1
|
Wang Y, Yu Y, Zhou B, Yin C, Shi Y, Men H. A Self-Developed Fire Early Warning System Based on Gas Detection and Graph Convolution Calculation Method. ACS Sens 2025; 10:3484-3492. [PMID: 40366909 DOI: 10.1021/acssensors.4c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
This study develops an artificial olfactory system for the early monitoring of fire risk in electric cabinets. Compared with existing fire detection methods such as temperature, smoke, sound, and current, the detection object of artificial olfactory sensors is abnormal odor, the diffusion of odor does not consider the complex structure of the electrical cabinet, and the detection results do not need to distinguish variable electrical conditions. In the study, we develop an artificial olfactory training device equipped with a sensory data collector to collect odor information from six combustible materials under smoke-free conditions. Based on the designed fast Pearson graph convolutional network (FPGCN), volatile gases from different overheated materials are identified with high performance under different heating times (at 1-350 s, an accuracy of 98.08%, a precision of 98.21%, and a recall of 98.01% are achieved), which proves the feasibility of the artificial olfactory training device.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Advanced Sensor Research Institution, Northeast Electric Power University, Jilin 132012, China
| | - Yang Yu
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Advanced Sensor Research Institution, Northeast Electric Power University, Jilin 132012, China
- Bionic Sensing and Pattern Recognition Team, Northeast Electric Power University, Jilin 132012, China
| | - Boxu Zhou
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Bionic Sensing and Pattern Recognition Team, Northeast Electric Power University, Jilin 132012, China
| | - Chongbo Yin
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Shi
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Advanced Sensor Research Institution, Northeast Electric Power University, Jilin 132012, China
- Bionic Sensing and Pattern Recognition Team, Northeast Electric Power University, Jilin 132012, China
| | - Hong Men
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Advanced Sensor Research Institution, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
2
|
Starr E, Budhathoki R, Gilhooly D, Castillo L, Hu M, Zhao D, Li Y, Liu S. CCKergic Tufted Cells Regulate Odor Sensitivity by Controlling Mitral Cell Output in the Mouse Olfactory Bulb. J Neurosci 2025; 45:e1243242025. [PMID: 40127939 PMCID: PMC12044044 DOI: 10.1523/jneurosci.1243-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Despite the importance of odor detection to the survival of most animals, mechanisms governing olfactory sensitivity remain unclear, especially beyond the olfactory sensory neurons (OSNs). Here we leverage opto- and chemo-genetics to selectively modulate activities of CCKergic tufted cells (TCs) in the mouse olfactory bulb (OB) of either sex, which form the intrabulbar associational system (IAS) to link isofunctional glomeruli, to determine the functional impact on OB output via mitral cells (MCs) and odor detection in behaving animals. NMDA receptors in CCKergic TCs remarkably amplify the OSN-evoked monosynaptic responses in these excitatory neurons, which provide a long-lasting feedforward excitation to MCs via both chemical transmission and electrical synapses between their apical dendrites. NMDA receptors in MCs mediate late components of the dendrodendritic TC→MC transmission to significantly boost MC outcome. Congruently, optogenetic inhibition of the CCKerigic TCs dramatically reduces the OSN-evoked MC responses. Unexpectedly, optogenetic activation of the axons projecting from CCKergic TCs on the opposite side of the same bulb produces a mainly AMPA receptor-mediated excitatory responses in MCs, leading us to speculate that CCKergic TCs functionally synchronize MC output from mirror glomeruli. Furthermore, chemogenetic inhibition of CCKergic TCs reduces animal's sensitivity to odors by elevating detection threshold, consistent with the key role of these TCs in functionally controlling MC output. Collectively, our results delineate the cellular and circuit mechanisms allowing the CCKergic TCs to regulate MC output from glomeruli on both medial and lateral side of each OB and the system's sensitivity to odors possibly via the IAS.Significance Statement The detection and processing of chemical stimuli, such as environmental odorants, are essential for the central nervous system to generate appropriate behavioral responses in animals. Most of our current knowledge about odor detection comes from studies on the interactions between chemical stimuli and odorant receptors on olfactory sensory neurons (OSNs) at the periphery. In this study, we have identified a specific subpopulation of nerve cells that play a crucial role in converting sensory input into biological signals within the olfactory bulb, the downstream target of OSNs and the initial site of synaptic odor processing. Our findings provide new insights into the cellular and circuit-level mechanisms that regulate olfactory detection beyond sensory neurons.
Collapse
Affiliation(s)
- Eric Starr
- Department of Anatomy, Howard University, Washington, DC 20059
| | | | - Dylan Gilhooly
- Department of Anatomy, Howard University, Washington, DC 20059
| | - Laura Castillo
- Department of Anatomy, Howard University, Washington, DC 20059
| | - Meigeng Hu
- Center for Neurological Disease Research, Departments of Physiology and Pharmacology and Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, Georgia 30602
| | - Dan Zhao
- Center for Neurological Disease Research, Departments of Physiology and Pharmacology and Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, Georgia 30602
| | - Yaping Li
- Center for Neurological Disease Research, Departments of Physiology and Pharmacology and Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, Georgia 30602
| | - Shaolin Liu
- Department of Anatomy, Howard University, Washington, DC 20059
- Center for Neurological Disease Research, Departments of Physiology and Pharmacology and Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, Georgia 30602
| |
Collapse
|
3
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
4
|
Ball L, Frey T, Haag F, Frank S, Hoffmann S, Laska M, Steinhaus M, Neuhaus K, Krautwurst D. Geosmin, a Food- and Water-Deteriorating Sesquiterpenoid and Ambivalent Semiochemical, Activates Evolutionary Conserved Receptor OR11A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15865-15874. [PMID: 38955350 PMCID: PMC11261619 DOI: 10.1021/acs.jafc.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Geosmin, a ubiquitous volatile sesquiterpenoid of microbiological origin, is causative for deteriorating the quality of many foods, beverages, and drinking water, by eliciting an undesirable "earthy/musty" off-flavor. Moreover, and across species from worm to human, geosmin is a volatile, chemosensory trigger of both avoidance and attraction behaviors, suggesting its role as semiochemical. Volatiles typically are detected by chemosensory receptors of the nose, which have evolved to best detect ecologically relevant food-related odorants and semiochemicals. An insect receptor for geosmin was recently identified in flies. A human geosmin-selective receptor, however, has been elusive. Here, we report on the identification and characterization of a human odorant receptor for geosmin, with its function being conserved in orthologs across six mammalian species. Notably, the receptor from the desert-dwelling kangaroo rat showed a more than 100-fold higher sensitivity compared to its human ortholog and detected geosmin at low nmol/L concentrations in extracts from geosmin-producing actinomycetes.
Collapse
Affiliation(s)
- Lena Ball
- TUM
School of Life Sciences, Technical University
of Munich, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Tim Frey
- TUM
School of Life Sciences, Technical University
of Munich, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
- Tecan
Deutschland GmbH, Crailsheim 74564, Germany
| | - Franziska Haag
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Stephanie Frank
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Sandra Hoffmann
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Matthias Laska
- IFM
Biology, Linköping University, Linköping 581 83, Sweden
| | - Martin Steinhaus
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Klaus Neuhaus
- Core
Facility Microbiome, ZIEL − Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| | - Dietmar Krautwurst
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
5
|
Williams E, Pauley A, Dewan A. The behavioral sensitivity of mice to acyclic, monocyclic, and bicyclic monoterpenes. PLoS One 2024; 19:e0298448. [PMID: 38394306 PMCID: PMC10890753 DOI: 10.1371/journal.pone.0298448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Monoterpenes are a large class of naturally occurring fragrant molecules. These chemicals are commonly used in olfactory studies to survey neural activity and probe the behavioral limits of odor discrimination. Monoterpenes (typically in the form of essential oils) have been used for centuries for therapeutic purposes and have pivotal roles in various biological and medical applications. Despite their importance for multiple lines of research using rodent models and the role of the olfactory system in detecting these volatile chemicals, the murine sensitivity to monoterpenes remains mostly unexplored. We assayed the ability of C57BL/6J mice to detect nine different monoterpenes (the acyclic monoterpenes: geraniol, citral, and linalool; the monocyclic monoterpenes: r-limonene, s-limonene, and γ-terpinene; and the bicyclic monoterpenes: eucalyptol, α-pinene, and β-pinene) using a head-fixed Go / No-Go operant conditioning assay. We found that mice can reliably detect monoterpene concentrations in the low parts per billion (ppb) range. Specifically, mice were most sensitive to geraniol (threshold: 0.7 ppb) and least sensitive to γ-terpinene (threshold: 18.1 ppb). These estimations of sensitivity serve to set the lower limit of relevant monoterpene concentrations for functional experiments in mice. To define an upper limit, we estimated the maximum concentrations that a mouse may experience in nature by collating published headspace analyses of monoterpene concentrations emitted from natural sources. We found that natural monoterpenes concentrations typically ranged from ~1 to 1000 ppb. It is our hope that this dataset will help researchers use appropriate monoterpene concentrations for functional studies and provide context for the vapor-phase delivery of these chemicals in studies investigating their biological activity in mice.
Collapse
Affiliation(s)
- Ellie Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| | - Austin Pauley
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| | - Adam Dewan
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
6
|
Emter R, Merillat C, Dossenbach S, Natsch A. The trilogy of human musk receptors: linking receptor activation, genotype, and sensory perception. Chem Senses 2024; 49:bjae015. [PMID: 38591752 DOI: 10.1093/chemse/bjae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 04/10/2024] Open
Abstract
The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40-60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.
Collapse
Affiliation(s)
- Roger Emter
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptthal, Switzerland
| | - Christel Merillat
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptthal, Switzerland
| | - Sandro Dossenbach
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptthal, Switzerland
| | - Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptthal, Switzerland
| |
Collapse
|
7
|
Agbor Epse Muluh E, McCormack JC, Mo Y, Garratt M, Peng M. Gustatory and olfactory shifts during pregnancy and the postpartum period: A systematic review and meta-analysis. Physiol Behav 2024; 273:114388. [PMID: 37890603 DOI: 10.1016/j.physbeh.2023.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Pregnancy is a transformative phase marked by significant behavioral and physiological changes. Substantial changes in pregnancy-related hormones are thought to induce changes in chemosensory perception, as often observed in non-human animals. However, empirical behavioral research on pregnancy-related olfactory or gustatory changes has not yet reached a consensus. This PROSPERO pre-registered systematic review and meta-analysis evaluated published data of olfactory and gustatory changes in pregnant individuals, across the three pregnancy trimesters and postpartum period. Our comprehensive search strategy identified 20 relevant studies, for inclusion in the meta-analysis. The meta-analysis revealed that pregnant individuals, regardless of trimester, performed significantly poorer in terms of odour identification, however, no difference was detected between non-pregnant controls and women postpartum. Additionally, pregnant women in the second and third trimester rated olfactory stimuli to be more intense. A slight decline in odour pleasantness ratings was observed amongst those in the second trimester. No major difference was observed between pregnant and non-pregnant subjects in terms of gustatory functions, except the first trimester appeared to be associated with increased pleasantness for the sweet taste. Post-hoc meta-regression analyses revealed that pregnancy stage was a significant predictor for observed effect size for odour intensity ratings, but not for odour identification scores. These findings provide valuable insights into the interplay between pregnancy and chemosensory perception, highlighting systematic physiological changes due to pregnancy. Healthcare providers can also utilize the knowledge of sensory shifts to better support pregnant women in making appropriate dietary choices, managing sense-related discomfort, and leading to potential sensory interventions. Overall, this research enhances our comprehension of sensory shifts during pregnancy, benefiting maternal health and pregnancy-related care.
Collapse
Affiliation(s)
- Elizabeth Agbor Epse Muluh
- Sensory Neurosensory and Nutrition Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand; Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jessica C McCormack
- Sensory Neurosensory and Nutrition Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yunfan Mo
- Sensory Neurosensory and Nutrition Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Mei Peng
- Sensory Neurosensory and Nutrition Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Timme NM, Ardinger CE, Weir SDC, Zelaya-Escobar R, Kruger R, Lapish CC. Non-consummatory behavior signals predict aversion-resistant alcohol drinking in head-fixed mice. Neuropharmacology 2024; 242:109762. [PMID: 37871677 PMCID: PMC10872650 DOI: 10.1016/j.neuropharm.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6 J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Nicholas M Timme
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA.
| | - Cherish E Ardinger
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Seth D C Weir
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Zelaya-Escobar
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Kruger
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MSB 5035, Indianapolis, IN, 46202, USA; Stark Neuroscience Institute, Indiana University School of Medicine, 320 W. 15th St, NB 414, Indianapolis, IN, 46202, USA
| |
Collapse
|
9
|
Johnson CE, Williams E, Dewan A. Protocol for quantifying the odor detection threshold of mice. STAR Protoc 2023; 4:102635. [PMID: 37805920 PMCID: PMC10579531 DOI: 10.1016/j.xpro.2023.102635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Perceptual measures of odor threshold provide a mechanism to compare sensitivity across species and to gauge stimulus concentrations for functional experiments. Here, we present a protocol to precisely quantify the odor detection threshold of mice. We describe the construction of a head-fixed operant conditioning behavioral rig and provide details of the training and testing procedures. This approach can be used to compare the sensitivity of mice across odorants and to quantify detection differences associated with genetic mutations or pharmacological manipulations. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2023),1 Jennings et al. (2022),2 Williams and Dewan (2020),3 and Dewan et al. (2018).4.
Collapse
Affiliation(s)
- Chloe Elise Johnson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Ellie Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Adam Dewan
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
10
|
Timme NM, Ardinger CE, Weir SDC, Zelaya-Escobar R, Kruger R, Lapish CC. Non-Consummatory Behavior Signals Predict Aversion-Resistant Alcohol Drinking in Head-Fixed Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545767. [PMID: 37873153 PMCID: PMC10592797 DOI: 10.1101/2023.06.20.545767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior.
Collapse
Affiliation(s)
- Nicholas M. Timme
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Cherish E. Ardinger
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Seth D. C. Weir
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Zelaya-Escobar
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Kruger
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Christopher C. Lapish
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MSB 5035, Indianapolis, IN, 46202, USA
- Stark Neuroscience Institute, Indiana University School of Medicine, 320 W. 15 St, NB 414, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Trimmer C, Arroyave R, Vuilleumier C, Wu L, Dumer A, DeLaura C, Kim J, Pierce GM, Borisovska M, De Nanteuil F, Emberger M, Varganov Y, Margot C, Rogers ME, Pfister P. Allosteric modulation of a human odorant receptor. Curr Biol 2023; 33:1523-1534.e4. [PMID: 36977419 DOI: 10.1016/j.cub.2023.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Odor perception is first determined by how the myriad of environmental volatiles are detected at the periphery of the olfactory system. The combinatorial activation of dedicated odorant receptors generates enough encoding power for the discrimination of tens of thousands of odorants. Recent studies have revealed that odorant receptors undergo widespread inhibitory modulation of their activity when presented with mixtures of odorants, a property likely required to maintain discrimination and ensure sparsity of the code for complex mixtures. Here, we establish the role of human OR5AN1 in the detection of musks and identify distinct odorants capable of enhancing its activity in binary mixtures. Chemical and pharmacological characterization indicate that specific α-β unsaturated aliphatic aldehydes act as positive allosteric modulators. Sensory experiments show decreased odor detection threshold in humans, suggesting that allosteric modulation of odorant receptors is perceptually relevant and likely adds another layer of complexity to how odors are encoded in the peripheral olfactory system.
Collapse
|
12
|
Robust odor identification in novel olfactory environments in mice. Nat Commun 2023; 14:673. [PMID: 36781878 PMCID: PMC9925783 DOI: 10.1038/s41467-023-36346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.
Collapse
|
13
|
Johnson CE, Hammock EAD, Dewan AK. Vasopressin receptor 1a, oxytocin receptor, and oxytocin knockout male and female mice display normal perceptual abilities towards non-social odorants. Horm Behav 2023; 148:105302. [PMID: 36628861 PMCID: PMC10067158 DOI: 10.1016/j.yhbeh.2022.105302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Genetic knockouts of the vasopressin receptor 1a (Avpr1a), oxytocin receptor (Oxtr), or oxytocin (Oxt) gene in mice have helped cement the causal relationship between these neuropeptide systems and various social behaviors (e.g., social investigation, recognition, and communication, as well as territoriality and aggression). In mice, these social behaviors depend upon the olfactory system. Thus, it is critical to assess the olfactory capabilities of these knockout models to accurately interpret the observed differences in social behavior. Prior studies utilizing these transgenic mice have sought to test for baseline deficits in olfactory processing; predominantly through use of odor habituation/dishabituation tasks, buried food tests, or investigation assays using non-social odorants. While informative, these assays rely on the animal's intrinsic motivation and locomotor behavior to measure olfactory capabilities and thus, often yield mixed results. Instead, psychophysical analyses using operant conditioning procedures and flow-dilution olfactometry are ideally suited to precisely quantify olfactory perception. In the present study, we used these methods to assess the main olfactory capabilities of adult male and female Avpr1a, Oxtr, and Oxt transgenic mice to volatile non-social odorants. Our results indicate that homozygous and heterozygous knockout mice of all three strains have the same sensitivity and discrimination ability as their wild-type littermates. These data strongly support the hypothesis that the observed social deficits of these global knockout mice are not due to baseline deficits of their main olfactory system.
Collapse
Affiliation(s)
- Chloe Elise Johnson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| | - Elizabeth Anne Dunn Hammock
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| | - Adam Kabir Dewan
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
14
|
Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S. Odor Discrimination by Lipid Membranes. MEMBRANES 2023; 13:151. [PMID: 36837654 PMCID: PMC9962961 DOI: 10.3390/membranes13020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that phospholipid bilayer membranes may be capable of odor discrimination. The effect of S-carvone, R-carvone, and racemic lilial on the model membrane systems was investigated. The odorants were found to affect the fluidity of supported lipid bilayers as measured by fluorescence recovery after photobleaching (FRAP). The effect of odorants on surface-supported lipid multilayer microarrays of different dimensions was also investigated. The lipid multilayer micro- and nanostructure was highly sensitive to exposure to these odorants. Fluorescently-labeled lipid multilayer droplets of 5-micron diameter were more responsive to these odorants than ethanol controls. Arrays of lipid multilayer diffraction gratings distinguished S-carvone from R-carvone in an artificial nose assay. Our results suggest that lipid bilayer membranes may play a role in odorant discrimination and molecular recognition in general.
Collapse
|
15
|
Jennings L, Williams E, Caton S, Avlas M, Dewan A. Estimating the relationship between liquid- and vapor-phase odorant concentrations using a photoionization detector (PID)-based approach. Chem Senses 2023; 48:6961025. [PMID: 36571813 DOI: 10.1093/chemse/bjac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory studies frequently utilize odor stimuli consisting of volatiles created from liquid dilutions of various chemicals. A problem arises if the researcher relies on these liquid dilutions to extrapolate vapor concentrations based on ideal gas behavior. For most chemicals, the relationship between liquid and vapor concentration deviates from these laws of proportionality due to interactions between the chemical and the solvent. Here, we describe a method to estimate vapor-phase concentrations of diluted odorants using a photoionization detector. To demonstrate the utility of this method, we assessed the relationship between liquid-/vapor-phase concentrations for 14 odorants (7 alcohols, 1 ester, and 6 aldehydes) in 5 different solvents (water, mineral oil, diethyl phthalate, dipropylene glycol, and propylene glycol). An analysis of 7 additional esters is also included to assess how carbon chain length and functional group, interacts with these solvents (for a total of 105 odorant/solvent pairs). Our resulting equilibrium equations successfully corrected for behavioral sensitivity differences observed in mice tested with the same odorant in different solvents and were overall similar to published measurements using a gas chromatography-based approach. In summary, this method should allow researchers to determine the vapor-phase concentration of diluted odorants and will hopefully assist in more accurate comparisons of odorant concentrations across olfactory studies.
Collapse
Affiliation(s)
- Liam Jennings
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Ellie Williams
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Samuel Caton
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Marta Avlas
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Adam Dewan
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
17
|
The facets of olfactory learning. Curr Opin Neurobiol 2022; 76:102623. [PMID: 35998474 DOI: 10.1016/j.conb.2022.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Volatile chemicals in the environment provide ethologically important information to many animals. However, how animals learn to use this information is only beginning to be understood. This review highlights recent experimental advances elucidating olfactory learning in rodents, ranging from adaptations to the environment to task-dependent refinement and multisensory associations. The broad range of phenomena, mechanisms, and brain areas involved demonstrate the complex and multifaceted nature of olfactory learning.
Collapse
|
18
|
Omura M, Takabatake Y, Lempert E, Benjamin-Hong S, D'Hulst C, Feinstein P. A genetic platform for functionally profiling odorant receptors in olfactory cilia ex vivo. Sci Signal 2022; 15:eabm6112. [PMID: 35944068 DOI: 10.1126/scisignal.abm6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular basis for odor perception in humans remains enigmatic because of the difficulty in studying odorant receptors (ORs) outside their native environment. Efforts toward OR expression and functional profiling have been met with limited success because of the poor efficiency of their cell surface expression in vitro. Structures protruding from the surface of olfactory sensory neurons called cilia contain all of the components of the olfactory signal transduction machinery and can be placed in an ex vivo plate assay to rapidly measure odor-specific responses. Here, we describe an approach using cilia isolated from the olfactory sensory neurons of mice expressing two human ORs, OR1A1 and OR5AN1, that showed 10- to 100-fold more sensitivity to ligands as compared to previous assays. A single mouse can produce enough olfactory cilia for up to 4000 384-well assay wells, and isolated cilia can be stored frozen and thus preserved. This pipeline offers a sensitive and highly scalable ex vivo odor-screening platform that has the potential to decode human olfaction.
Collapse
Affiliation(s)
- Masayo Omura
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Yukie Takabatake
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Eugene Lempert
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | | | - Charlotte D'Hulst
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA.,Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
19
|
Krishnamurthy K, Hermundstad AM, Mora T, Walczak AM, Balasubramanian V. Disorder and the Neural Representation of Complex Odors. Front Comput Neurosci 2022; 16:917786. [PMID: 36003684 PMCID: PMC9393645 DOI: 10.3389/fncom.2022.917786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Animals smelling in the real world use a small number of receptors to sense a vast number of natural molecular mixtures, and proceed to learn arbitrary associations between odors and valences. Here, we propose how the architecture of olfactory circuits leverages disorder, diffuse sensing and redundancy in representation to meet these immense complementary challenges. First, the diffuse and disordered binding of receptors to many molecules compresses a vast but sparsely-structured odor space into a small receptor space, yielding an odor code that preserves similarity in a precise sense. Introducing any order/structure in the sensing degrades similarity preservation. Next, lateral interactions further reduce the correlation present in the low-dimensional receptor code. Finally, expansive disordered projections from the periphery to the central brain reconfigure the densely packed information into a high-dimensional representation, which contains multiple redundant subsets from which downstream neurons can learn flexible associations and valences. Moreover, introducing any order in the expansive projections degrades the ability to recall the learned associations in the presence of noise. We test our theory empirically using data from Drosophila. Our theory suggests that the neural processing of sparse but high-dimensional olfactory information differs from the other senses in its fundamental use of disorder.
Collapse
Affiliation(s)
- Kamesh Krishnamurthy
- Joseph Henry Laboratories of Physics and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Ann M. Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS, UPMC and École Normale Supérieure, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique Théorique, UMR8549m CNRS, UPMC and École Normale Supérieure, Paris, France
| | - Vijay Balasubramanian
- David Rittenhouse and Richards Laboratories, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Vijay Balasubramanian
| |
Collapse
|
20
|
Burton SD, Brown A, Eiting TP, Youngstrom IA, Rust TC, Schmuker M, Wachowiak M. Mapping odorant sensitivities reveals a sparse but structured representation of olfactory chemical space by sensory input to the mouse olfactory bulb. eLife 2022; 11:e80470. [PMID: 35861321 PMCID: PMC9352350 DOI: 10.7554/elife.80470] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In olfactory systems, convergence of sensory neurons onto glomeruli generates a map of odorant receptor identity. How glomerular maps relate to sensory space remains unclear. We sought to better characterize this relationship in the mouse olfactory system by defining glomeruli in terms of the odorants to which they are most sensitive. Using high-throughput odorant delivery and ultrasensitive imaging of sensory inputs, we imaged responses to 185 odorants presented at concentrations determined to activate only one or a few glomeruli across the dorsal olfactory bulb. The resulting datasets defined the tuning properties of glomeruli - and, by inference, their cognate odorant receptors - in a low-concentration regime, and yielded consensus maps of glomerular sensitivity across a wide range of chemical space. Glomeruli were extremely narrowly tuned, with ~25% responding to only one odorant, and extremely sensitive, responding to their effective odorants at sub-picomolar to nanomolar concentrations. Such narrow tuning in this concentration regime allowed for reliable functional identification of many glomeruli based on a single diagnostic odorant. At the same time, the response spectra of glomeruli responding to multiple odorants was best predicted by straightforward odorant structural features, and glomeruli sensitive to distinct odorants with common structural features were spatially clustered. These results define an underlying structure to the primary representation of sensory space by the mouse olfactory system.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Audrey Brown
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Isaac A Youngstrom
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas C Rust
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Schmuker
- Biocomputation Group, Centre of Data Innovation Research, Department of Computer Science, University of HertfordshireHertfordshireUnited Kingdom
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
21
|
Functional analysis of human olfactory receptors with a high basal activity using LNCaP cell line. PLoS One 2022; 17:e0267356. [PMID: 35446888 PMCID: PMC9022881 DOI: 10.1371/journal.pone.0267356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Humans use a family of more than 400 olfactory receptors (ORs) to detect odorants. However, deorphanization of ORs is a critical issue because the functional properties of more than 80% of ORs remain unknown, thus, hampering our understanding of the relationship between receptor function and perception. HEK293 cells are the most commonly used heterologous expression system to determine the function of a given OR; however, they cannot functionally express a majority of ORs probably due to a lack of factor(s) required in cells in which ORs function endogenously. Interestingly, ORs have been known to be expressed in a variety of cells outside the nose and play critical physiological roles. These findings prompted us to test the capacity of cells to functionally express a specific repertoire of ORs. In this study, we selected three cell lines that endogenously express functional ORs. We demonstrated that human prostate carcinoma (LNCaP) cell lines successfully identified novel ligands for ORs that were not recognized when expressed in HEK293 cells. Further experiments suggested that the LNCaP cell line was effective for functional expression of ORs, especially with a high basal activity, which impeded the sensitive detection of ligand-mediated activity of ORs. This report provides an efficient functional assay system for a specific repertoire of ORs that cannot be characterized in current cell systems.
Collapse
|
22
|
Chen X, Shi J, Wang T, Zheng S, Lv W, Chen X, Yang J, Zeng M, Hu N, Su Y, Wei H, Zhou Z, Yang Z. High-Performance Wearable Sensor Inspired by the Neuron Conduction Mechanism through Gold-Induced Sulfur Vacancies. ACS Sens 2022; 7:816-826. [PMID: 35188381 DOI: 10.1021/acssensors.1c02452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Practical application of wearable gas-sensing devices has been greatly inhibited by the poorly sensitive and specific recognition of target gases. Rapid charge transfer caused by rich sensory neurons in the biological olfactory system has inspired the construction of a highly sensitive sensor network with abundant defect sites for adsorption. Herein, for the first time, we demonstrate an in situ formed neuron-mimic gas sensor in a single gas-sensing channel, which is derived from lattice deviation of S atoms in Bi2S3 nanosheets induced by gold quantum dots. Due to the favorable gas adsorption and charge transfer properties arising from S vacancies, the fabricated sensor exhibits a significantly enhanced response value of 5.6-5 ppm NO2, ultrafast response/recovery performance (18 and 338 s), and excellent selectivity. Furthermore, real-time visual detection of target gases has been accomplished by integrating the flexible sensor into a wearable device.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia Shi
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuyue Zheng
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Wen Lv
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
23
|
Osakada T, Abe T, Itakura T, Mori H, Ishii KK, Eguchi R, Murata K, Saito K, Haga-Yamanaka S, Kimoto H, Yoshihara Y, Miyamichi K, Touhara K. Hemoglobin in the blood acts as a chemosensory signal via the mouse vomeronasal system. Nat Commun 2022; 13:556. [PMID: 35115521 PMCID: PMC8814178 DOI: 10.1038/s41467-022-28118-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.
Collapse
Affiliation(s)
- Takuya Osakada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takayuki Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takumi Itakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiromi Mori
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ryo Eguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kosuke Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Sachiko Haga-Yamanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroko Kimoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Yoshihara
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
| |
Collapse
|
24
|
Guo L, Dai W, Xu Z, Liang Q, Miller ET, Li S, Gao X, Baldwin MW, Chai R, Li Q. Evolution of brain-expressed biogenic amine receptors into olfactory trace amine-associated receptors. Mol Biol Evol 2022; 39:6503506. [PMID: 35021231 PMCID: PMC8890504 DOI: 10.1093/molbev/msac006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.
Collapse
Affiliation(s)
- Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qiaoyi Liang
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Maude W Baldwin
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| |
Collapse
|
25
|
Binding site identification of G protein-coupled receptors through a 3D Zernike polynomials-based method: application to C. elegans olfactory receptors. J Comput Aided Mol Des 2022; 36:11-24. [PMID: 34977999 PMCID: PMC8831295 DOI: 10.1007/s10822-021-00434-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/18/2021] [Indexed: 11/01/2022]
Abstract
Studying the binding processes of G protein-coupled receptors (GPCRs) proteins is of particular interest both to better understand the molecular mechanisms that regulate the signaling between the extracellular and intracellular environment and for drug design purposes. In this study, we propose a new computational approach for the identification of the binding site for a specific ligand on a GPCR. The method is based on the Zernike polynomials and performs the ligand-GPCR association through a shape complementarity analysis of the local molecular surfaces. The method is parameter-free and it can distinguish, working on hundreds of experimentally GPCR-ligand complexes, binding pockets from randomly sampled regions on the receptor surface, obtaining an Area Under ROC curve of 0.77. Given its importance both as a model organism and in terms of applications, we thus investigated the olfactory receptors of the C. elegans, building a list of associations between 21 GPCRs belonging to its olfactory neurons and a set of possible ligands. Thus, we can not only carry out rapid and efficient screenings of drugs proposed for GPCRs, key targets in many pathologies, but also we laid the groundwork for computational mutagenesis processes, aimed at increasing or decreasing the binding affinity between ligands and receptors.
Collapse
|
26
|
Shor E, Herrero-Vidal P, Dewan A, Uguz I, Curto VF, Malliaras GG, Savin C, Bozza T, Rinberg D. Sensitive and robust chemical detection using an olfactory brain-computer interface. Biosens Bioelectron 2022; 195:113664. [PMID: 34624799 DOI: 10.1016/j.bios.2021.113664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
When it comes to detecting volatile chemicals, biological olfactory systems far outperform all artificial chemical detection devices in their versatility, speed, and specificity. Consequently, the use of trained animals for chemical detection in security, defense, healthcare, agriculture, and other applications has grown astronomically. However, the use of animals in this capacity requires extensive training and behavior-based communication. Here we propose an alternative strategy, a bio-electronic nose, that capitalizes on the superior capability of the mammalian olfactory system, but bypasses behavioral output by reading olfactory information directly from the brain. We engineered a brain-computer interface that captures neuronal signals from an early stage of olfactory processing in awake mice combined with machine learning techniques to form a sensitive and selective chemical detector. We chronically implanted a grid electrode array on the surface of the mouse olfactory bulb and systematically recorded responses to a large battery of odorants and odorant mixtures across a wide range of concentrations. The bio-electronic nose has a comparable sensitivity to the trained animal and can detect odors on a variable background. We also introduce a novel genetic engineering approach that modifies the relative abundance of particular olfactory receptors in order to improve the sensitivity of our bio-electronic nose for specific chemical targets. Our recordings were stable over months, providing evidence for robust and stable decoding over time. The system also works in freely moving animals, allowing chemical detection to occur in real-world environments. Our bio-electronic nose outperforms current methods in terms of its stability, specificity, and versatility, setting a new standard for chemical detection.
Collapse
Affiliation(s)
- Erez Shor
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Pedro Herrero-Vidal
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Adam Dewan
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA; Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA
| | - Ilke Uguz
- Electrical Engineering, Columbia University, 5798 New York, NY, 10027, USA
| | - Vincenzo F Curto
- Division of Electrical Engineering, Department of Engineering, Cambridge University, Cambridge, UK
| | - George G Malliaras
- Division of Electrical Engineering, Department of Engineering, Cambridge University, Cambridge, UK
| | - Cristina Savin
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Center for Data Science, New York University, New York, NY, 10003, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Department of Physics, New York University, New York, NY 10003, USA.
| |
Collapse
|
27
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
28
|
Abstract
Measures of behavioral sensitivity provide an important guide for choosing the stimulus concentrations used in functional experiments. This information is particularly valuable in the olfactory system as the neural representation of an odorant changes with concentration. This study focuses on acetate esters because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor structure–activity relationships in mice. Despite their frequent use, the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect seven different acetates (propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, isobutyl acetate, and isoamyl acetate) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility and applicability of our data, we have estimated the vapor-phase concentrations of these odorants in five different solvents using a photoionization detector-based approach. The resulting liquid-/vapor-phase equilibrium equations successfully corrected for behavioral sensitivity differences observed in animals tested with the same odorant in different solvents. We found that mice are most sensitive to isobutyl acetate and least sensitive to propyl acetate. These updated measures of sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.
Collapse
Affiliation(s)
- Liam Jennings
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Ellie Williams
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Marta Avlas
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Adam Dewan
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
29
|
Tiraboschi E, Leonardelli L, Segata G, Haase A. Parallel Processing of Olfactory and Mechanosensory Information in the Honey Bee Antennal Lobe. Front Physiol 2021; 12:790453. [PMID: 34950059 PMCID: PMC8691435 DOI: 10.3389/fphys.2021.790453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
In insects, neuronal responses to clean air have so far been reported only episodically in moths. Here we present results obtained by fast two-photon calcium imaging in the honey bee Apis mellifera, indicating a substantial involvement of the antennal lobe, the first olfactory neuropil, in the processing of mechanical stimuli. Clean air pulses generate a complex pattern of glomerular activation that provides a code for stimulus intensity and dynamics with a similar level of stereotypy as observed for the olfactory code. Overlapping the air pulses with odor stimuli reveals a superposition of mechanosensory and odor response codes with high contrast. On the mechanosensitive signal, modulations were observed in the same frequency regime as the oscillatory motion of the antennae, suggesting a possible way to detect odorless airflow directions. The transduction of mechanosensory information via the insect antennae has so far been attributed primarily to Johnston's organ in the pedicel of the antenna. The possibility that the antennal lobe activation by clean air originates from Johnston's organ could be ruled out, as the signal is suppressed by covering the surfaces of the otherwise freely moving and bending antennae, which should leave Johnston's organ unaffected. The tuning curves of individual glomeruli indicate increased sensitivity at low-frequency mechanical oscillations as produced by the abdominal motion in waggle dance communication, suggesting a further potential function of this mechanosensory code. The discovery that the olfactory system can sense both odors and mechanical stimuli has recently been made also in mammals. The results presented here give hope that studies on insects can make a fundamental contribution to the cross-taxa understanding of this dual function, as only a few thousand neurons are involved in their brains, all of which are accessible by in vivo optical imaging.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Luana Leonardelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.,Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
| | | | - Albrecht Haase
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
30
|
Martelli C, Storace DA. Stimulus Driven Functional Transformations in the Early Olfactory System. Front Cell Neurosci 2021; 15:684742. [PMID: 34413724 PMCID: PMC8369031 DOI: 10.3389/fncel.2021.684742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in the first two stages of the vertebrate olfactory system, olfactory receptor neurons (ORNs), and mitral/tufted cells.
Collapse
Affiliation(s)
- Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Douglas Anthony Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
31
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
32
|
Marcinek P, Haag F, Geithe C, Krautwurst D. An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB J 2021; 35:e21638. [PMID: 34047404 DOI: 10.1096/fj.202100224r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.
Collapse
Affiliation(s)
- Patrick Marcinek
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Hamilton Germany GmbH, Gräfelfing, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Christiane Geithe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
33
|
Shah A, Ratkowski M, Rosa A, Feinstein P, Bozza T. Olfactory expression of trace amine-associated receptors requires cooperative cis-acting enhancers. Nat Commun 2021; 12:3797. [PMID: 34145232 PMCID: PMC8213819 DOI: 10.1038/s41467-021-23824-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.
Collapse
Affiliation(s)
- Ami Shah
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Madison Ratkowski
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessandro Rosa
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Paul Feinstein
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Abstract
Probing the neural mechanisms that underlie each sensory system requires the presentation of perceptually appropriate stimulus concentrations. This is particularly relevant in the olfactory system as additional odorant receptors typically respond with increasing stimulus concentrations. Thus, perceptual measures of olfactory sensitivity provide an important guide for functional experiments. This study focuses on aliphatic alcohols because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor-structure activity relationships in mice. However, despite their frequent use, a systematic study of the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect a homologous series of primary aliphatic alcohols (1-propanol to 1-heptanol) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility of our data, we report the animal’s threshold to each odorant according to the 1) ideal gas condition, 2) nonideal gas condition (factoring in the activity of the odorant in the solvent), and 3) the liquid dilution of the odorant in the olfactometer. Of the odorants tested, mice were most sensitive to 1-hexanol and least sensitive to 1-butanol. These updated measures of murine sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.
Collapse
Affiliation(s)
- Ellie Williams
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Adam Dewan
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
35
|
Corey EA, Zolotukhin S, Ache BW, Ukhanov K. Mixture interactions at mammalian olfactory receptors are dependent on the cellular environment. Sci Rep 2021; 11:9278. [PMID: 33927269 PMCID: PMC8085013 DOI: 10.1038/s41598-021-88601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Functional characterization of mammalian olfactory receptors (ORs) remains a major challenge to ultimately understanding the olfactory code. Here, we compare the responses of the mouse Olfr73 ectopically expressed in olfactory sensory neurons using AAV gene delivery in vivo and expressed in vitro in cell culture. The response dynamics and concentration-dependence of agonists for the ectopically expressed Olfr73 were similar to those reported for the endogenous Olfr73, however the antagonism previously reported between its cognate agonist and several antagonists was not replicated in vivo. Expressing the OR in vitro reproduced the antagonism reported for short odor pulses, but not for prolonged odor exposure. Our findings suggest that both the cellular environment and the stimulus dynamics shape the functionality of Olfr73 and argue that characterizing ORs in 'native' conditions, rather than in vitro, provides a more relevant understanding of ligand-OR interactions.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Department of Biology and Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Qiu Q, Wu Y, Ma L, Xu W, Hills M, Ramalingam V, Yu CR. Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. eLife 2021; 10:e60546. [PMID: 33769278 PMCID: PMC8032394 DOI: 10.7554/elife.60546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/24/2021] [Indexed: 01/15/2023] Open
Abstract
Animals possess an inborn ability to recognize certain odors to avoid predators, seek food, and find mates. Innate odor preference is thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Exposure to innately recognized odors during the critical period abolishes the associated valence in adulthood in an odor-specific manner. The changes are associated with broadened projection of olfactory sensory neurons and expression of axon guidance molecules. Thus, a delicate balance of neural activity is needed during the critical period in establishing innate odor preference and convergent axon input is required to encode innate odor valence.
Collapse
Affiliation(s)
- Qiang Qiu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Yunming Wu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Limei Ma
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Wenjing Xu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Max Hills
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Vivekanandan Ramalingam
- Stowers Institute for Medical ResearchKansas CityUnited States
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Kansas Medical CenterKansas CityUnited States
| | - C Ron Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Kansas Medical CenterKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
37
|
Laurino A, Gencarelli M, Buci L, Raimondi L. Commentary: Euthyroid Sick Syndrome in Patients With COVID-19. Front Endocrinol (Lausanne) 2021; 12:633097. [PMID: 33688850 PMCID: PMC7928301 DOI: 10.3389/fendo.2021.633097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Affiliation(s)
- Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- *Correspondence: Annunziatina Laurino,
| | - Manuela Gencarelli
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Lisa Buci
- Endocrinology Unit, Careggi Hospital, Florence, Italy
| | - Laura Raimondi
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
38
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
39
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
40
|
Zhang S, Gong H, Ge Y, Ye RD. Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacol Res 2020; 161:105117. [PMID: 32768626 DOI: 10.1016/j.phrs.2020.105117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aβ42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated β-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aβ42. Neither Ac2-26 nor Aβ42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aβ42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Gong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
41
|
McClintock TS, Khan N, Alimova Y, Aulisio M, Han DY, Breheny P. Encoding the Odor of Cigarette Smoke. J Neurosci 2020; 40:7043-7053. [PMID: 32801155 PMCID: PMC7480249 DOI: 10.1523/jneurosci.1144-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022] Open
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
Affiliation(s)
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Yelena Alimova
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Madeline Aulisio
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Dong Y Han
- Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
42
|
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
|
43
|
Gill JV, Lerman GM, Zhao H, Stetler BJ, Rinberg D, Shoham S. Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron 2020; 108:382-393.e5. [PMID: 32841590 DOI: 10.1016/j.neuron.2020.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.
Collapse
Affiliation(s)
- Jonathan V Gill
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Gilad M Lerman
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Hetince Zhao
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin J Stetler
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Physics, New York University, New York, NY 10003, USA.
| | - Shy Shoham
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA; Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
44
|
Kowalewski J, Ray A. Predicting Human Olfactory Perception from Activities of Odorant Receptors. iScience 2020; 23:101361. [PMID: 32731170 PMCID: PMC7393469 DOI: 10.1016/j.isci.2020.101361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
Odor perception in humans is initiated by activation of odorant receptors (ORs) in the nose. However, the ORs linked to specific olfactory percepts are unknown, unlike in vision or taste where receptors are linked to perception of different colors and tastes. The large family of ORs (~400) and multiple receptors activated by an odorant present serious challenges. Here, we first use machine learning to screen ~0.5 million compounds for new ligands and identify enriched structural motifs for ligands of 34 human ORs. We next demonstrate that the activity of ORs successfully predicts many of the 146 different perceptual qualities of chemicals. Although chemical features have been used to model odor percepts, we show that biologically relevant OR activity is often superior. Interestingly, each odor percept could be predicted with very few ORs, implying they contribute more to each olfactory percept. A similar model is observed in Drosophila where comprehensive OR-neuron data are available. Machine learning predicted activity of 34 human ORs for ~0.5 million chemicals Activities of human ORs could predict odor character using machine learning Few OR activities were needed to optimize predictions of each odor percept Behavior predictions in Drosophila also need few olfactory receptor activities
Collapse
Affiliation(s)
- Joel Kowalewski
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA.
| |
Collapse
|
45
|
Pfister P, Smith BC, Evans BJ, Brann JH, Trimmer C, Sheikh M, Arroyave R, Reddy G, Jeong HY, Raps DA, Peterlin Z, Vergassola M, Rogers ME. Odorant Receptor Inhibition Is Fundamental to Odor Encoding. Curr Biol 2020; 30:2574-2587.e6. [PMID: 32470365 DOI: 10.1016/j.cub.2020.04.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022]
Abstract
Most natural odors are complex mixtures of volatile components, competing to bind odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) of the nose. To date, surprisingly little is known about how OR antagonism shapes neuronal representations in the detection layer of the olfactory system. Here, we investigated its prevalence, the degree to which it disrupts OR ensemble activity, and its conservation across phylogenetically related ORs. Calcium imaging microscopy of dissociated OSNs revealed significant inhibition, often complete attenuation, of responses to indole-a commonly occurring volatile associated with both floral and fecal odors-by a set of 36 tested odorants. To confirm an OR mechanism for the observed inhibition, we performed single-cell transcriptomics on OSNs exhibiting specific response profiles to a diagnostic panel of odorants and identified three paralogous receptors-Olfr740, Olfr741, and Olfr743-which, when tested in vitro, recapitulated OSN responses. We screened ten ORs from the Olfr740 gene family with ∼800 perfumery-related odorants spanning a range of chemical scaffolds and functional groups. Over half of these compounds (430) antagonized at least one of the ten ORs. OR activity fitted a mathematical model of competitive receptor binding and suggests normalization of OSN ensemble responses to odorant mixtures is the rule rather than the exception. In summary, we observed OR antagonism occurred frequently and in a combinatorial manner. Thus, extensive receptor-mediated computation of mixture information appears to occur in the olfactory epithelium prior to transmission of odor information to the olfactory bulb.
Collapse
Affiliation(s)
- Patrick Pfister
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Benjamin C Smith
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Barry J Evans
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Jessica H Brann
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Casey Trimmer
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Mushhood Sheikh
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Randy Arroyave
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Gautam Reddy
- Department of Physics, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hyo-Young Jeong
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Daniel A Raps
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Zita Peterlin
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA
| | - Massimo Vergassola
- Department of Physics, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Matthew E Rogers
- Firmenich Incorporated, 250 Plainsboro Road, Plainsboro, NJ 08536, USA.
| |
Collapse
|
46
|
Zak JD, Reddy G, Vergassola M, Murthy VN. Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice. Nat Commun 2020; 11:3350. [PMID: 32620767 PMCID: PMC7335155 DOI: 10.1038/s41467-020-17124-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Odor landscapes contain complex blends of molecules that each activate unique, overlapping populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of neural responses at the early stages of stimulus encoding. Information loss due to saturation could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epithelium in freely breathing mice, we find widespread antagonistic interactions in binary odor mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions are stronger and more prevalent with increasing mixture complexity. Therefore, antagonism is a common feature of odor mixture encoding in OSNs and helps in normalizing activity to reduce saturation and increase information transfer.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Gautam Reddy
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
47
|
Diallo S, Shahbaaz M, Torto B, Christoffels A, Masiga D, Getahun MN. Cellular and Molecular Targets of Waterbuck Repellent Blend Odors in Antennae of Glossina fuscipes fuscipes Newstead, 1910. Front Cell Neurosci 2020; 14:137. [PMID: 32581714 PMCID: PMC7283967 DOI: 10.3389/fncel.2020.00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
Insects that transmit many of the world's deadliest animal diseases, for instance trypanosomosis, find their suitable hosts and avoid non-preferred hosts mostly through olfactory cues. The waterbuck repellent blend (WRB) comprising geranylacetone, guaiacol, pentanoic acid, and δ-octalactone derived from waterbuck skin odor is a repellent to some savannah-adapted tsetse flies and reduces trap catches of riverine species. However, the cellular and molecular mechanisms associated with detection and coding of the repellent odors remain to be elucidated. Here, we demonstrated that WRB inhibited blood feeding in both Glossina pallidipes Austen, 1903 and Glossina fuscipes fuscipes Newstead, 1910. Using the DREAM (Deorphanization of Receptors based on Expression Alterations in odorant receptor mRNA levels) technique, combined with ortholog comparison and molecular docking, we predicted the putative odorant receptors (ORs) for the WRB in G. f. fuscipes, a non-model insect. We show that exposure of G. f. fuscipes in vivo to WRB odorant resulted in up- and downregulation of mRNA transcript of several ORs. The WRB component with strong feeding inhibition altered mRNA transcript differently as compared to an attractant odor, showing these two odors of opposing valence already segregate at the cellular and molecular levels. Furthermore, molecular dynamics simulations demonstrated that the predicted ligand-OR binding pockets consisted mostly of hydrophobic residues with a few hydrogen bonds but a stable interaction. Finally, our electrophysiological response showed the olfactory sensory neurons of G. f. fuscipes tuned to the tsetse repellent components in different sensitivity and selectivity.
Collapse
Affiliation(s)
- Souleymane Diallo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
48
|
Francesconi JA, Macaroy C, Sawant S, Hamrick H, Wahab S, Klein I, McGann JP. Sexually dimorphic behavioral and neural responses to a predator scent. Behav Brain Res 2020; 382:112467. [PMID: 31917240 PMCID: PMC7082781 DOI: 10.1016/j.bbr.2020.112467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022]
Abstract
Male and female C57BL/6 J mice were tested on the predator odor response task, where they needed to cross through a chamber of scented bedding to reach a sucrose reward. Following the behavioral testing, mouse brains were immunohistochemically labeled for expression of the immediate early gene c-fos. In the presence of the novel odorant methyl valerate (MV), both males and females exhibited increased exploration behaviors and delayed rewards compared to control bedding. However, in the presence of the predator odor phenylethylamine (PEA), males exhibited increased exploration that strongly resembled their behavior in MV (a non-predator odor) while females behaved very similarly to the clean bedding controls, quickly traversing the chamber to achieve the reward. Expression of c-fos exhibited significant sex by odor condition interactions overall across brain regions and in the anterior piriform cortex, cingulate cortex, and dorsomedial hypothalamus specifically. In all three regions we observed the general pattern that PEA exposure evoked elevated c-fos expression in females but suppressed c-fos expression in males. Taken together these data suggest that males and females may adopt different behavioral strategies in the presence of predator threat.
Collapse
Affiliation(s)
- Jennifer A Francesconi
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| | - Cathleen Macaroy
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Shreeya Sawant
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Haleigh Hamrick
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Sameerah Wahab
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Ilana Klein
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
49
|
Direct Comparison of Odor Responses of Homologous Glomeruli in the Medial and Lateral Maps of the Mouse Olfactory Bulb. eNeuro 2020; 7:ENEURO.0449-19.2020. [PMID: 31974110 PMCID: PMC7073388 DOI: 10.1523/eneuro.0449-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Olfactory sensory neurons (OSNs) expressing same-type odorant receptors typically project to a pair of glomeruli in the medial and lateral sides of the olfactory bulbs (OBs) in rodents. This multiple glomerular representation of homologous inputs is considered to have more important functional roles for odor information processing than the redundant backup system. However, a consensus idea is lacking and this hinders interpretation of the phenomenon. In addition, the shared and unique odorant response properties of the homologous glomeruli remain unclear because the majority of medial glomeruli are hidden in the septal OB, and thus it is difficult to directly compare them. OSNs, which express trace amine-associated odorant receptors (TAARs), were recently identified that project to a pair of glomeruli uniquely located in the dorsal OB. In this study, we measured the odorant-induced calcium responses of homologous pairs of TAAR glomeruli simultaneously in anesthetized mice and directly compared their response patterns. We found that they exhibited similar temporal response patterns and could not find differences in onset latency, rise time, decay time, or response amplitude. However, the medial glomeruli had significantly larger respiration-locked calcium fluctuations than the lateral glomeruli. This trend was observed with/without odorant stimulation in postsynaptic neurons of GABAergic, dopaminergic, and mitral/tufted cells, but not in presynaptic olfactory sensory axon terminals. This indicates that, at least in these TAAR glomeruli, the medial rather than the lateral OB map enhances the respiration-locked rhythm and transfers this information to higher brain centers.
Collapse
|
50
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|