1
|
Zeng L, Chen C, Xiong Y, Liu Y, Huang M, Ye J, Zhong J, Peng W. Acetylation of H3K18 activated by p300 promotes osteogenesis in human adipose-derived mesenchymal stem cells. Biochem Pharmacol 2025; 236:116901. [PMID: 40164340 DOI: 10.1016/j.bcp.2025.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Human adipose-derived mesenchymal stem cells (hAD-MSCs) have garnered significant interest as a viable alternative source of stem cells for applications in bone tissue engineering due to their high and ease availability. At present, the limited studies on potential epigenetic regulatory mechanism in hAD-MSCs greatly hinders its clinical application in bone repair. Histone acetylation has been identified as a critical regulator of the osteogenic differentiation of mesenchymal stem cells (MSCs), with increased levels of histone acetylation sites frequently correlating with enhanced osteogenic differentiation. However, their specific roles in MSCs osteogenesis remain unclear. In this study, we observed a significant up-regulation of H3K18 acetylation (H3K18ac) during the osteogenic induction of hAD-MSCs. This modification was notably enriched in the promoter regions of genes associated with osteogenesis, thereby facilitating osteogenic differentiation. Furthermore, the treatment of histone acetyltransferases p300 inhibitor A-485 in hAD-MSCs resulted in a reduction of H3K18 acetylation levels during the osteogenic differentiation, which corresponded with a diminished osteoblast phenotype and function. These results indicated that p300-mediated acetylation of H3K18 enhances the osteogenic differentiation of hAD-MSCs. It provides a novel insight into understanding the mechanism of osteogenic differentiation of hAD-MSCs and promoting its application in bone tissue engineering.
Collapse
Affiliation(s)
- Liping Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Chen Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yafei Xiong
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Yinan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Miao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Junsong Ye
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Subcenter for Stem Cell Clinical Translation, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianing Zhong
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Weijie Peng
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Pharmaceutics, Nanchang Medical College, Nanchang, 330000, China.
| |
Collapse
|
2
|
Yadalam PK, Ardila CM. Deep Neural Networks Based on Sp7 Protein Sequence Prediction in Peri-Implant Bone Formation. Int J Dent 2025; 2025:7583275. [PMID: 40231202 PMCID: PMC11996267 DOI: 10.1155/ijod/7583275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Objective: Peri-implant bone regeneration is crucial for dental implant success, particularly in managing peri-implantitis, which causes inflammation and bone loss. SP7 (Osterix) is vital for osteoblast differentiation and bone matrix formation. Advances in deep neural networks (DNNs) offer new ways to analyze protein sequences, potentially improving our understanding of SP7's role in bone formation. This study aims to develop and utilize DNNs to predict the SP7 protein sequence and understand its role in peri-implant bone formation. Materials: and Methods: Sequences were retrieved from UniProt IDs Q8TDD2 and Q9V3Z2 using the UniProt dataset. The sequences were Sp7 fasta sequences. These sequences were located, and their quality was assessed. We built an architecture that can handle a wide range of input sequences using a DNN technique, with computing needs based on the length of the input sequences. Results: Protein sequences were analyzed using a DNN architecture with ADAM optimizer over 50 epochs, achieving a sensitivity of 0.89 and a specificity of 0.82. The receiver operating characteristic (ROC) curve demonstrated high true-positive rates and low false-positive rates, indicating robust model performance. Precision-recall analysis underscored the model's effectiveness in handling imbalanced data, with significant area under the curve (AUC-PR). Epoch plots highlighted consistent model accuracy throughout training, confirming its reliability for protein sequence analysis. Conclusion: The DNN employed with ADAM optimizer demonstrated robust performance in analyzing protein sequences, achieving an accuracy of 0.85 and high sensitivity and specificity. The ROC curve highlighted the model's effectiveness in distinguishing true positives from false positives, which is essential for reliable protein classification. These findings suggest that the developed model is promising for enhancing predictive capabilities in computational biology and biomedical research, particularly in protein function prediction and therapeutic development applications.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos M. Ardila
- Department of Periodontics, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
- Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Lin Y, Jiang S, Yao Y, Li H, Jin H, Yang G, Ji B, Li Y. Posttranslational Modification in Bone Homeostasis and Osteoporosis. MedComm (Beijing) 2025; 6:e70159. [PMID: 40170748 PMCID: PMC11959162 DOI: 10.1002/mco2.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Bone is responsible for providing mechanical protection, attachment sites for muscles, hematopoiesis micssroenvironment, and maintaining balance between calcium and phosphorate. As a highly active and dynamically regulated organ, the balance between formation and resorption of bone is crucial in bone development, damaged bone repair, and mineral homeostasis, while dysregulation in bone remodeling impairs bone structure and strength, leading to deficiency in bone function and skeletal disorder, such as osteoporosis. Osteoporosis refers to compromised bone mass and higher susceptibility of fracture, resulting from several risk factors deteriorating the balanced system between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. This balanced system is strictly regulated by translational modification, such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, S-palmitoylation, citrullination, and so on. This review specifically describes the updating researches concerning bone formation and bone resorption mediated by posttranslational modification. We highlight dysregulated posttranslational modification in osteoblast and osteoclast differentiation. We also emphasize involvement of posttranslational modification in osteoporosis development, so as to elucidate the underlying molecular basis of osteoporosis. Then, we point out translational potential of PTMs as therapeutic targets. This review will deepen our understanding between posttranslational modification and osteoporosis, and identify novel targets for clinical treatment and identify future directions.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of Medicine Central South UniversityChangshaChina
| | - Shide Jiang
- The Central Hospital of YongzhouYongzhouChina
| | - Yuming Yao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hongfu Jin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Guang Yang
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Bingzhou Ji
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Yusheng Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Kibria MG, Yoshizawa T, Zhang T, Ono K, Mizumoto T, Sato Y, Sawa T, Yamagata K. SIRT7 Is a Lysine Deacylase with a Preference for Depropionylation and Demyristoylation. Int J Mol Sci 2025; 26:3153. [PMID: 40243935 PMCID: PMC11988671 DOI: 10.3390/ijms26073153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases that remove acyl groups from lysine residues on target proteins, releasing nicotinamide. SIRT7 is associated with aging and a number of age-related diseases, but the enzymatic properties of SIRT7 are largely unknown. In the present study, we investigated the biochemical activity of SIRT7 by performing a series of in vitro kinetic studies in the presence of different acyl substrates. The binding affinity of SIRT7 for NAD+ was dependent on the acyl substrate, and SIRT7 showed a preference for depropionylation and demyristoylation. Nicotinamide, the end-product of the sirtuin reaction, inhibits the activity of SIRT1-6. We also found that the sensitivity of SIRT7 to nicotinamide inhibition also depended on the chain length of the acylated peptides and that nicotinamide was a poor inhibitor of SIRT7 with non-acetylated substrates. These findings may provide insights into the development of novel SIRT7 modulators for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Mohammad Golam Kibria
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Katsuhiko Ono
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
5
|
Xi Y, Jiang Q, Dai W, Chen C, Wang Y, Miao X, Lai K, Jiang Z, Yang G, Wang Y. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice. J Zhejiang Univ Sci B 2025; 26:254-268. [PMID: 40082204 PMCID: PMC11906391 DOI: 10.1631/jzus.b2300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2025]
Abstract
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) of LRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and β-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model of LRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing in LRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.
Collapse
Affiliation(s)
- Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qifeng Jiang
- School of Stomatology, Zhejiang University, Hangzhou 310058, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. ,
| |
Collapse
|
6
|
Wang Z, Liang G, Peng J, Gu Y, Zhang X, Ding C, Yu T, Li Z. Sirtuin 7 Promotes Alcohol-Associated Liver Injury via Modulating Myeloid Cell Chemokine (C-C Motif) Ligand 2 Secretion through the NF-κB Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:575-588. [PMID: 39746506 DOI: 10.1016/j.ajpath.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) involves ethanol-induced enhancement of gut permeability, bacterial products released from intestine and intrahepatic inflammation, and liver damage. Hepatic macrophages play a crucial role in mediating inflammatory response by alcohol. Sirtuin 7 (SIRT7), a NAD+-dependent type III histone deacetylase, is being recognized as a therapeutic target in various human diseases. Emerging evidence shows that SIRT7 participates in immune regulation, but whether it is involved in ALD remains elusive. In the present study, myeloid cell-specific Sirt7 knockout mice (Lyz2-Sirt7-/-) were used to show that knockout Sirt7 in myeloid cells significantly ameliorated alcohol-induced liver injury, inflammation, and cell infiltration, while only mildly affecting lipid metabolism pathways. Chemokine (C-C motif) ligand 2 (CCL2) was identified as the main target impaired by Sirt7 knockout after alcohol. In vitro studies confirmed that Sirt7 knockout impaired macrophages' ability of CCL2 secretion and monocyte recruiting, and exogenous CCL2 reversed this impairment. At the molecular level, knockout of Sirt7 significantly impaired lipopolysaccharide-induced p65 phosphorylation and nuclear localization. More importantly, the SIRT7 inhibitor 40569 sufficiently decreased alcohol-induced liver injury and hepatic inflammation via preventing CCL2 in vivo. The current data thus uncovered a previously undescribed role of myeloid SIRT7 in mediating ALD via promoting CCL2 secretion through the NF-κB signaling pathway. Targeting SIRT7 might offer novel mechanism-based therapeutic options for ALD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China; Human Anatomy Teaching and Experimental Center, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China.
| |
Collapse
|
7
|
Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal 2025; 23:20. [PMID: 39799353 PMCID: PMC11724515 DOI: 10.1186/s12964-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism. Among the various research avenues exploring the potential of sirtuins, the effects of these proteins on obesity and OP have garnered significant attention from numerous researchers. Sirtuins regulate energy balance and lipid balance, which in turn inhibit the process of adipogenesis. Additionally, sirtuins regulate the balance between osteogenic and osteoblastic activity, which protects against the development of OP. However, no study has yet provided a comprehensive discussion of the relationship between the three: sirtuins, obesity, and OP. This paper will therefore describe the relationship between sirtuins and obesity, the relationship between sirtuins and OP, and a discussion focusing on the possibility of treating OP caused by obesity by targeting sirtuins. This will be based on the common influences on the occurrence of obesity and OP (such as mesenchymal stem cells, gut microbiota, and insulin). Finally, the potential of SIRT1, an important member of sirtuins, in polyphenolic natural products for the treatment of obesity and OP will be presented. This will contribute to a better understanding of the interactions between sirtuins and obesity and bone, which will facilitate the development of new therapeutic strategies for obesity and OP in the future.
Collapse
Grants
- Nos. 2021B1515140012, 2023A1515010083 the Natural Science Foundation of Guangdong Province
- No. 20211800905342 the Dongguan Science and Technology of Social Development Program
- No. A2024398 the Medical Scientific Research Foundation of Guangdong Province
- No. k202005 the Research and Development Fund of Dongguan People' s Hospital
- Nos. GDMU2021003, GDMU2021049, GDMU2022031, GDMU2022047, GDMU2022063, GDMU2022077, GDMU2022078, GDMU2023008, GDMU2023015, GDMU2023026, GDMU2023042, GDMU2023102 the Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- Nos. 202210571008, S202210571075, 202310571031, S202310571047, S202310571078, S202310571063, S202310571077 the Provincial and National College Students' Innovation and Entrepreneurship Training Program
- No. 4SG24028G the Guangdong Medical University-Southern Medical University twinning research team project
- No. PF100-2-01 "Climbing 100" Joint Merit Training Program Funded Project
- Nos. 2023ZYDS001, 2023FZDS001, 2023FYDB010 the Guangdong Medical University Students' Innovation Experiment Program
- the Research and Development Fund of Dongguan People’ s Hospital
- the Guangdong Medical University Students’ Innovation and Entrepreneurship Training Program
- the Provincial and National College Students’ Innovation and Entrepreneurship Training Program
- the Cai Limin National Traditional Chinese Medicine Inheritance Studio
- the Guangdong Medical University Students’ Innovation Experiment Program
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, China
| | - Yuying Huo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yujia Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqi Lin
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wuzheng Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziqin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wenqi Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Zhonghan Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Chenyue Yuan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyi Luo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yi Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Mathavan N, Singh A, Marques FC, Günther D, Kuhn GA, Wehrle E, Müller R. Spatial transcriptomics in bone mechanomics: Exploring the mechanoregulation of fracture healing in the era of spatial omics. SCIENCE ADVANCES 2025; 11:eadp8496. [PMID: 39742473 DOI: 10.1126/sciadv.adp8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis. We investigate the transcriptomic responses of cells as a function of the local strain magnitude by identifying the differential expression of genes in regions of high and low strain within a fracture site. Our platform thus has the potential to address fundamental open questions within the field and to discover mechano-responsive targets to enhance fracture healing.
Collapse
Affiliation(s)
| | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Denise Günther
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
10
|
Sun J, Li Y, Meng M, Zeng X, Wang Q, Li W, Luo Y, Chen H, Dong Q. SIRT7 inhibits the aging and inflammatory damage of hPDLFs by suppressing the AKT/mTOR. Int Immunopharmacol 2024; 143:113300. [PMID: 39378651 DOI: 10.1016/j.intimp.2024.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Periodontitis seriously affects oral health worldwide. Despite extensive efforts in prevention and treatment methods over the years, the prevalence of periodontitis in the population has not decreased. DNA damage-induced cellular senescence may be one of the mechanisms underlying periodontitis.Sirtuin7 (SIRT7) has deacetylase activity and regulates a variety of biological processes, including cell proliferation, death, and DNA damage repair.Increasing evidence confirms the crucial role of SIRT7 in age-related and inflammatory diseases. However, the mechanism of action of SIRT7 in periodontitis remains unclear. Our study demonstrates that SIRT7 is downregulated in human periodontal ligament fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Overexpression of the SIRT7 gene significantly reduces the production of senescence-related molecules P53, P21, P16, as well as inflammatory cytokines IL-1β and TNF-α stimulated by Pg-LPS. Furthermore, overexpression of the SIRT7 gene significantly decreases the phosphorylation levels of AKT and mTOR in Pg-LPS-treated hPDLFs. Conversely, SIRT7 gene knockdown exhibits opposite effects compared to overexpression in Pg-LPS-treated hPDLFs. In conclusion, our findings indicate that SIRT7 can inhibit Pg-LPS-induced senescence and consequently suppress the secretion of inflammatory cytokines through the AKT/mTOR pathway. As a result, SIRT7 could be regarded a viable pharmaceutical target for clinical periodontitis treatment.
Collapse
Affiliation(s)
- Jinyi Sun
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Ying Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Maohua Meng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiao Zeng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong Province, PR China
| | - Wenjie Li
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yuncai Luo
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Helin Chen
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qiang Dong
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China.
| |
Collapse
|
11
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
12
|
Ding C, Liu B, Yu T, Wang Z, Peng J, Gu Y, Li Z. SIRT7 protects against liver fibrosis by suppressing stellate cell activation via TGF-β/SMAD2/3 pathway. Biomed Pharmacother 2024; 180:117477. [PMID: 39316972 DOI: 10.1016/j.biopha.2024.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND SIRT7 is a class III HDACs deacetylase which plays critical roles in various biological processes. Aberrant SIRT7 expression is associated with tumorigenesis and disease progression while role of SIRT7 in hepatic fibrosis remain elusive. METHODS SIRT7 expression was examined in fibrotic liver sample via WB and IHC. Myeloid cell-specific knockout (SIRT7MKO) mice were generated by crossing SIRT7flox/flox mice with LysM-Cre mice. Primary hepatic stellate cells (HSCs) was isolated to examine stellate cells activation. SIRT7 and SMAD2/3 interaction were analyzed by immunoprecipitation. SB525334 was used to prevent SMAD2/3 phosphorylation. RESULTS SIRT7 expression was decreased during chronic liver disease progression but was increased in liver cancer. IHC staining indicated that SIRT7 was primarily expressed in non-parenchymal cells in both fibrotic and cirrhotic liver. Knockout SIRT7 in myeloid cells resulted in significant elevation of serum ALT and liver fibrosis, but mildly affected hepatic inflammation after CCl4 treatment. We further observed significant elevation of elevation of stellate cell activation and SMAD2/3 activation in SIRT7MKO mice. By using primary HSCs and stellate cell line, we confirmed that SIRT7 interacted with SMAD2/3, induced its deacetylation and was critical in regulation of SMAD2/3 activation and stellate cell activation upon TGF-β stimulation. Pharmacological inhibition of SMAD2/3 reversed the hyperactivation of SIRT7MKO HSCs after TGF-β stimulation, and abolished stellate cell activation and liver fibrosis in SIRT7MKO mice. CONCLUSION Our findings revealed previously unidentified role of SIRT7 in regulating HSCs activation via modulating TGF-β/SMAD2/3 signaling pathway. Targeting SIRT7 might offer novel therapeutic option against liver fibrosis.
Collapse
Affiliation(s)
- Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
13
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
14
|
Ma J, Yang L, Wu J, Huang Z, Zhang J, Liu M, Li M, Luo J, Wang H. Unraveling the Molecular Mechanisms of SIRT7 in Angiogenesis: Insights from Substrate Clues. Int J Mol Sci 2024; 25:11578. [PMID: 39519130 PMCID: PMC11546391 DOI: 10.3390/ijms252111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Angiogenesis, a vital physiological or pathological process regulated by complex molecular networks, is widely implicated in organismal development and the pathogenesis of various diseases. SIRT7, a member of the Sirtuin family of nicotinamide adenine dinucleotide + (NAD+) dependent deacetylases, plays crucial roles in cellular processes such as transcriptional regulation, cell metabolism, cell proliferation, and genome stability maintenance. Characterized by its enzymatic activities, SIRT7 targets an array of substrates, several of which exert regulatory effects on angiogenesis. Experimental evidence from in vitro and in vivo studies consistently demonstrates the effects of SIRT7 in modulating angiogenesis, mediated through various molecular mechanisms. Consequently, understanding the regulatory role of SIRT7 in angiogenesis holds significant promise, offering novel avenues for therapeutic interventions targeting either SIRT7 or angiogenesis. This review delineates the putative molecular mechanisms by which SIRT7 regulates angiogenesis, taking its substrates as a clue, endeavoring to elucidate experimental observations by integrating knowledge of SIRT7 substrates and established angiogenenic mechanisms.
Collapse
Affiliation(s)
- Junjie Ma
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| |
Collapse
|
15
|
Yu H, Xie Y, Lan L, Ma S, Mok SWF, Wong IN, Wang Y, Zhong G, Yuan L, Zhao H, Hu X, Macrae VE, He S, Chen G, Zhu D. Sirt7 protects against vascular calcification via modulation of reactive oxygen species and senescence of vascular smooth muscle cells. Free Radic Biol Med 2024; 223:30-41. [PMID: 39053861 DOI: 10.1016/j.freeradbiomed.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Vascular calcification is frequently seen in patients with chronic kidney disease (CKD), and significantly increases cardiovascular mortality and morbidity. Sirt7, a NAD+-dependent histone deacetylases, plays a crucial role in cardiovascular disease. However, the role of Sirt7 in vascular calcification remains largely unknown. Using in vitro and in vivo models of vascular calcification, this study showed that Sirt7 expression was significantly reduced in calcified arteries from mice administered with high dose of vitamin D3 (vD3). We found that knockdown or inhibition of Sirt7 promoted vascular smooth muscle cell (VSMC), aortic ring and vascular calcification in mice, whereas overexpression of Sirt7 had opposite effects. Intriguingly, this protective effect of Sirt7 on vascular calcification is dependent on its deacetylase activity. Unexpectedly, Sirt7 did not alter the osteogenic transition of VSMCs. However, our RNA-seq and subsequent studies demonstrated that knockdown of Sirt7 in VSMCs resulted in increased intracellular reactive oxygen species (ROS) accumulation, and induced an Nrf-2 mediated oxidative stress response. Treatment with the ROS inhibitor N-acetylcysteine (NAC) significantly attenuated the inhibitory effect of Sirt7 on VSMC calcification. Furthermore, we found that knockdown of Sirt7 delayed cell cycle progression and accelerated cellular senescence of VSMCs. Taken together, our results indicate that Sirt7 regulates vascular calcification at least in part through modulation of ROS and cellular senescence of VSMCs. Sirt7 may be a potential therapeutic target for vascular calcification.
Collapse
MESH Headings
- Animals
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Reactive Oxygen Species/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cellular Senescence
- Sirtuins/metabolism
- Sirtuins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Humans
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Male
- Cholecalciferol/pharmacology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyu Ma
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Guoli Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Liang Yuan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Huan Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xiao Hu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Shengping He
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Guojun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
16
|
Mal S, Majumder D, Birari P, Sharma AK, Gupta U, Jana K, Kundu M, Basu J. The miR-26a/SIRT6/HIF-1α axis regulates glycolysis and inflammatory responses in host macrophages during Mycobacterium tuberculosis infection. FEBS Lett 2024; 598:2592-2614. [PMID: 39155147 DOI: 10.1002/1873-3468.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Here, a macrophage infection model was used to unravel the role of the histone deacetylase sirtuin 6 (SIRT6) in Mtb-triggered regulation of the innate immune response. Mtb infection downregulated microRNA-26a and upregulated its target SIRT6. SIRT6 suppressed glycolysis and expression of HIF-1α-dependent glycolytic genes during infection. In addition, SIRT6 regulated the levels of intracellular succinate which controls stabilization of HIF-1α, as well as the release of interleukin (IL)-1β. Furthermore, SIRT6 inhibited inducible nitric oxide synthase (iNOS) and proinflammatory IL-6 but augmented anti-inflammatory arginase expression. The miR-26a/SIRT6/HIF-1α axis therefore regulates glycolysis and macrophage immune responses during Mtb infection. Our findings link SIRT6 to rewiring of macrophage signaling pathways facilitating dampening of the antibacterial immune response.
Collapse
Affiliation(s)
- Soumya Mal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Pankaj Birari
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Umesh Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
17
|
Wu S, Xia Z, Wei L, Ji J, Zhang Y, Huang D. Secreted protein TNA: a promising biomarker for understanding the adipose-bone axis and its impact on bone metabolism. J Orthop Surg Res 2024; 19:610. [PMID: 39342371 PMCID: PMC11437659 DOI: 10.1186/s13018-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone disease characterized by reduced bone mass and deterioration of bone microstructure, leading to increased bone fragility. Platelets can take up and release cytokines, and a high platelet count has been associated with low bone density. Obesity is strongly associated with OP, and adipose tissue can influence platelet function by secreting adipokines. However, the biological relationship between these factors remains unclear. METHODS We conducted differential analysis to identify OP platelet-related plasma proteins. And, making comprehensive analysis, including functional enrichment, protein-protein interaction network analysis, and Friends analysis. The key protein, Tetranectin (TNA/CLEC3B), was identified through screening. Then, we analyzed TNA's potential roles in osteogenic and adipogenic differentiation using multiple RNA-seq data sets and validated its effect on osteoclast differentiation and bone resorption function through in vitro experiments. RESULTS Six OP-platelet-related proteins were identified via differential analysis. Then, we screened the key protein TNA, which was found to be highly expressed in adipose tissue. RNA-seq data suggested that TNA may promote early osteoblast differentiation. In vitro experiments showed that knockdown of TNA expression significantly increased the expression of osteoclast markers, thereby promoting osteoclast differentiation and bone resorption. CONCLUSIONS We identified TNA as a secreted protein that inhibits osteoclast differentiation and bone resorption. While, it potentially promoted early osteoblast differentiation from bioinformatic results. TNA may play a role in bone metabolism through the adipose-bone axis.
Collapse
Affiliation(s)
- Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
18
|
Kuyama N, Araki S, Kaikita K, Nakanishi N, Nakashima N, Hanatani S, Arima Y, Yamamoto M, Nakamura T, Yamamoto E, Matsushita K, Matsui K, Tsujita K. Mineralocorticoid Receptor Blocker Prevents Mineralocorticoid Receptor-Mediated Inflammation by Modulating Transcriptional Activity of Mineralocorticoid Receptor-p65-Signal Transducer and Activator of Transcription 3 Complex. J Am Heart Assoc 2024; 13:e030941. [PMID: 39248263 PMCID: PMC11935618 DOI: 10.1161/jaha.123.030941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Mineralocorticoid receptor (MR) induces cardiac inflammation cooperatively with nuclear factor-κB and signal transducer and activator of transcription 3 (STAT3); MR blockers exert anti-inflammatory effects. However, the underlying mechanism remains unclear. We investigated the anti-inflammatory effect of esaxerenone, a novel MR blocker, in experimental myocardial infarction (MI) and its underlying mechanisms. METHODS AND RESULTS Male C57BL/6J mice subjected to ligation of the left anterior descending artery were randomly assigned to either the vehicle or esaxerenone group. Esaxerenone was provided with a regular chow diet. The mice were euthanized at either 4 or 15 days after MI. Cardiac function, fibrosis, and inflammation were evaluated. Esaxerenone significantly improved cardiac function and attenuated cardiac fibrosis at 15 days after MI independently of its antihypertensive effect. Inflammatory cell infiltration, inflammatory-related gene expression, and elevated serum interleukin-6 levels at 4 days after MI were significantly attenuated by esaxerenone. In vitro experiments using mouse macrophage-like cell line RAW264.7 cells demonstrated that esaxerenone- and spironolactone-attenuated lipopolysaccharide-induced interleukin-6 expression without altering the posttranslational modification and nuclear translocation of p65 and STAT3. Immunoprecipitation assays revealed that MR interacted with both p65 and STAT3 and enhanced the p65-STAT3 interaction, leading to a subsequent increase in interleukin-6 promoter activity, which was reversed by esaxerenone. CONCLUSIONS Esaxerenone ameliorated postinfarct remodeling in experimental MI through its anti-inflammatory properties exerted by modulating the transcriptional activity of the MR-p65-STAT3 complex. These results suggest that the MR-p65-STAT3 complex can be a novel therapeutic target for treating MI.
Collapse
Affiliation(s)
- Naoto Kuyama
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Satoshi Araki
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- Department of General Medicine and Primary CareKumamoto University HospitalKumamotoJapan
| | - Koichi Kaikita
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Nobuhiro Nakanishi
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- Division of CardiologyArao City HospitalAraoJapan
| | - Naoya Nakashima
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Shinsuke Hanatani
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Yuichiro Arima
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- International Research Center for Medical SciencesKumamoto UniversityKumamoto CityKumamotoJapan
| | - Masahiro Yamamoto
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Taishi Nakamura
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Eiichiro Yamamoto
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Kenichi Matsushita
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Kunihiko Matsui
- Department of General Medicine and Primary CareKumamoto University HospitalKumamotoJapan
| | - Kenichi Tsujita
- Department of Cardiovascular MedicineGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
19
|
Jin X, Sun X, Ma X, Qin Z, Gao X, Kang X, Li H, Sun H. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1. Cell Mol Life Sci 2024; 81:204. [PMID: 38700532 PMCID: PMC11072260 DOI: 10.1007/s00018-023-05043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 05/24/2024]
Abstract
The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xulei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Ma
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zixuan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongzhi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
20
|
Gu Y, Ding C, Yu T, Liu B, Tang W, Wang Z, Tang X, Liang G, Peng J, Zhang X, Li Z. SIRT7 promotes Hippo/YAP activation and cancer cell proliferation in hepatocellular carcinoma via suppressing MST1. Cancer Sci 2024; 115:1209-1223. [PMID: 38288904 PMCID: PMC11006999 DOI: 10.1111/cas.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Wenbin Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiaohui Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| |
Collapse
|
21
|
Kim Y, Jung KY, Kim YH, Xu P, Kang BE, Jo Y, Pandit N, Kwon J, Gariani K, Gariani J, Lee J, Verbeek J, Nam S, Bae SJ, Ha KT, Yi HS, Shong M, Kim KH, Kim D, Jung HJ, Lee CW, Kim KR, Schoonjans K, Auwerx J, Ryu D. Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma. Drug Resist Updat 2024; 73:101054. [PMID: 38277756 PMCID: PMC10935544 DOI: 10.1016/j.drup.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
AIMS Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1β inhibition. CONCLUSIONS SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| | - Kwan-Young Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Pan Xu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Navin Pandit
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeongho Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland
| | - Joanna Gariani
- Department of radiology, Hirslanden Grangettes Clinic, Geneva, Switzerland
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jef Verbeek
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hee Jung Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwang Rok Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - Kristina Schoonjans
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
22
|
Xie L, Song X, Lei L, Chen C, Zhao H, Hu J, Yu Y, Bai X, Wu X, Li X, Yang X, Yuan B, Li D, Zhu X, Zhang X. Exploring the potential mechanism of Heng-Gu-Gu-Shang-Yu-He-Ji therapy for osteoporosis based on network pharmacology and transcriptomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117480. [PMID: 37995823 DOI: 10.1016/j.jep.2023.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heng-Gu-Gu-Shang-Yu-He-Ji (Osteoking, OK) is a well-known formula for fracture therapy. In clinic, OK is effective in treating fractures while alleviating osteoporosis (OP) symptoms. However, active components of OK and the associated molecular mechanisms remain not fully elucidated. AIM OF THE STUDY This study aims to systematically evaluate the anti-osteoporosis efficacy of OK and for the first time combine network pharmacology with high-throughput whole gene transcriptome sequencing to study its underlying mechanism. MATERIALS AND METHODS In this study, the osteoporosis model was established by the castration of both ovaries. The level of serum bone turnover factor was detected by enzyme-linked immunosorbent assay. Micro-CT and HE staining were used to observe the changes of bone histopathology, and nano-indentation technique was used to detect the biomechanical properties of rat bone. The main active Chemical components of OK were identified using UPLC-DAD. Efficacy verification and mechanism exploration were conducted by network pharmacology, molecular docking, whole gene transcriptomics and in vivo experiments. RESULTS In our study, OK significantly improved bone microarchitecture and bone biomechanical parameters in OVX rats, reduced osteoclast indexes such as C-telopeptide of type I collage (CTX-I) and increased Osteoprotegerin (OPG)/Receptor activator of NF-κB ligand (RANKL) levels. Mechanistically, PI3K/AKT pathway was a common pathway for genome enrichment analysis (KEGG) of both network pharmacology and RNA-seq studies. G protein-β-like protein (GβL), Ribosomal-protein S6 kinase homolog 2 (S6K2), and Phosphoinositide 3-kinase (PI3K) appeared differentially expression in the PI3K-AKT signaling pathway. These results were also confirmed by qRT-PCR and immunohistochemistry. CONCLUSIONS OK may be used to treat osteoporosis, at least partly by activating PI3K/AKT/mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Linbi Xie
- Chengdu University of Traditional Chinese Medicine (TCM) School of Pharmacy, Chengdu, 610041, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xu Song
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610041, China
| | - Ling Lei
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Huan Zhao
- Chengdu University of Traditional Chinese Medicine (TCM) School of Pharmacy, Chengdu, 610041, China
| | - Jingyi Hu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yue Yu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xiaolu Bai
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xia Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Dongxiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
23
|
Karbowska M, Pawlak K, Sieklucka B, Domaniewski T, Lebkowska U, Zawadzki R, Pawlak D. Dose-dependent exposure to indoxyl sulfate alters AHR signaling, sirtuins gene expression, oxidative DNA damage, and bone mineral status in rats. Sci Rep 2024; 14:2583. [PMID: 38297036 PMCID: PMC10831046 DOI: 10.1038/s41598-024-53164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Indoxyl sulfate (IS), an agonist of aryl hydrocarbon receptors (AhR), can accumulate in patients with chronic kidney disease, but its direct effect on bone is not clear. The present study investigated the effect of chronic exposure to low (100 mg/kg b.w.; 100 IS) and high (200 mg/kg b.w.; 200 IS) dose of IS on bone AhR pathway, sirtuins (SIRTs) expression, oxidative DNA damage and bone mineral status in Wistar rats. The accumulation of IS was observed only in trabecular bone tissue in both doses. The differences were observed in the bone parameters, depending on the applied IS dose. The exposure to 100 IS increased AhR repressor (AhRR)-CYP1A2 gene expression, which was associated with SIRT-1, SIRT-3 and SIRT-7 expression. At the low dose group, the oxidative DNA damage marker was unchanged in the bone samples, and it was inversely related to the abovementioned SIRTs expression. In contrast, the exposure to 200 IS reduced the expression of AhRR, CYP1A, SIRT-3 and SIRT-7 genes compared to 100 IS. The level of oxidative DNA damage was higher in trabecular bone in 200 IS group. Femoral bone mineral density was decreased, and inverse relations were noticed between the level of trabecular oxidative DNA damage and parameters of bone mineral status. In conclusion, IS modulates AhR-depending signaling affecting SIRTs expression, oxidative DNA damage and bone mineral status in a dose dependent manner.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Urszula Lebkowska
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Radoslaw Zawadzki
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
24
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
25
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
26
|
Bolding JE, Nielsen AL, Jensen I, Hansen TN, Ryberg LA, Jameson ST, Harris P, Peters GHJ, Denu JM, Rogers JM, Olsen CA. Substrates and Cyclic Peptide Inhibitors of the Oligonucleotide-Activated Sirtuin 7. Angew Chem Int Ed Engl 2023; 62:e202314597. [PMID: 37873919 DOI: 10.1002/anie.202314597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
The sirtuins are NAD+ -dependent lysine deacylases, comprising seven isoforms (SIRT1-7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.
Collapse
Affiliation(s)
- Julie E Bolding
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
- Current address: Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iben Jensen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Line A Ryberg
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Samuel T Jameson
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Chemistry, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joseph M Rogers
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| |
Collapse
|
27
|
Ji J, Wu S, Bao X, Liu S, Ye Y, Liu J, Guo J, Liu J, Wang X, Xia Z, Wei L, Zhang Y, Hao D, Huang D. Mediating oxidative stress through the Palbociclib/miR-141-3p/STAT4 axis in osteoporosis: a bioinformatics and experimental validation study. Sci Rep 2023; 13:19560. [PMID: 37949959 PMCID: PMC10638393 DOI: 10.1038/s41598-023-46813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis is a common bone disease characterized by loss of bone mass, reduced bone strength, and deterioration of bone microstructure. ROS-induced oxidative stress plays an important role in osteoporosis. However, the biomarkers and molecular mechanisms of oxidative stress are still unclear. We obtained the datasets from the Gene Expression Omnibus (GEO) database, and performed differential analysis, Venn analysis, and weighted correlation network analysis (WGCNA) analysis out the hub genes. Then, the correlation between inflammatory factors and hub genes was analyzed, and a Mendelian randomization (MR) analysis was performed on cytokines and osteoporosis outcomes. In addition, "CIBERSORT" was used to analyze the infiltration of immune cells and single-cell RNA-seq data was used to analyze the expression distribution of hub genes and cell-cell communications. Finally, we collected human blood samples for RT-qPCR and Elisa experiments, the miRNA-mRNA network was constructed using the miRBase database, the 3D structure was predicted using the RNAfold, Vfold3D database, and the drug sensitivity analysis was performed using the RNAactDrug database. We obtained three differentially expressed genes associated with oxidative stress: DBH, TAF15, and STAT4 by differential, WGCNA clustering, and Venn screening analyses, and further analyzed the correlation of these 3 genes with inflammatory factors and immune cell infiltration and found that STAT4 was significantly and positively correlated with IL-2. Single-cell data analysis showed that the STAT4 gene was highly expressed mainly in dendritic cells and monocytes. In addition, the results of RT-qPCR and Elisa experiments verified that the expression of STAT4 was consistent with the previous analysis, and a significant causal relationship between IL-2 and STAT4 SNPs and osteoporosis was found by Mendelian randomization. Finally, through miRNA-mRNA network and drug sensitivity analysis, we analyzed to get Palbociclib/miR-141-3p/STAT4 axis, which can be used for the prevention and treatment of osteoporosis. In this study, we proposed the Palbociclib/miR-141-3p/STAT4 axis for the first time and provided new insights into the mechanism of oxidative stress in osteoporosis.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Shaobo Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xueyuan Bao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Shixuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yuxing Ye
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiayuan Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jinniu Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiateng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
28
|
Lv W, Zheng Y, Jiao J, Fu Y, Xu T, Zhang L, Zhang Z, Ma N. The Role of XBP1 in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1217579. [PMID: 37795354 PMCID: PMC10546391 DOI: 10.3389/fendo.2023.1217579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Bone is a dynamic organ that, once formed, undergoes a constant remodeling process that includes bone resorption and synthesis. Osteoclasts and osteoblasts are primarily responsible for controlling this process. X-box binding protein 1 (XBP1), a transcription factor, affects the metabolism of bones in various ways. In recent years, numerous studies have revealed that XBP1 plays a vital role in bone metabolism, including osteoclast and osteoblast development, as well as in regulating immune cell differentiation that affects the immune microenvironment of bone remodeling. In this review, we highlight the regulatory mechanisms of XBP1 on osteoclasts and osteoblasts, how XBP1 affects the immune microenvironment of bone remodeling by influencing the differentiation of immune cells, and predict the possible future research directions of XBP1 to provide new insights for the treatment of bone-related metabolic diseases.
Collapse
Affiliation(s)
- Wenhao Lv
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Fu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Tingrui Xu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
29
|
Wu S, Jia S. Functional Diversity of SIRT7 Across Cellular Compartments: Insights and Perspectives. Cell Biochem Biophys 2023; 81:409-419. [PMID: 37581721 DOI: 10.1007/s12013-023-01162-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Posttranslational modifications (PTMs) play important roles in the regulation of protein function. Acetylation and deacetylation are among the most important PTMs. SIRT7 is a relatively understudied member of the sirtuin family, but recent studies have revealed that it plays a regulatory role in a variety of cellular activities, such as genome stabilization and repair, gene translation, ribosome production and other important processes. Here, we provide a list of the functions and mechanisms of SIRT7 in various organelles and show the important role of SIRT7 in maintaining normal cell function.
Collapse
Affiliation(s)
- Songtao Wu
- Zhejiang University School of Medicine, Hangzhou, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
30
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
31
|
Wiciński M, Erdmann J, Nowacka A, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023; 15:3578. [PMID: 37630770 PMCID: PMC10459499 DOI: 10.3390/nu15163578] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuins are a family of proteins with enzymatic activity. There are seven mammalian sirtuins (SIRT1-SIRT7) that are found in different cellular compartments. They are a part of crucial cellular pathways and are regulated by many factors, such as chemicals, environmental stress, and phytochemicals. Several in vitro and in vivo studies have presented their involvement in anti-inflammatory, antioxidant, and antiapoptotic processes. Recent findings imply that phytochemicals such as resveratrol, curcumin, quercetin, fisetin, berberine, and kaempferol may regulate the activity of sirtuins. Resveratrol mainly activates SIRT1 and indirectly activates AMPK. Curcumin influences mainly SIRT1 and SIRT3, but its activity is broad, and many pathways in different cells are affected. Quercetin mainly modulates SIRT1, which triggers antioxidant and antiapoptotic responses. Fisetin, through SIRT1 regulation, modifies lipid metabolism and anti-inflammatory processes. Berberine has a wide spectrum of effects and a significant impact on SIRT1 signaling pathways. Finally, kaempferol triggers anti-inflammatory and antioxidant effects through SIRT1 induction. This review aims to summarize recent findings on the properties of phytochemicals in the modulation of sirtuin activity, with a particular focus on biochemical aspects.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Agnieszka Nowacka
- Department of Neurosurgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Klaudia Michalak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Kacper Janowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Adrian Biernaciak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
32
|
Wei J, Xia X, Xiao S, Jin S, Zou Q, Zuo Y, Li Y, Li J. Sequential Dual-Biofactor Release from the Scaffold of Mesoporous HA Microspheres and PLGA Matrix for Boosting Endogenous Bone Regeneration. Adv Healthc Mater 2023; 12:e2300624. [PMID: 36938866 DOI: 10.1002/adhm.202300624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 03/21/2023]
Abstract
The combined design of scaffold structure and multi-biological factors is a prominent strategy to promote bone regeneration. Herein, a composite scaffold of mesoporous hydroxyapatite (HA) microspheres loaded with the bone morphogenetic protein-2 (BMP-2) and a poly(DL-lactic-co-glycolic acid) (PLGA) matrix is constructed by 3D printing. Furthermore, the chemokine stromal cell-derived factor-1α (SDF-1α) is adsorbed on a scaffold surface to achieve the sequential release of the dual-biofactors. The results indicate that the rapid release of SDF-1α chemokine on the scaffold surface effectively recruits bone marrow-derived mesenchymal stem cells (BMSCs) to the target defect area, whereas the long-term sustained release of BMP-2 from the HA microspheres in the degradable PLGA matrix successfully triggers the osteogenic differentiation in the recruited BMSCs, significantly promoting bone regeneration and reconstruction. In addition, these structures/biofactors specially combining scaffold exhibit significantly better biological performance than that of other combined scaffolds, including the bare HA/PLGA scaffold, the scaffold loaded with SDF-1α or BMP-2 biofactor alone, and the scaffold with surface SDF-1α and BMP-2 dual-biofactors. The utilization of mesoporous HA, the assembly method, and sequential release of the two biofactors in the 3D printed composite scaffold present a new method for future design of high-performance bone repairing scaffolds.
Collapse
Affiliation(s)
- Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
33
|
Liao Q, Zhu C, Sun X, Wang Z, Chen X, Deng H, Tang J, Jia S, Liu W, Xiao W, Liu X. Disruption of sirtuin 7 in zebrafish facilitates hypoxia tolerance. J Biol Chem 2023; 299:105074. [PMID: 37481210 PMCID: PMC10448219 DOI: 10.1016/j.jbc.2023.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
SIRT7 is a member of the sirtuin family proteins with nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase activity, which can inhibit the activity of hypoxia-inducible factors independently of its enzymatic activity. However, the role of SIRT7 in affecting hypoxia signaling in vivo is still elusive. Here, we find that sirt7-null zebrafish are more resistant to hypoxic conditions, along with an increase of hypoxia-responsive gene expression and erythrocyte numbers, compared with their wildtype siblings. Overexpression of sirt7 suppresses the expression of hypoxia-responsive genes. Further assays indicate that sirt7 interacts with zebrafish hif-1αa, hif-1αb, hif-2αa, and hif-2αb to inhibit their transcriptional activity and mediate their protein degradation. In addition, sirt7 not only binds to the hypoxia responsive element of hypoxia-inducible gene promoters but also causes a reduction of H3K18Ac on these promoters. Sirt7 may regulate hypoxia-responsive gene expression through its enzymatic and nonenzymatic activities. This study provides novel insights into sirt7 function and sheds new light on the regulation of hypoxia signaling by sirt7.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
34
|
Wang CL, Ohkubo R, Mu WC, Chen W, Fan JL, Song Z, Maruichi A, Sudmant PH, Pisco AO, Dubal DB, Ji N, Chen D. The mitochondrial unfolded protein response regulates hippocampal neural stem cell aging. Cell Metab 2023; 35:996-1008.e7. [PMID: 37146607 PMCID: PMC10330239 DOI: 10.1016/j.cmet.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/14/2022] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiang Lan Fan
- Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, San Francisco, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Dena B Dubal
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Du Y, Xie B, Wang M, Zhong Y, Lv Z, Luo Y, He Q, Liu Z. Roles of sex hormones in mediating the causal effect of vitamin D on osteoporosis: A two-step Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1159241. [PMID: 37082118 PMCID: PMC10111617 DOI: 10.3389/fendo.2023.1159241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundAlthough 25-hydroxyvitamin D [25(OH)D] is a risk factor for osteoporosis, it is not clear whether sex hormones mediate this casual association. We aimed to explore how sex hormones affect the association between 25(OH)D and osteoporosis to provide meaningful insights on the underlying mechanisms from a genetic perspective.MethodsGenetic variations in 25(OH)D, total testosterone (TT), androstenedione (A4), estradiol (E2), and testosterone/17β-estradiol (T/E2) were determined through summary statistics. Taking osteoporosis as the outcome (FinnGen biobank, 332,020 samples), we conducted a Mendelian randomization (MR) analysis to establish the association between 25(OH)D and these sex hormones. The two-step MR analysis quantified the mediatory effects of sex hormones on osteoporosis. The results were further verified by pleiotropy and heterogeneity analyses.ResultsMR results showed that 25(OH)D (OR= 1.27, p = 0.04) and TT (OR= 1.25, p = 0.04) had a causal effect on osteoporosis. No significant associations were observed between the other sex hormones (A4, E2, and T/E2) and osteoporosis (p>0.05). Sensitivity analysis (p>0.05) confirmed the robustness of the MR results. The two-step MR analysis provided evidence that the mediatory effect of TT was 0.014 (the percentage of TT mediation was 5.91%). Moreover, the direct effect of 25(OH)D on osteoporosis was 0.221. A4, E2, and T/E2 were not considered as potential mediators of the role of 25(OH)D as a risk factor for OP.ConclusionThis study, through MR analysis, showed that TT mediates the causal effect of 25(OH)D on osteoporosis. Interventions targeting TT, therefore, have the potential to substantially reduce the burden of osteoporosis attributable to high 25(OH)D.
Collapse
Affiliation(s)
- Yongwei Du
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baohui Xie
- Department of Orthopedics, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Maoyuan Wang
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanbiao Zhong
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhimai Lv
- Department of Internal Medicine-Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yun Luo
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiwei He
- Ganzhou Polytechnic, Ganzhou, China
| | - Zhen Liu
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
36
|
Chen H, Huang Z, Chen C. The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis. Cell Reprogram 2023; 25:11-19. [PMID: 36594932 DOI: 10.1089/cell.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Odontogenesis is a complex physiological process that is based on dental tissue-derived mesenchymal stem cells (MSCs). Dental tissue-derived MSCs are the stem cell populations isolated and characterized from different parts of the oral cavity, and are considered as promising candidates for stem cell-based therapy. During odontogenesis, epigenetic factors can influence the proliferation, differentiation, or apoptosis of dental tissue-derived MSCs. As one of the epigenetic modifications, histone acetylation modification is critical for the proper regulation of many biological processes, including transcriptional regulation of cell cycle progression and cell fate. In odontogenesis, histone acetylation and deacetylation play crucial roles in odontogenic differentiation of dental tissue-derived MSCs. In this review, we aim to outline the general features of acetylation modification and describe their roles in odontogenic differentiation of dental tissue-derived MSCs, as well as their future implications in the field of novel regenerative therapies for the dentine-pulp complex.
Collapse
Affiliation(s)
- Haoling Chen
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijing Huang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuxiao Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
38
|
Mizumoto T, Yoshizawa T, Sato Y, Ito T, Tsuyama T, Satoh A, Araki S, Tsujita K, Tamura M, Oike Y, Yamagata K. SIRT7 Deficiency Protects against Aging-Associated Glucose Intolerance and Extends Lifespan in Male Mice. Cells 2022; 11:cells11223609. [PMID: 36429037 PMCID: PMC9688483 DOI: 10.3390/cells11223609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.
Collapse
Affiliation(s)
- Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Tomonori Tsuyama
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba-shi 305-0074, Japan
| | - Yuichi Oike
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: ; Tel.: +81-96-373-5068; Fax: +81-96-364-6940
| |
Collapse
|
39
|
Vigili de Kreutzenberg S, Giannella A, Ceolotto G, Faggin E, Cappellari R, Mazzucato M, Fraccaro C, Tarantini G, Avogaro A, Fadini GP. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia 2022; 65:1555-1568. [PMID: 35708762 PMCID: PMC9345831 DOI: 10.1007/s00125-022-05733-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Ectopic calcification is a typical feature of diabetic vascular disease and resembles an accelerated ageing phenotype. We previously found an excess of myeloid calcifying cells in diabetic individuals. We herein examined molecular and cellular pathways linking atherosclerotic calcification with calcification by myeloid cells in the diabetic milieu. METHODS We first examined the associations among coronary calcification, myeloid calcifying cell levels and mononuclear cell gene expression in a cross-sectional study of 87 participants with type 2 diabetes undergoing elective coronary angiography. Then, we undertook in vitro studies on mesenchymal stem cells and the THP-1 myeloid cell line to verify the causal relationships of the observed associations. RESULTS Coronary calcification was associated with 2.8-times-higher myeloid calcifying cell levels (p=0.037) and 50% elevated expression of the osteogenic gene RUNX2 in mononuclear cells, whereas expression of Sirtuin-7 (SIRT7) was inversely correlated with calcification. In standard differentiation assays of mesenchymal stem cells, SIRT7 knockdown activated the osteogenic program and worsened calcification, especially in the presence of high (20 mmol/l) glucose. In the myeloid cell line THP-1, SIRT7 downregulation drove a pro-calcific phenotype, whereas SIRT7 overexpression prevented high-glucose-induced calcification. Through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, high glucose induced miR-125b-5p, which in turn targeted SIRT7 in myeloid cells and was directly associated with coronary calcification. CONCLUSIONS/INTERPRETATION We describe a new pathway elicited by high glucose through the JAK/STAT cascade, involving regulation of SIRT7 by miR-125b-5p and driving calcification by myeloid cells. This pathway is associated with coronary calcification in diabetic individuals and may be a target against diabetic vascular disease. DATA AVAILABILITY RNA sequencing data are deposited in GEO (accession number GSE193510; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193510 ).
Collapse
Affiliation(s)
| | | | - Giulio Ceolotto
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Roberta Cappellari
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marta Mazzucato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Chiara Fraccaro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giuseppe Tarantini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Angelo Avogaro
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine - DIMED, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
40
|
Li X, Liu J, Lu L, Huang T, Hou W, Wang F, Yu L, Wu F, Qi J, Chen X, Meng Z, Zhu M. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res 2022; 247:99-116. [PMID: 35470010 DOI: 10.1016/j.trsl.2022.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of advanced diabetes, and increases patient mortality. Recently, epigenetics-mediated hyperglycemic memory in pathological process of DN has received attention. The purpose of this study was to determine the underlying mechanism by which sirt7 modulates hyperglycemic memory in DN. In glomerular endothelial cells (GECs) cultured in high glucose and glomeruli of DN patients and rats, an increase in p65 phosphorylation and endothelial adhesion molecule levels persisted after glucose normalization but was reversed by glucose normalization associated with death-associated protein kinase-3 (DAPK3) knockout or DAPK3 inhibitor. High glucose-mediated decrease in sirt7, the deacetylase modulating H3K18-acetylation (H3K18ac), was sustained after normoglycemia. Sirt7 overexpression accompanied by glucose normalization suppressed DAPK3 expression and inflammation in GECs. Moreover, sh-sirt7-induced inflammation was inhibited by si-DAPK3. Furthermore, sirt7 and H3K18ac were located at the DAPK3 promoter region. ELK1 was found to combine with sirt7. si-ELK1 supplemented with normoglycemia inhibited high glucose-induced DAPK3 expression and inflammation in GECs. ELK1 overexpression-mediated inflammation was inhibited by si-DAPK3. In addition, ELK1 and sirt7 were located at the same promoter region of DAPK3. ELK1 overexpression enhanced DAPK3 promoter activity, which disappeared after specific binding site mutation. In vivo, sirt7 overexpression decreased inflammation and improved renal function during insulin treatment of DN rats, whereas insulin alone did not work. Our data demonstrated high glucose-mediated mutual inhibition between sirt7 and ELK1 induced DAPK3 transcription and inflammation despite normoglycemia in GECs, thus forming a vicious cycle and participating in the occurrence of hyperglycemic memory in DN.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Anaesthesiology, Huzhou Maternal & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Yu
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Jie Qi
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022; 13:953078. [PMID: 36060706 PMCID: PMC9437461 DOI: 10.3389/fphys.2022.953078] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases, comprising seven members SIRT1-SIRT7. Sirtuins have been extensively studied in regulating ageing and age-related diseases. Sirtuins are also pivotal modulators in oxidative stress and inflammation, as they can regulate the expression and activation of downstream transcriptional factors (such as Forkhead box protein O3 (FOXO3a), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB)) as well as antioxidant enzymes, through epigenetic modification and post-translational modification. Most importantly, studies have shown that aberrant sirtuins are involved in the pathogenesis of infectious and inflammatory oral diseases, and oral cancer. In this review, we provide a comprehensive overview of the regulatory patterns of sirtuins at multiple levels, and the essential roles of sirtuins in regulating inflammation, oxidative stress, and bone metabolism. We summarize the involvement of sirtuins in several oral diseases such as periodontitis, apical periodontitis, pulpitis, oral candidiasis, oral herpesvirus infections, dental fluorosis, and oral cancer. At last, we discuss the potential utilization of sirtuins as therapeutic targets in oral diseases.
Collapse
Affiliation(s)
- Zijian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
42
|
A Novel Inhibitor INF 39 Promotes Osteogenesis via Blocking the NLRP3/IL-1β Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7250578. [PMID: 35872849 PMCID: PMC9300331 DOI: 10.1155/2022/7250578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose. A balance between osteoblasts and osteoclasts is essential to maintain skeletal integrity, regulating bone metabolism and bone remodeling. The nucleotide binding oligomerization domain, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome is known as a cytosolic complex involved in producing proinflammatory cytokines consisting of interleukin- (IL-) 1β, which accelerates the occurrence of osteoporosis. Therefore, we aimed to investigate the effect of a novel NLRP3 inhibitor INF 39 on bone formation and bone resorption. Material and Methods. Cell viability of INF 39-treated osteoclasts and calvarial osteoblasts was tested by CCK-8 assays. Quantitative RT-PCR (qRT-PCR) was used to evaluate gene expression level during osteoblast and osteoclast formation. Western blot analysis was used to determine the effect of INF 39 on osteogenic and osteoclast-related proteins. Result. It was shown that INF 39 promotes osteoblast differentiation via inhibiting NLRP3, thereby reducing the production of IL-1β dependent on NLRP3 in vitro. However, RANKL-induced osteoclast differentiation is not influenced by INF 39 in vitro. Conclusion. Our study suggests that NLRP3 could be a new target and INF 39 may be a potential option for prevention and treatment of osteoporosis.
Collapse
|
43
|
Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci 2022; 79:297. [PMID: 35585284 PMCID: PMC9117384 DOI: 10.1007/s00018-022-04342-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.
Collapse
|
44
|
Hojo H, Ohba S. Sp7 Action in the Skeleton: Its Mode of Action, Functions, and Relevance to Skeletal Diseases. Int J Mol Sci 2022; 23:5647. [PMID: 35628456 PMCID: PMC9143072 DOI: 10.3390/ijms23105647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Liu X, Wang C, Pang L, Pan L, Zhang Q. Combination of resolvin E1 and lipoxin A4 promotes the resolution of pulpitis by inhibiting NF-κB activation through upregulating sirtuin 7 in dental pulp fibroblasts. Cell Prolif 2022; 55:e13227. [PMID: 35411569 PMCID: PMC9136498 DOI: 10.1111/cpr.13227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives To determine whether the combination of resolvin E1 (RvE1) and lipoxin A4 (LXA4) could promote resolution of pulpitis and to investigate the mechanism. Materials and Methods Preliminary screening was first conducted in four specialized pro‐resolving mediators (SPMs). Real‐time quantitative polymerase chain reaction, western blotting, enzyme‐linked immunosorbent assay and double‐immunofluorescence labelling were employed to assess the expression of RelA, SIRT1, SIRT6, SIRT7 and pro‐inflammatory factors. Dental pulp fibroblasts (DPFs) were transfected with siRNA to assess the biological role of SIRT7. A pulpitis model was utilized to evaluate the in vivo curative effect. Results Preliminary results showed that RvE1 and LXA4 reduced the expression of RelA more markedly than other two SPMs. Both RvE1 and LXA4 treatment downregulated nuclear factor kappa B (NF‐κB) activation and increased the expression of SIRT1, SIRT6 and SIRT7, more so in combination than alone. Double‐immunofluorescence labelling showed that SIRT7 co‐localized with p‐p65 and Ac‐p65 in the nucleus. Inhibiting ChemR23 and ALX reversed the expression of RelA mRNA, p‐p65 and Ac‐p65 proteins, pro‐inflammatory factors, SIRT1, SIRT6 and SIRT7. Silencing SIRT7 significantly increased p‐p65 and Ac‐p65 protein levels and decreased SIRT1 and SIRT6 expression. In vivo experiments showed that combined administration of RvE1 and LXA4 promoted pulpitis markedly to resolution. Conclusions Combination of RvE1 and LXA4 effectively inhibited NF‐κB activation by upregulating SIRT7 expression in DPFs, leading to reduced production of pro‐inflammatory factors and promotion of pulpitis resolution.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chunmeng Wang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liping Pang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liangliang Pan
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
46
|
Zheng ZY, Jiang T, Huang ZF, Chu B, Gu J, Zhao X, Liu H, Fan J, Yu LP, Jiang SH, Li Q, Hu LP, Kong FQ, Zhang L, Chen Q, Chen J, Zhang HW, Yin GY, Zhao SJ. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol 2022; 53:102326. [PMID: 35525025 PMCID: PMC9093016 DOI: 10.1016/j.redox.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
The nonunion following a fracture is associated with severe patient morbidity and economic consequences. Currently, accumulating studies are focusing on the importance of macrophages during fracture repair. However, details regarding the process by which macrophages facilitate endochondral ossification (EO) are largely unknown. In this study, we present evidence that apoptotic chondrocytes (ACs) are not inert corpses awaiting removal, but positively modulate the osteoinductive ability of macrophages. In vivo experiments revealed that fatty acid (FA) metabolic processes up-regulated following EO. In vitro studies further uncovered that FAs derived from ACs are taken up by macrophages mainly through macrophage scavenger receptor 1 (MSR1). Then, our functional experiments confirmed that these exogenous FAs subsequently activate peroxisome proliferator-activated receptor α (PPARα), which further facilitates lipid droplets generation and fatty acid oxidation (FAO). Mechanistically, elevated FAO is involved in up-regulating the osteoinductive effect by generating BMP7 and NAD+/SIRT1/EZH2 axis epigenetically controls BMP7 expression in macrophages cultured with ACs culture medium. Our findings advanced the concept that ACs could promote bone regeneration by regulating metabolic and function reprogram in macrophages and identified macrophage MSR1 represents a valuable target for fracture treatments.
Collapse
|
47
|
CircRNA hsa_circ_0001421 promotes the osteoblast differentiation of human adipose mesenchymal stem cells through the miR-608/SP7 axis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Song CY, Guo Y, Chen FY, Liu WG. Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis. Calcif Tissue Int 2022; 110:117-130. [PMID: 34477918 DOI: 10.1007/s00223-021-00892-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Resveratrol (RES) is a novel dietary phenol compound derived from plants and has been studied extensively for its health benefit and medical potential including osteoporosis. The purpose of this study is to investigate the role of resveratrol in osteoporosis in vivo and in vitro and explore the mechanism of osteogenic differentiation of BMSCs. RT-qPCR, ELISA, and Western blot were used to measure the expression level of miR-193a, SIRT7, and osteogenic markers proteins. The interaction between miR-193a and SIRT7 was validated by dual-luciferase reporter assay. Moreover, MTT assay was conducted to detect cell viability. Alizarin red s staining was used to examine bone formation and calcium deposits. The ovariectomized rat model was set up successfully and HE staining was used to examine femoral trabeculae tissue. Our results showed that miR-193a was overexpressed, while SIRT7 was downregulated in osteoporosis. RES suppressed miR-193a to promote osteogenic differentiation. Mechanically, miR-193a targeted and negative regulated SIRT7. Additionally, it was confirmed that SIRT7 promoted osteogenic differentiation of BMSCs through NF-κB signaling pathway. Further study indicated that RES exerted its beneficial function through miR-193a/SIRT7-mediated NF-κB signaling to alleviate osteoporosis in vivo. Our research suggested that the RES-modulated miR-193a inhibition is responsible for the activation of SIRT7/NF-κB signaling pathway in the process of osteogenic differentiation, providing a novel insight into diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Chen-Yang Song
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yu Guo
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Fen-Yong Chen
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Wen-Ge Liu
- Department of Orthopedic, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
49
|
Zhang S, Liu Y, Zhou X, Ou M, Xiao G, Li F, Wang Z, Wang Z, Liu L, Zhang G. Sirtuin 7 Regulates Nitric Oxide Production and Apoptosis to Promote Mycobacterial Clearance in Macrophages. Front Immunol 2021; 12:779235. [PMID: 34925356 PMCID: PMC8678072 DOI: 10.3389/fimmu.2021.779235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 01/14/2023] Open
Abstract
The host immune system plays a pivotal role in the containment of Mycobacterium tuberculosis (Mtb) infection, and host-directed therapy (HDT) is emerging as an effective strategy to treat tuberculosis (TB), especially drug-resistant TB. Previous studies revealed that expression of sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, was downregulated in macrophages after Mycobacterial infection. Inhibition of SIRT7 with the pan-sirtuin family inhibitor nicotinamide (NAM), or by silencing SIRT7 expression, promoted intracellular growth of Mtb and restricted the generation of nitric oxide (NO). Addition of the exogenous NO donor SNAP abrogated the increased bacterial burden in NAM-treated or SIRT7-silenced macrophages. Furthermore, SIRT7-silenced macrophages displayed a lower frequency of early apoptotic cells after Mycobacterial infection, and this could be reversed by providing exogenous NO. Overall, this study clarified a SIRT7-mediated protective mechanism against Mycobacterial infection through regulation of NO production and apoptosis. SIRT7 therefore has potential to be exploited as a novel effective target for HDT of TB.
Collapse
Affiliation(s)
- Su Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yaya Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xuefeng Zhou
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Min Ou
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Fang Li
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhongyuan Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
50
|
Liao Q, Ouyang G, Zhu J, Cai X, Yu G, Zhou Z, Liu X, Wang J, Xiao W. Zebrafish sirt7 Negatively Regulates Antiviral Responses by Attenuating Phosphorylation of irf3 and irf7 Independent of Its Enzymatic Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3050-3059. [PMID: 34799424 DOI: 10.4049/jimmunol.2100318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Sirt7 is one member of the sirtuin family proteins with NAD (NAD+)-dependent histone deacetylase activity. In this study, we report that zebrafish sirt7 is induced upon viral infection, and overexpression of sirt7 suppresses cellular antiviral responses. Disruption of sirt7 in zebrafish increases the survival rate upon spring viremia of carp virus infection. Further assays indicate that sirt7 interacts with irf3 and irf7 and attenuates phosphorylation of irf3 and irf7 by preventing tbk1 binding to irf3 and irf7. In addition, the enzymatic activity of sirt7 is not required for sirt7 to repress IFN-1 activation. To our knowledge, this study provides novel insights into sirt7 function and sheds new light on the regulation of irf3 and irf7 by attenuating phosphorylation.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China; .,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|