1
|
Tamtaji M, Kwon S, Musgrave CB, Goddard WA, Chen G. Reaction Mechanism of Rapid CO Electroreduction to Propylene and Cyclopropane (C 3+) over Triple Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50567-50575. [PMID: 38919050 DOI: 10.1021/acsami.4c06257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
| | - Soonho Kwon
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles B Musgrave
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - GuanHua Chen
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Cheek LE, Zhu W. Structural features and substrate engagement in peptide-modifying radical SAM enzymes. Arch Biochem Biophys 2024; 756:110012. [PMID: 38663796 DOI: 10.1016/j.abb.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.
Collapse
Affiliation(s)
- Lilly E Cheek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
3
|
Guo F, Fan J, Liu JM, Kong PL, Ren J, Mo JW, Lu CL, Zhong QL, Chen LY, Jiang HT, Zhang C, Wen YL, Gu TT, Li SJ, Fang YY, Pan BX, Gao TM, Cao X. Astrocytic ALKBH5 in stress response contributes to depressive-like behaviors in mice. Nat Commun 2024; 15:4347. [PMID: 38773146 PMCID: PMC11109195 DOI: 10.1038/s41467-024-48730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Mice
- Humans
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Male
- Mice, Knockout
- Female
- Disease Models, Animal
- Mice, Inbred C57BL
- Neurons/metabolism
- Stress, Psychological/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Excitatory Amino Acid Transporter 2/metabolism
- Excitatory Amino Acid Transporter 2/genetics
- Behavior, Animal
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/pathology
- Depression/metabolism
- Depression/genetics
- Adult
- Synaptic Transmission
- Middle Aged
Collapse
Affiliation(s)
- Fang Guo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Fan
- Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jin-Ming Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng-Li Kong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia-Wen Mo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiu-Ling Zhong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang-Yu Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao-Tian Jiang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Canyuan Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - You-Lu Wen
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Ting-Ting Gu
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Shu-Ji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying-Ying Fang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Oncology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong, P. R. China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
4
|
Abstract
Covering: from 2000 up to the very early part of 2023S-Adenosyl-L-methionine (SAM) is a naturally occurring trialkyl sulfonium molecule that is typically associated with biological methyltransfer reactions. However, SAM is also known to donate methylene, aminocarboxypropyl, adenosyl and amino moieties during natural product biosynthetic reactions. The reaction scope is further expanded as SAM itself can be modified prior to the group transfer such that a SAM-derived carboxymethyl or aminopropyl moiety can also be transferred. Moreover, the sulfonium cation in SAM has itself been found to be critical for several other enzymatic transformations. Thus, while many SAM-dependent enzymes are characterized by a methyltransferase fold, not all of them are necessarily methyltransferases. Furthermore, other SAM-dependent enzymes do not possess such a structural feature suggesting diversification along different evolutionary lineages. Despite the biological versatility of SAM, it nevertheless parallels the chemistry of sulfonium compounds used in organic synthesis. The question thus becomes how enzymes catalyze distinct transformations via subtle differences in their active sites. This review summarizes recent advances in the discovery of novel SAM utilizing enzymes that rely on Lewis acid/base chemistry as opposed to radical mechanisms of catalysis. The examples are categorized based on the presence of a methyltransferase fold and the role played by SAM within the context of known sulfonium chemistry.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Byungsun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
6
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Trottmann F, Ishida K, Ishida-Ito M, Kries H, Groll M, Hertweck C. Pathogenic bacteria remodel central metabolic enzyme to build a cyclopropanol warhead. Nat Chem 2022; 14:884-890. [PMID: 35906404 PMCID: PMC9359912 DOI: 10.1038/s41557-022-01005-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Bacteria of the Burkholderia pseudomallei (BP) group pose a global health threat, causing the infectious diseases melioidosis, a common cause of pneumonia and sepsis, and glanders, a contagious zoonosis. A trait of BP bacteria is a conserved gene cluster coding for the biosynthesis of polyketides (malleicyprols) with a reactive cyclopropanol unit that is critical for virulence. Enzymes building this warhead represent ideal targets for antivirulence strategies but the biochemical basis of cyclopropanol formation is unknown. Here we describe the formation of the malleicyprol warhead. We show that BurG, an unusual NAD+-dependent member of the ketol-acid reductoisomerase family, constructs the strained cyclopropanol ring. Biochemical assays and a suite of eight crystal structures of native and mutated BurG with bound analogues and inhibitors provide snapshots of each step of the complex reaction mechanism, involving a concealed oxidoreduction and a C-S bond cleavage. Our findings illustrate a remarkable case of neofunctionalisation, where a biocatalyst from central metabolism has been evolutionarily repurposed for warhead production in pathogens.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Chemistry Department, Technical University Munich, Garching, Germany.
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
8
|
Kostenko A, Lien Y, Mendauletova A, Ngendahimana T, Novitskiy IM, Eaton SS, Latham JA. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes. J Biol Chem 2022; 298:101881. [PMID: 35367210 PMCID: PMC9062424 DOI: 10.1016/j.jbc.2022.101881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
Peptide-derived natural products are a large class of bioactive molecules that often contain chemically challenging modifications. In the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs), radical-SAM (rSAM) enzymes have been shown to catalyze the formation of ether, thioether, and carbon-carbon bonds on the precursor peptide. The installation of these bonds typically establishes the skeleton of the mature RiPP. To facilitate the search for unexplored rSAM-dependent RiPPs for the community, we employed a bioinformatic strategy to screen a subfamily of peptide-modifying rSAM enzymes which are known to bind up to three [4Fe-4S] clusters. A sequence similarity network was used to partition related families of rSAM enzymes into >250 clusters. Using representative sequences, genome neighborhood diagrams were generated using the Genome Neighborhood Tool. Manual inspection of bacterial genomes yielded numerous putative rSAM-dependent RiPP pathways with unique features. From this analysis, we identified and experimentally characterized the rSAM enzyme, TvgB, from the tvg gene cluster from Halomonas anticariensis. In the tvg gene cluster, the precursor peptide, TvgA, is comprised of a repeating TVGG motif. Structural characterization of the TvgB product revealed the repeated formation of cyclopropylglycine, where a new bond is formed between the γ-carbons on the precursor valine. This novel RiPP modification broadens the functional potential of rSAM enzymes and validates the proposed bioinformatic approach as a practical broad search tool for the discovery of new RiPP topologies.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Yi Lien
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Aigera Mendauletova
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - John A Latham
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
9
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|
10
|
Cheng J, Liu WQ, Zhu X, Zhang Q. Functional Diversity of HemN-like Proteins. ACS BIO & MED CHEM AU 2022; 2:109-119. [PMID: 37101745 PMCID: PMC10114718 DOI: 10.1021/acsbiomedchemau.1c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyu Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
12
|
Wang B, Silakov A, Booker SJ. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. Methods Enzymol 2022; 666:469-487. [DOI: 10.1016/bs.mie.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Zhi N, Zhu H, Qiao J, Dong M. Recent progress in radical SAM enzymes: New reactions and mechanisms. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Tsutsumi H, Katsuyama Y, Tezuka T, Miyano R, Inahashi Y, Takahashi Y, Nakashima T, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Indolizidine Alkaloid Iminimycin in Streptomyces griseus. Chembiochem 2021; 23:e202100517. [PMID: 34767291 DOI: 10.1002/cbic.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. In vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.
Collapse
Affiliation(s)
- Hayama Tsutsumi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rei Miyano
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoko Takahashi
- Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Takuji Nakashima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
16
|
Adak S, Moore BS. Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 2021; 38:1760-1774. [PMID: 34676862 DOI: 10.1039/d1np00010a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Up to December 2020Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C-C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed "cryptic". In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
17
|
Feng JQ, Wang BJ. Super-exchange and exchange-enhanced reactivity in Fe4S4-mediated activation of SAM by radical SAM enzymes. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-qiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-ju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
19
|
Takeda Y, Chijimatsu R, Vecchione A, Arai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Eguchi H, Doki Y, Ishii H. Impact of One-Carbon Metabolism-Driving Epitranscriptome as a Therapeutic Target for Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms22147278. [PMID: 34298902 PMCID: PMC8306097 DOI: 10.3390/ijms22147278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
One-carbon (1C) metabolism plays a key role in biological functions linked to the folate cycle. These include nucleotide synthesis; the methylation of DNA, RNA, and proteins in the methionine cycle; and transsulfuration to maintain the redox condition of cancer stem cells in the tumor microenvironment. Recent studies have indicated that small therapeutic compounds affect the mitochondrial folate cycle, epitranscriptome (RNA methylation), and reactive oxygen species reactions in cancer cells. The epitranscriptome controls cellular biochemical reactions, but is also a platform for cell-to-cell interaction and cell transformation. We present an update of recent advances in the study of 1C metabolism related to cancer and demonstrate the areas where further research is needed. We also discuss approaches to therapeutic drug discovery using animal models and propose further steps toward developing precision cancer medicine.
Collapse
Affiliation(s)
- Yu Takeda
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (H.E.); (Y.D.)
| | - Ryota Chijimatsu
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, Via di Grottarossa, 1035-00189 Rome, Italy;
| | - Takahiro Arai
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Unitech Co., Ltd., Kashiwa 277-0005, Japan
| | - Toru Kitagawa
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Kyowa-kai Medical Corporation, Osaka 540-0008, Japan
| | - Ken Ofusa
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Food and Life-Science Laboratory, Prophoenix Division, Idea Consultants, Inc., Osaka 559-8519, Japan
| | - Masami Yabumoto
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Kinshu-kai Medical Corporation, Osaka 558-0041, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Hirotsu Bio Science Inc., Tokyo 107-0062, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (H.E.); (Y.D.)
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (H.E.); (Y.D.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (R.C.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (H.E.); (Y.D.)
- Correspondence: ; Tel.: +81-(0)6-6210-8406 (ext. 8405); Fax: +81-(0)6-6210-8407
| |
Collapse
|
20
|
Shen L, Zou XP, Li WS, Mándi A, Kurtán T, Wu J. Granatripodins A-B, limonoids featuring a Tricyclo[3.3.1.0 2,8]nonane motif: Absolute configuration and agonistic effects on human pregnane-X-receptor. Bioorg Chem 2021; 111:104888. [PMID: 33862473 DOI: 10.1016/j.bioorg.2021.104888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
Two unprecedented limonoids incorporating a sterically encumbered cyclopropane ring, named granatripodins A (1) and B (2), featuring the presence of a tricyclo[3.3.1.02,8]nonane motif, were obtained from seeds of the Thai Xylocarpus granatum. The planar structures and absolute configurations of these limonoids were unambiguously established by NMR investigations, TDDFT-ECD and DFT-NMR calculations, and single-crystal X-ray diffraction analysis (Cu Kα). Most notably, granatripodin A (1) exhibited agonistic effects on human pregnane-X-receptor at the concentration of 100.0 nM. The biosynthetic origins of these limonoids via a radical cascade reaction are proposed. This study exemplifies a universal approach for the stereochemical assignment of polycyclic compounds with a cyclopropane-embedded cage scaffold.
Collapse
Affiliation(s)
- Li Shen
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, PR China.
| | - Xiao-Peng Zou
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, PR China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
21
|
Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 2021; 11:632-650. [PMID: 33777672 PMCID: PMC7982431 DOI: 10.1016/j.apsb.2020.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023] Open
Abstract
S-adenosylmethionine (SAM) is ubiquitous in living organisms and is of great significance in metabolism as a cofactor of various enzymes. Methyltransferases (MTases), a major group of SAM-dependent enzymes, catalyze methyl transfer from SAM to C, O, N, and S atoms in small-molecule secondary metabolites and macromolecules, including proteins and nucleic acids. MTases have long been a hot topic in biomedical research because of their crucial role in epigenetic regulation of macromolecules and biosynthesis of natural products with prolific pharmacological moieties. However, another group of SAM-dependent enzymes, sharing similar core domains with MTases, can catalyze nonmethylation reactions and have multiple functions. Herein, we mainly describe the nonmethylation reactions of SAM-dependent enzymes in biosynthesis. First, we compare the structural and mechanistic similarities and distinctions between SAM-dependent MTases and the non-methylating SAM-dependent enzymes. Second, we summarize the reactions catalyzed by these enzymes and explore the mechanisms. Finally, we discuss the structural conservation and catalytical diversity of class I-like non-methylating SAM-dependent enzymes and propose a possibility in enzymes evolution, suggesting future perspectives for enzyme-mediated chemistry and biotechnology, which will help the development of new methods for drug synthesis.
Collapse
|
22
|
Wilkens D, Meusinger R, Hein S, Simon J. Sequence analysis and specificity of distinct types of menaquinone methyltransferases indicate the widespread potential of methylmenaquinone production in bacteria and archaea. Environ Microbiol 2020; 23:1407-1421. [PMID: 33264482 DOI: 10.1111/1462-2920.15344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Menaquinone (MK) serves as an essential membranous redox mediator in various electron transport chains of aerobic and anaerobic respiration. In addition, the composition of the quinone/quinol pool has been widely used as a biomarker in microbial taxonomy. The HemN-like class C radical SAM methyltransferases (RSMTs) MqnK, MenK and MenK2 have recently been shown to facilitate specific menaquinone methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesize 8-methylmenaquinone, 7-methylmenaquinone and 7,8-dimethylmenaquinone. However, the vast majority of protein sequences from the MqnK/MenK/MenK2 family belong to organisms, whose capacity to produce methylated menaquinones has not been investigated biochemically. Here, representative putative menK and menK2 genes from Collinsella tanakaei and Ferrimonas marina were individually expressed in Escherichia coli (wild-type or ubiE deletion mutant) and the corresponding cells were found to produce methylated derivatives of the endogenous MK and 2-demethylmenaquinone. Cluster and phylogenetic analyses of 828 (methyl)menaquinone methyltransferase sequences revealed signature motifs that allowed to discriminate enzymes of the MqnK/MenK/MenK2 family from other radical SAM enzymes and to identify C-7-specific menaquinone methyltransferases of the MenK2 subfamily. This study will help to predict the methylation status of the quinone/quinol pool of a microbial species (or even a microbial community) from its (meta)genome and contribute to the future design of microbial quinone/quinol pools in a Synthetic Biology approach.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany
| | - Reinhard Meusinger
- Department of Chemistry, Macromolecular Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, Darmstadt, 64287, Germany
| | - Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
23
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
24
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020; 59:8880-8884. [DOI: 10.1002/anie.202000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
25
|
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and ( S)-Butin. Molecules 2020; 25:E674. [PMID: 32033283 PMCID: PMC7036861 DOI: 10.3390/molecules25030674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-β-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,β-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.
Collapse
Affiliation(s)
- Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Ziwei Ren
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Aizhen Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Fangdan Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
26
|
Jin WB, Wu S, Xu YF, Yuan H, Tang GL. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat Prod Rep 2020; 37:17-28. [DOI: 10.1039/c9np00032a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HemN-like radical S-adenosyl-l-methionine (SAM) enzymes have been recently disclosed to catalyze diverse chemically challenging reactions from primary to secondary metabolic pathways.
Collapse
Affiliation(s)
- Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yi-Fan Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Pu T, Mei Z, Zhang W, Liang WJ, Zhou X, Liang J, Deng Z, Wang Z. An in vitro DNA phosphorothioate modification reaction. Mol Microbiol 2019; 113:452-463. [PMID: 31749226 DOI: 10.1111/mmi.14430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/17/2019] [Indexed: 12/25/2022]
Abstract
Phosphorothioation (PT) involves the replacement of a nonbridging phosphate oxygen on the DNA backbone with sulfur. In bacteria, the procedure is both sequence- and stereo-specific. We reconstituted the PT reaction using purified DndCDE from Salmonella enterica and IscS from Escherichia coli. We determined that the in vitro process of PT was oxygen sensitive. Only one strand on a double-stranded (ds) DNA substrate was modified in the reaction. The modification was dominant between G and A in the GAAC/GTTC conserved sequence. The modification between G and T required the presence of PT between G and A on the opposite strand. Cysteine, S-adenosyl methionine (SAM) and the formation of an iron-sulfur cluster in DndCDE (DndCDE-FeS) were essential for the process. Results from SAM cleavage reactions support the supposition that PT is a radical SAM reaction. Adenosine triphosphate (ATP) promoted the reaction but was not essential. The data and conclusions presented suggest that the PT reaction in bacteria involves three steps. The first step is the binding of DndCDE-FeS to DNA and searching for the modification sequence, possibly with the help of ATP. Cysteine locks DndCDE-FeS to the modification site with an appropriate protein conformation. SAM triggers the radical SAM reaction to complete the oxygen-sulfur swapping.
Collapse
Affiliation(s)
- Tianning Pu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhiling Mei
- Shanghai Thinkgene Biotech CO., LTD, Shanghai, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei-Jun Liang
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Mathew LG, Beattie NR, Pritchett C, Lanzilotta WN. New Insight into the Mechanism of Anaerobic Heme Degradation. Biochemistry 2019; 58:4641-4654. [PMID: 31652058 DOI: 10.1021/acs.biochem.9b00841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ChuW, ChuX, and ChuY are contiguous genes downstream from a single promoter that are expressed in the enteric pathogen Escherichia coli O157:H7 when iron is limiting. These genes, and the corresponding proteins, are part of a larger heme uptake and utilization operon that is common to several other enteric pathogens, such as Vibrio cholerae. The aerobic degradation of heme has been well characterized in humans and several pathogenic bacteria, including E. coli O157:H7, but only recently was it shown that ChuW catalyzes the anaerobic degradation of heme to release iron and produce a reactive tetrapyrrole termed "anaerobilin". ChuY has been shown to function as an anaerobilin reductase, in a role that parallels biliverdin reductase. In this work we have employed biochemical and biophysical approaches to further interrogate the mechanism of the anaerobic degradation of heme. We demonstrate that the iron atom of the heme does not participate in the catalytic mechanism of ChuW and that S-adenosyl-l-methionine binding induces conformational changes that favor catalysis. In addition, we show that ChuX and ChuY have synergistic and additive effects on the turnover rate of ChuW. Finally, we have found that ChuS is an effective source of heme or protoporphyrin IX for ChuW under anaerobic conditions. These data indicate that ChuS may have dual functionality in vivo. Specifically, ChuS serves as a heme oxygenase during aerobic metabolism of heme but functions as a cytoplasmic heme storage protein under anaerobic conditions, akin to what has been shown for PhuS (45% sequence identity) from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Liju G Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Nathaniel R Beattie
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Clayton Pritchett
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
29
|
Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019; 58:6235-6238. [DOI: 10.1002/anie.201814708] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Indexed: 12/26/2022]
|
30
|
Ji X, Mo T, Liu W, Ding W, Deng Z, Zhang Q. Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xinjian Ji
- Department of ChemistryFudan University Shanghai 200433 China
| | - Tianlu Mo
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wan‐Qiu Liu
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
31
|
Qiu Y, Du Y, Wang S, Zhou S, Guo Y, Liu W. Radical S-Adenosylmethionine Protein NosN Forms the Side Ring System of Nosiheptide by Functionalizing the Polythiazolyl Peptide S-Conjugated Indolic Moiety. Org Lett 2019; 21:1502-1505. [DOI: 10.1021/acs.orglett.9b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shoufeng Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuaixiang Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
32
|
Bai L, Ohnishi Y, Kim ES. A3 foresight network on natural products. J Ind Microbiol Biotechnol 2018; 46:313-317. [PMID: 30474768 DOI: 10.1007/s10295-018-2111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
Abstract
Discovery and development of natural products (NPs) have played important roles in the fields of human medicine and other biotechnology fields for the past several decades. Recent genome-mining approaches for the isolation of novel and cryptic NP biosynthetic gene clusters (BGCs) have led to the growing interest in NP research communities including Asian NP researchers from China, Japan, and Korea. Recently, a three-nation government-sponsored program named 'A3 Foresight Network on Chemical and Synthetic Biology of NPs' has been launched with a goal of establishing an Asian hub for NP research-&-personnel exchange program. This brief commentary describes introduction, main researchers, and future perspective of A3 NP network program.
Collapse
Affiliation(s)
- Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|