDM2, along with its homologue MDMX, plays a nonredundant function in inhibiting p53 activity. Dual inhibition of MDM2/X is proposed as a promising antitumor strategy. We demonstrate that Ori also recruits MDMX in an NCL-dependent manner. Ori-based homo-PROTACs induce MDM2/X dual degradation and attenuate tumor progression. Our findings prove the feasibility of repurposing the binders of ligase partner proteins as new ligase recruiters in PROTACs and highlight the potential of Ori as an MDM2/X recruiter.
Collapse
Affiliation(s)
- Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhijian Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd., Shenzhen 518055, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| |
Collapse
|
47
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Khanfar MA, Saleh MI. SARS-CoV-2 Main Protease Inhibitors from Natural Product Repository as Therapeutic Candidates for the Treatment of Coronaviridae Infections. Curr Med Chem 2025; 32:688-719. [PMID: 38013440 DOI: 10.2174/0109298673271674231109052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The main protease (Mpro) is a crucial enzyme for the life cycle of SARS-CoV-2 and a validated target for the treatment of COVID-19 infection. Natural products have been a proper alternative for treating viral diseases by modulating different steps of the life cycle of many viruses. OBJECTIVE This review article is designed to summarize the cumulative information of natural-derived Mpro inhibitors that are validated by experimental biological testing. METHODS The natural-derived Mpro inhibitors of SARS-CoV-2 that have been discovered since the emergence of the COVID-19 pandemic are reviewed in this article. Only natural products with experimental validation are reported in this article. Collected compounds are classified according to their chemical identity into flavonoids, phenolic acids, quinones, alkaloids, chromones, stilbenes, tannins, lignans, terpenes, and other polyphenolic and miscellaneous natural-derived Mpro inhibitors. CONCLUSION These compounds could serve as scaffolds for further lead-structure optimization for desirable potency, a larger margin of safety, and better oral activity.
Collapse
Affiliation(s)
- Mohammad Abdalmoety Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| | - Mohammad Issa Saleh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| |
Collapse
|
49
|
Li L, Huang Y, Yin J, Xu P, Lan M, Li C, Qi Y, Xu K, Li B, Luo Y, Jiang Q, Peng S, Lang J, Feng M. The Effect of Rabdosia rubescens on Radiotherapy-Induced Oral Mucositis in Nasopharyngeal Carcinoma Patients: A Phase II Clinical Study. Integr Cancer Ther 2025; 24:15347354251314499. [PMID: 39989264 PMCID: PMC11848900 DOI: 10.1177/15347354251314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] Open
Abstract
PURPOSE Radiotherapy-induced oral mucositis is the most common side effect in nasopharyngeal carcinoma (NPC) patients. We aimed to evaluate the efficacy and safety of Rabdosia rubescens drop pills in NPC patients with radiation-induced oral mucositis (RTOM). METHODS The study involved 40 NPC patients who were given Rabdosia rubescens drop pills thrice daily from the start of radiation therapy. The study monitored the incidence and severity of oral mucositis and oral pain. The main outcomes measured were the occurrence rate of oral mucositis, grade 3 oral mucositis, oral pain assessment, and changes in immunological function, body weight, BMI, NRS2002, and albumin levels. RESULTS In the study, 38 patients completed the treatment. The incidence rates of Grade 0 to 3 oral mucositis were 5.26%, 21.05%, 47.37%, and 26.32% respectively. Pain levels were mild (42.11%), moderate (13.16%), and severe (13.16%). The onset of Grade 1, 2, and 3 oral mucositis occurred at 18, 24, and 30 days respectively. Grade 3 oral mucositis was associated with body weight, BMI, NRS2002 score, and albumin levels. Post-treatment, there was a decrease in CD4+/CD8+, CD3+, and CD4+ immune cells, but an increase in CD8+ cells. Mild to moderate gastrointestinal adverse events were observed in 13.2% of patients. CONCLUSION Rabdosia rubescens drop pills administration can reduce the incidence and severity of radiotherapy induced oral mucositis. Our finding suggested a positive impact of Rabdosia rubescens drops pills upon administration to NPC patients.
Collapse
Affiliation(s)
- Lu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yecai Huang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Yin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Third People’s Hospital of Sichuan Province, Chengdu, China
| | - Peng Xu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Churong Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yunxiang Qi
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Xu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bosen Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yukun Luo
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qinghua Jiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Peng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Feng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Third People’s Hospital of Sichuan Province, Chengdu, China
| |
Collapse
|
50
|
Chen P, Wang Y, Tang H, Zhou C, Liu Z, Gao S, Wang T, Xu Y, Ji SL. New applications of clioquinol in the treatment of inflammation disease by directly targeting arginine 335 of NLRP3. J Pharm Anal 2025; 15:101069. [PMID: 39902456 PMCID: PMC11788862 DOI: 10.1016/j.jpha.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 02/05/2025] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is essential in innate immune-mediated inflammation, with its overactivation implicated in various autoinflammatory, metabolic, and neurodegenerative diseases. Pharmacological inhibition of NLRP3 offers a promising treatment strategy for inflammatory conditions, although no medications targeting the NLRP3 inflammasome are currently available. This study demonstrates that clioquinol (CQ), a clinical drug with chelating properties, effectively inhibits NLRP3 activation, resulting in reduced cytokine secretion and cell pyroptosis in both human and mouse macrophages, with a half maximal inhibitory concentration (IC50) of 0.478 μM. Additionally, CQ mitigates experimental acute peritonitis, gouty arthritis, sepsis, and colitis by lowering serum levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Mechanistically, CQ covalently binds to Arginine 335 (R335) in the NACHT domain, inhibiting NLRP3 inflammasome assembly and blocking the interaction between NLRP3 and its component protein. Collectively, this study identifies CQ as an effective natural NLRP3 inhibitor and a potential therapeutic agent for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| |
Collapse
|