1
|
Widacha L, Szramel J, Nieckarz Z, Kurpinska A, Smolenski RT, Chlopicki S, Zoladz JA, Majerczak J. Physical activity of moderate-intensity optimizes myocardial citrate cycle in a murine model of heart failure. Front Physiol 2025; 16:1568060. [PMID: 40241718 PMCID: PMC12000009 DOI: 10.3389/fphys.2025.1568060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction There is growing body of evidence that an enhanced concentration of branched-chain amino acids (BCAAs), as a consequence of an impaired myocardial oxidative metabolism, is involved in the occurrence and progression of heart failure (HF). The purpose of this study was to examine the effect of 8 weeks of spontaneous wheel running (8-sWR) (reflecting low-to-moderate intensity physical activity) on the myocardial [BCAAs] and mitochondrial oxidative metabolism markers, such as tricarboxylic acid (TCA) cycle intermediates (TCAi), mitochondrial electron transport chain (ETC) proteins and mitochondrial DNA copy number (mtDNA/nDNA) in a murine model of HF. Methods Adult heart failure (Tgαq*44) and wild-type (WT) mice were randomly assigned to either the sedentary or exercising group. Myocardial concentrations of [TCAi] and [BCAAs] were measured by LC-MS/MS, ETC proteins were determined by Western immunoblotting and mtDNA/nDNA was assessed by qPCR. Results Heart failure mice exhibited decreased exercise performance capacity as reflected by a lower total distance covered and time of running in wheels. This was accompanied by impaired TCA cycle, including higher citrate concentration and greater [BCAAs] in the heart of Tgαq*44 mice compared to their control counterparts. No impact of disease at its current stage i.e., in the transition phase from the compensated to decompensated stage of HF on the myocardial mitochondrial ETC, proteins content was observed, however the altered basal level of mitochondrial biogenesis (lower mtDNA/nDNA) in the heart of Tgαq*44 mice compared to their control counterparts was detected. Interestingly, 8-sWR significantly decreased myocardial citrate content in the presence of unchanged myocardial [BCAAs], ETC proteins content and mtDNA copy number. Conclusion Moderate-intensity physical activity, even of short duration, could be considered an effective intervention in heart failure. Our results suggest that central metabolic pathway - TCA cycle appears to be more sensitive to moderate-intensity physical activity (as reflected by the lowering of myocardial citrate concentration) than the mechanism(s) regulating the BCAAs turnover in the heart. This observation may have a particular importance in heart failure, since an improvement of impaired myocardial oxidative metabolism may contribute to the upgrading of the clinical status of patients.
Collapse
Affiliation(s)
- Lucyna Widacha
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szramel
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Nieckarz
- Department of Experimental Computer Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Nguyen DC, Wells CK, Taylor MS, Martinez‐Ondaro Y, Singhal R, Brittian KR, Brainard RE, Moore JB, Hill BG. Dietary Branched-Chain Amino Acids Modify Postinfarct Cardiac Remodeling and Function in the Murine Heart. J Am Heart Assoc 2025; 14:e037637. [PMID: 39950451 PMCID: PMC12074759 DOI: 10.1161/jaha.124.037637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs), which are derived from the diet, are markedly elevated in cardiac tissue following myocardial infarction (MI). Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. METHODS To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, we fed mice a low or a high BCAA diet for 2 weeks before MI and for 4 weeks after MI. Cardiac structural and functional changes were evaluated by echocardiography, gravimetry, and histopathological analyses. Immunoblotting was used to evaluate the effects of BCAAs on isolated cardiac myofibroblast differentiation. RESULTS The low BCAA diet decreased circulating BCAA concentrations by >2-fold when compared with the high BCAA diet. Although neither body weights nor heart masses were different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. The low BCAA diet preserved stroke volume and cardiac output after MI, whereas the high BCAA diet promoted progressive decreases in cardiac function. Although BCAAs were required for myofibroblast differentiation in vitro, cardiac fibrosis, scar collagen topography, and cardiomyocyte cross-sectional area were not different between the dietary groups; however, male mice fed the high BCAA diet had longer cardiomyocytes and higher capillary density compared with the low BCAA group. CONCLUSIONS A low BCAA diet mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI in mice, with dietary effects more prominent in males.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
- Department of PhysiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Yania Martinez‐Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Richa Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | | | - Joseph B. Moore
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of MedicineUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
3
|
Lei J, Chen J, Yu W, Wu Q, Jing S, Tang Y, Lin L, Hu M. Portrait of WWP1: the current state in human cancer. Front Cell Dev Biol 2025; 12:1516613. [PMID: 39949609 PMCID: PMC11821962 DOI: 10.3389/fcell.2024.1516613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
WWP1, a member of the C2-WW-HECT E3 ligase family, is an E3 ubiquitin-protein ligase containing WW domains. This enzyme plays a critical role in regulating diverse cellular processes. Its expression is modulated by various factors and non-coding RNAs, resulting in ubiquitination that affects substrate protein degradation. WWP1 demonstrates a dual function, acting predominantly as an oncogene in tumors but occasionally as a tumor suppressor. This review summarizes WWP1's biological roles, therapeutic potential in oncology, upstream regulatory factors, and downstream substrates. It aims to promote research on WWP1's antitumor effects, improve understanding of its role in tumorigenesis, and support the development of targeted therapies.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Chen
- The Central Hospital of Ezhou, Affiliated Hospital of Hubei University of Science and Technology, Ezhou, Hubei, China
| | - Wenwen Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qing Wu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shuang Jing
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanguang Tang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
4
|
Zhou L, Mei S, Ma X, Wuyun Q, Cai Z, Chen C, Ding H, Yan J. Multi-omics insights into the pathogenesis of diabetic cardiomyopathy: epigenetic and metabolic profiles. Epigenomics 2025; 17:33-48. [PMID: 39623870 PMCID: PMC11727868 DOI: 10.1080/17501911.2024.2435257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
AIM Diabetic cardiomyopathy (DbCM), a complex metabolic disease, greatly threatens human health due to therapeutic limitations. Multi-omics approaches facilitate the elucidation of its intrinsic pathological changes. METHODS Metabolomics, RNA-seq, proteomics, and assay of transposase-accessible chromatin (ATAC-seq) were utilized to elucidate multidimensional molecular alterations in DbCM. RESULTS In the heart and plasma of mice with DbCM, metabolomic analysis demonstrated significant differences in branched-chain amino acids (BCAAs) and lipids. Subsequent RNA-seq and proteomics showed that the key genes, including BCKDHB, PPM1K, Cpt1b, Fabp4, Acadm, Acadl, Acadvl, HADH, HADHA, HADHB, Eci1, Eci2, PDK4, and HMGCS2, were aberrantly regulated, contributing to the disorder of BCAAs and fatty acids. ATAC-seq analysis underscored the pivotal role of epigenetic regulation by revealing dynamic shifts in chromatin accessibility and a robust positive correlation with gene expression patterns in diabetic cardiomyopathy mice. Furthermore, motif analysis identified that KLF15 as a critical transcription factor in DbCM, regulating the core genes implicated with BCAAs metabolism. CONCLUSION Our research delved into the metabolic alterations and epigenetic landscape and revealed that KLF15 may be a promising candidate for therapeutic intervention in DbCM.
Collapse
Affiliation(s)
- Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Aida H, Ying BW. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun Biol 2024; 7:1691. [PMID: 39719455 DOI: 10.1038/s42003-024-07347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
A complex interplay of genetic and environmental factors influences bacterial growth. Understanding these interactions is crucial for insights into complex living systems. This study employs a data-driven approach to uncover the principles governing bacterial growth changes due to genetic and environmental variation. A pilot survey is conducted across 115 Escherichia coli strains and 135 synthetic media comprising 45 chemicals, generating 13,944 growth profiles. Machine learning analyzes this dataset to predict the chemicals' priorities for bacterial growth. The primary gene-chemical networks are structured hierarchically, with glucose playing a pivotal role. Offset in bacterial growth changes is frequently observed across 1,445,840 combinations of strains and media, with its magnitude correlating to individual alterations in strains or media. This counterbalance in the gene-chemical interplay is supposed to be a general feature beneficial for bacterial population growth.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
7
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
8
|
Ma Q, Li H, Song Z, Deng Z, Huang W, Liu Q. Fueling the fight against cancer: Exploring the impact of branched-chain amino acid catalyzation on cancer and cancer immune microenvironment. Metabolism 2024; 161:156016. [PMID: 39222743 DOI: 10.1016/j.metabol.2024.156016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Metabolism of Branched-chain amino acids (BCAAs) is essential for the nutrient necessities in mammals. Catalytic enzymes serve to direct the whole-body BCAAs oxidation which involve in the development of various metabolic disorders. The reprogrammed metabolic elements are also responsible for malignant oncogenic processes, and favor the formation of distinctive immunosuppressive microenvironment surrounding different cancers. The impotent immune surveillance related to BCAAs dysfunction is a novel topic to investigate. Here we focus on the BCAA catalysts that contribute to metabolic changes and dysregulated immune reactions in cancer progression. We summarize the current knowledge of BCAA catalyzation, highlighting the interesting roles of BCAA metabolism in the treatment of cancers.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| |
Collapse
|
9
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596106. [PMID: 38853984 PMCID: PMC11160645 DOI: 10.1101/2024.05.27.596106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Metabolic adaptations in response to changes in energy supply and demand are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating TCA cycle activation, mitochondrial fatty acid oxidation, and cellular calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate metabolic consequences of uniporter loss- and gain-of-function using uniporter knockout cells and the liver cancer fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. Our results reveal that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated metabolic pathways. Reduced uniporter function boosts expression of BCAA catabolism genes, and the urea cycle enzyme ornithine transcarbamylase (OTC). In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by reduced expression of the transcription factor KLF15, a master regulator of liver metabolism. Thus, uniporter responsive calcium signaling plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for mitochondrial calcium signaling in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism in FLC.
Collapse
Affiliation(s)
- Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Albert A Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Yoshii A, McMillen TS, Wang Y, Zhou B, Chen H, Banerjee D, Herrero M, Wang P, Muraoka N, Wang W, Murry CE, Tian R. Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF. Circ Res 2024; 135:1004-1017. [PMID: 39328167 PMCID: PMC11502249 DOI: 10.1161/circresaha.123.324103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Metabolic remodeling and mitochondrial dysfunction are hallmarks of heart failure with reduced ejection fraction. However, their role in the pathogenesis of HF with preserved ejection fraction (HFpEF) is poorly understood. METHODS In a mouse model of HFpEF, induced by high-fat diet and Nω-nitrol-arginine methyl ester, cardiac energetics was measured by 31P nuclear magnetic resonance (NMR) spectroscopy and substrate oxidation profile was assessed by 13C-isotopmer analysis. Mitochondrial functions were assessed in the heart tissue and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS HFpEF hearts presented a lower phosphocreatine content and a reduced phosphocreatine/ATP ratio, similar to that in heart failure with reduced ejection fraction. Decreased respiratory function and increased reactive oxygen species production were observed in mitochondria isolated from HFpEF hearts suggesting mitochondrial dysfunction. Cardiac substrate oxidation profile showed a high dependency on fatty acid oxidation in HFpEF hearts, which is the opposite of heart failure with reduced ejection fraction but similar to that in high-fat diet hearts. However, phosphocreatine/ATP ratio and mitochondrial function were sustained in the high-fat diet hearts. We found that mitophagy was activated in the high-fat diet heart but not in HFpEF hearts despite similar extent of obesity suggesting that mitochondrial quality control response was impaired in HFpEF hearts. Using a human induced pluripotent stem cell-derived cardiomyocyte mitophagy reporter, we found that fatty acid loading stimulated mitophagy, which was obliterated by inhibiting fatty acid oxidation. Enhancing fatty acid oxidation by deleting ACC2 (acetyl-CoA carboxylase 2) in the heart stimulated mitophagy and improved HFpEF phenotypes. CONCLUSIONS Maladaptation to metabolic stress in HFpEF hearts impairs mitochondrial quality control and contributed to the pathogenesis, which can be improved by stimulating fatty acid oxidation.
Collapse
Affiliation(s)
- Akira Yoshii
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Timothy S. McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Yajun Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Durba Banerjee
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melisa Herrero
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Akumwami S, Rahman A, Funamoto M, Hossain A, Morishita A, Ikeda Y, Kitamura H, Kitada K, Noma T, Ogino Y, Nishiyama A. Effects of D-Allose on experimental cardiac hypertrophy. J Pharmacol Sci 2024; 156:142-148. [PMID: 39179333 DOI: 10.1016/j.jphs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Masafumi Funamoto
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Hiroaki Kitamura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takahisa Noma
- Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
12
|
Shi Y, Tian M, Zhao X, Tang L, Wang F, Wu H, Liao Q, Ren H, Fu W, Zheng S, Jose PA, Li L, Zeng C. α-Ketoglutarate promotes cardiomyocyte proliferation and heart regeneration after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1083-1097. [PMID: 39223390 DOI: 10.1038/s44161-024-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.
Collapse
Affiliation(s)
- Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xiaofang Zhao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Luxun Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Feng Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China.
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China.
- Department of Cardiology, The First Affiliated Hospital of Qunming Medical University, Qunming, P. R. China.
| |
Collapse
|
13
|
Yan Y, Duan F, Li X, Zhao R, Hou P, Zhao M, Li S, Wang Y, Dai T, Zhou W. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. PLANT PHYSIOLOGY 2024; 195:2652-2667. [PMID: 38590166 PMCID: PMC11288763 DOI: 10.1093/plphys/kiae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Photosynthesis is a major trait of interest for the development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars "LY66," "MC670," and "JK968," we conducted a 2-yr field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at 4 planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. A physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved presilking biomass transfer, especially in the lower canopy. The yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.
Collapse
Affiliation(s)
- Yanyan Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rulang Zhao
- Ningxia Academy of Agriculture and Forestry Sciences, Crops Research Institute, Yinchuan 750105, China
| | - Peng Hou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaokun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yonghong Wang
- Ningxia Academy of Agriculture and Forestry Sciences, Crops Research Institute, Yinchuan 750105, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Nguyen DC, Wells CK, Taylor MS, Martinez-Ondaro Y, Brittian KR, Brainard RE, Moore IV JB, Hill BG. Dietary Branched Chain Amino Acids Modify Post-Infarct Cardiac Remodeling and Function in the Murine Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603348. [PMID: 39071416 PMCID: PMC11275808 DOI: 10.1101/2024.07.12.603348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Introduction Branch-chain amino acids (BCAA) are markedly elevated in the heart following myocardial infarction (MI) in both humans and animal models. Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. We hypothesize that lowering dietary BCAA levels prevents adverse cardiac remodeling after MI. Methods and Results To assess whether altering dietary BCAA levels would impact circulating BCAA concentrations, mice were fed a low (1/3×), normal (1×), or high (2×) BCAA diet over a 7-day period. We found that mice fed the low BCAA diet had >2-fold lower circulating BCAA concentrations when compared with normal and high BCAA diet feeding strategies; notably, the high BCAA diet did not further increase BCAA levels over the normal chow diet. To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, male and female mice were fed either the low or high BCAA diet for 2 wk prior to MI and for 4 wk after MI. Although body weights or heart masses were not different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. Echocardiographic assessments revealed that the low BCAA diet preserved stroke volume and cardiac output for the duration of the study, while the high BCAA diet led to progressive decreases in cardiac function. Although no discernible differences in cardiac fibrosis, scar collagen topography, or cardiomyocyte cross-sectional area were found between the dietary groups, male mice fed the high BCAA diet showed longer cardiomyocytes and higher capillary density compared with the low BCAA group. Conclusions Provision of a diet low in BCAAs to mice mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI, with dietary effects more prominent in males.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | | | - Joseph B. Moore IV
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
15
|
Balonov I, Mattis M, Jarmusch S, Koletzko B, Heinrich K, Neumann J, Werner J, Angele MK, Heiliger C, Jacob S. Metabolomic profiling of upper GI malignancies in blood and tissue: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2024; 150:331. [PMID: 38951269 PMCID: PMC11217139 DOI: 10.1007/s00432-024-05857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of case-control and cohort human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal junction (GEJ), and gastric cancer (GC) in blood and tissue. BACKGROUND Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with EC, GEJ and GC. METHODS Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and registered at PROSPERO (CRD42023486631). The Newcastle-Ottawa Scale (NOS) was used to benchmark the risk of bias for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnostic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between patients with and without UGC were included. Two investigators independently completed title and abstract screening, data extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to investigate the association between metabolite levels and UGC. RESULTS A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabolism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. CONCLUSION Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomarkers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored management of UGC.
Collapse
Affiliation(s)
- Ilja Balonov
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minca Mattis
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Jarmusch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Heiliger
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Jacob
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
16
|
de Oliveira Furo I, Nogueira LS, de Sousa RPC, Silva-Oliveira GC, Dos Santos da Silva DM, Costa-Malaquias A, de Oliveira EHC. New parameters for in vitro development of cell lines of the species Astyanax bimaculatus (Linnaeus, 1758) and Geophagus proximus (Castelnau, 1855). JOURNAL OF FISH BIOLOGY 2024; 105:85-94. [PMID: 38634376 DOI: 10.1111/jfb.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Intending to compare in vitro cell growth in different conditions, we established cell cultures using fin biopsies of two freshwater fishes, Astyanax bimaculatus and Geophagus proximus. Three different culture media (Leibovitz-L-15, Dulbecco's Modified Eagle Medium [DMEM], and 199) were employed, with or without the addition of AmnioMax, maintaining a standard temperature of 29°C. Based on the results obtained, we standardized a cell growth protocol in which medium 199 was less efficient for both species. Notably, G. proximus cells exhibited superior proliferation in DMEM and L-15 media, whereas A. bimaculatus cells demonstrated better parameters exclusively in the DMEM medium. Successful subculturing of cells with good proliferation index was observed, accompanied by preserved morphological characteristics. Therefore, the methodology outlined in this study represents an advancement in establishing fish cell cultures.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, Universidade Federal Rural da Amazônia, Parauapebas, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Lygia S Nogueira
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Rodrigo Petry Corrêa de Sousa
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Laboratório de Evolução, Instituto de estudos Costeiros, Universidade Federal do Pará, Bragança, Brazil
| | | | - Diovanna Mirella Dos Santos da Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- PIBIC-PROPESP, Universidade Federal do Pará, Belém, Brazil
| | - Allan Costa-Malaquias
- Laboratório de Tecnologia e Inovação em Saúde, Faculdade de Medicina, Universidade Federal do Pará, Altamira, Brazil
| | - Edivaldo H C de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
17
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
18
|
Li X, Hu S, Cai Y, Liu X, Luo J, Wu T. Revving the engine: PKB/AKT as a key regulator of cellular glucose metabolism. Front Physiol 2024; 14:1320964. [PMID: 38264327 PMCID: PMC10804622 DOI: 10.3389/fphys.2023.1320964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Glucose metabolism is of critical importance for cell growth and proliferation, the disorders of which have been widely implicated in cancer progression. Glucose uptake is achieved differently by normal cells and cancer cells. Even in an aerobic environment, cancer cells tend to undergo metabolism through glycolysis rather than the oxidative phosphorylation pathway. Disordered metabolic syndrome is characterized by elevated levels of metabolites that can cause changes in the tumor microenvironment, thereby promoting tumor recurrence and metastasis. The activation of glycolysis-related proteins and transcription factors is involved in the regulation of cellular glucose metabolism. Changes in glucose metabolism activity are closely related to activation of protein kinase B (PKB/AKT). This review discusses recent findings on the regulation of glucose metabolism by AKT in tumors. Furthermore, the review summarizes the potential importance of AKT in the regulation of each process throughout glucose metabolism to provide a theoretical basis for AKT as a target for cancers.
Collapse
Affiliation(s)
- Xia Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Hu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoting Cai
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
21
|
Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, Jiang H, Yin Z, Wang H. Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med 2024; 210:25-41. [PMID: 37956909 DOI: 10.1016/j.freeradbiomed.2023.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Metabolic reprogramming of vascular smooth muscle cell (VSMC) plays a critical role in the pathogenesis of thoracic aortic dissection (TAD). Previous researches have mainly focused on dysregulation of fatty acid or glucose metabolism, while the impact of amino acids catabolic disorder in VSMCs during the development of TAD remains elusive. Here, we identified branched-chain amino acid (BCAA) catabolic defect as a metabolic hallmark of TAD. The bioinformatics analysis and data from human aorta revealed impaired BCAA catabolism in TAD individuals. This was accompanied by upregulated branched-chain α-ketoacid dehydrogenase kinase (BCKDK) expression and BCKD E1 subunit alpha (BCKDHA) phosphorylation, enhanced vascular inflammation, and hyperactivation of mTOR signaling. Further in vivo experiments demonstrated that inhibition of BCKDK with BT2 (a BCKDK allosteric inhibitor) treatment dephosphorylated BCKDHA and re-activated BCAA catabolism, attenuated VSMCs phenotypic switching, alleviated aortic remodeling, mitochondrial reactive oxygen species (ROS) damage and vascular inflammation. Additionally, the beneficial actions of BT2 were validated in a TNF-α challenged murine VSMC cell line. Meanwhile, rapamycin conferred similar beneficial effects against VSMC phenotypic switching, cellular ROS damage as well as inflammatory response. However, co-treatment with MHY1485 (a classic mTOR activator) reversed the beneficial effects of BT2 by reactivating mTOR signaling. Taken together, the in vivo and in vitro evidence showed that impairment of BCAA catabolism resulted in aortic accumulation of BCAA and further caused VSMC phenotypic switching, mitochondrial ROS damage and inflammatory response via mTOR hyperactivation. BCKDK and mTOR signaling may serve as the potential drug targets for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Cao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Yanbang Chi
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shan Meng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yuting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zongtao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
22
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Jovanovic Gasovic S, Dietrich D, Gläser L, Cao P, Kohlstedt M, Wittmann C. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale. Metab Eng 2023; 80:45-65. [PMID: 37683719 DOI: 10.1016/j.ymben.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.
Collapse
Affiliation(s)
| | - Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
24
|
Lim JM, Anwar MA, Han HS, Koo SH, Kim KP. CREB-Regulated Transcriptional Coactivator 2 Proteome Landscape is Modulated by SREBF1. Mol Cell Proteomics 2023; 22:100637. [PMID: 37648026 PMCID: PMC10522995 DOI: 10.1016/j.mcpro.2023.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
cAMP response element-binding protein (CREB) regulated transcriptional coactivator 2 (CRTC2) is a critical transcription factor that maintains glucose homeostasis by activating CREB. Energy homeostasis is maintained through multiple pathways; therefore, CRTC2 may interact with other transcription factors, particularly under metabolic stress. CRTC2 liver-specific KO mice were created, and the global proteome, phosphoproteome, and acetylome from liver tissue under high-fat diet conditions were analyzed using liquid chromatography-tandem mass spectrometry and bioinformatics analysis. Differentially regulated proteins (DRPs) were enriched in metabolic pathways, which were subsequently corroborated through animal experiments. The consensus DRPs from these datasets were used as seed proteins to generate a protein-protein interaction network using STRING, and GeneMANIA identified fatty acid synthase as a mutually relevant protein. In an additional local-protein-protein interaction analysis of CRTC2 and fatty acid synthase with DRPs, sterol regulatory element binding transcription factor 1 (SREBF1) was the common mediator. CRTC2-CREB and SREBF1 are transcription factors, and DNA-binding motif analysis showed that multiple CRTC2-CREB-regulated genes possess SREBF1-binding motifs. This indicates the possible induction by the CRTC2-SREBF1 complex, which is validated through luciferase assay. Therefore, the CRTC2-SREBF1 complex potentially modulates the transcription of multiple proteins that fine-tune cellular metabolism under metabolic stress.
Collapse
Affiliation(s)
- Jae Min Lim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Muhammad Ayaz Anwar
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Hye-Sook Han
- Division of Life Sciences, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seongbuk-Gu, Seoul, South Korea.
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
25
|
Schulman-Geltzer EB, Collins HE, Hill BG, Fulghum KL. Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Curr Heart Fail Rep 2023; 20:441-450. [PMID: 37581772 PMCID: PMC10589193 DOI: 10.1007/s11897-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW Pregnancy and exercise are systemic stressors that promote physiological growth of the heart in response to repetitive volume overload and maintenance of cardiac output. This type of remodeling is distinct from pathological hypertrophy and involves different metabolic mechanisms that facilitate growth; however, it remains unclear how metabolic changes in the heart facilitate growth and if these processes are similar in both pregnancy- and exercise-induced cardiac growth. RECENT FINDINGS The ability of the heart to metabolize a myriad of substrates balances cardiac demands for energy provision and anabolism. During pregnancy, coordination of hormonal status with cardiac reductions in glucose oxidation appears important for physiological growth. During exercise, a reduction in cardiac glucose oxidation also appears important for physiological growth, which could facilitate shuttling of glucose-derived carbons into biosynthetic pathways for growth. Understanding the metabolic underpinnings of physiological cardiac growth could provide insight to optimize cardiovascular health and prevent deleterious remodeling, such as that which occurs from postpartum cardiomyopathy and heart failure. This short review highlights the metabolic mechanisms known to facilitate pregnancy-induced and exercise-induced cardiac growth, both of which require changes in cardiac glucose metabolism for the promotion of growth. In addition, we mention important similarities and differences of physiological cardiac growth in these models as well as discuss current limitations in our understanding of metabolic changes that facilitate growth.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Muthaffar OY, Jan MMS, Alyazidi AS, Alotibi TK, Alsulami EA. Insight into Genetic Mutations of SZT2: Is It a Syndrome? Biomedicines 2023; 11:2402. [PMID: 37760843 PMCID: PMC10525120 DOI: 10.3390/biomedicines11092402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The seizure threshold 2 (SZT2) gene encodes a protein of unknown function, which is widely expressed, confers a low seizure threshold, and enhances epileptogenesis. It also comprises the KICSTOR protein complex, which inhibits the mTORC1 pathway. A pathogenic variant in the SZT2 gene could result in hyperactive mTORC1 signaling, which can lead to several neurological disorders. AIM OF THE STUDY To review every reported case and present two novel cases to expand the current knowledge and understanding of the mutation. METHODS Whole exome sequencing (WES) was used to identify the novel cases and present their clinical and radiological findings. A detailed revision of the literature was conducted to illustrate and compare findings. The clinical, genetical, neuroimaging, and electrophysiological data were extracted. RESULTS The study included 16 female patients and 13 male patients in addition to the 2 novel male cases. Eighteen patients had heterozygous mutations; others were homozygous. The majority presented with facial dysmorphism (n = 22). Seizures were noted as the predominant hallmark (n = 26). Developmental delay and hypotonia were reported in 27 and 15 patients, respectively. The majority of patients had multifocal epileptiform discharges on the electroencephalogram (EEG) and short and thick corpus callosum on the magnetic resonance imaging (MRI). CONCLUSION Several promising features are becoming strongly linked to patients with SZT2 mutations. High variability among the cases was observed. Developmental delay and facial dysmorphism can be investigated as potential hallmarks; aiding clinicians in diagnosing the condition and optimizing management plans.
Collapse
Affiliation(s)
- Osama Y. Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.Y.M.); (M.M.S.J.)
| | - Mohammed M. S. Jan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.Y.M.); (M.M.S.J.)
| | - Anas S. Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.A.); (E.A.A.)
| | - Taif K. Alotibi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.A.); (E.A.A.)
| | - Eman A. Alsulami
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.K.A.); (E.A.A.)
| |
Collapse
|
27
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
28
|
Zheng D, Mao Y, Gao Y, He F, Ma J. Daughter cell fate choice instructed preemptively by mother cells facing nutrient limitation. iScience 2023; 26:107198. [PMID: 37485365 PMCID: PMC10359942 DOI: 10.1016/j.isci.2023.107198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Nutrients are vital to cellular activities, yet it is largely unknown how individual cells respond to nutrient deprivation. Live imaging results show that unlike the removal of amino acids or glutamine that immediately halts cell cycle progression, glucose withdrawal does not prevent cells from completing their current cycle. Although cells that begin to experience glucose withdrawal in S phase give rise to daughter cells with an equal choice of proliferation or quiescence, those enduring such experience in G1 phase give rise to daughter cells that predominantly enter quiescence. This fate choice difference stems from p21 protein accumulated during G2/M of the latter cells. Induced degradation of p21 permits daughter cells to enter S phase but with a consequent accumulation of DNA damage. These results suggest that mother cells that begin to experience glucose limitation in G1 phase take preemptive steps toward preventing daughter cells from making a harmful choice.
Collapse
Affiliation(s)
- Dianpeng Zheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Yaowen Mao
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Yinglong Gao
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
29
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
30
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
31
|
Margolis LM, Pasiakos SM. Low carbohydrate availability impairs hypertrophy and anaerobic performance. Curr Opin Clin Nutr Metab Care 2023; 26:347-352. [PMID: 37057671 DOI: 10.1097/mco.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
PURPOSE OF REVIEW Highlight contemporary evidence examining the effects of carbohydrate restriction on the intracellular regulation of muscle mass and anaerobic performance. RECENT FINDINGS Low carbohydrate diets increase fat oxidation and decrease fat mass. Emerging evidence suggests that dietary carbohydrate restriction increases protein oxidation, thereby limiting essential amino acid availability necessary to stimulate optimal muscle protein synthesis and promote muscle recovery. Low carbohydrate feeding for 24 h increases branched-chain amino acid (BCAA) oxidation and reduces myogenic regulator factor transcription compared to mixed-macronutrient feeding. When carbohydrate restriction is maintained for 8 to 12 weeks, the alterations in anabolic signaling, protein synthesis, and myogenesis likely contribute to limited hypertrophic responses to resistance training. The blunted hypertrophic response to resistance training when carbohydrate availability is low does not affect muscle strength, whereas persistently low muscle glycogen does impair anaerobic output during high-intensity sprint and time to exhaustion tests. SUMMARY Dietary carbohydrate restriction increases BCAA oxidation and impairs muscle hypertrophy and anaerobic performance, suggesting athletes who need to perform high-intensity exercise should consider avoiding dietary strategies that restrict carbohydrate.
Collapse
Affiliation(s)
| | - Stefan M Pasiakos
- Performance Divisions, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
32
|
Yu JY, Cao N, Rau CD, Lee RP, Yang J, Flach RJR, Petersen L, Zhu C, Pak YL, Miller RA, Liu Y, Wang Y, Li Z, Sun H, Gao C. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol Sin 2023; 44:1380-1390. [PMID: 36991098 PMCID: PMC10310802 DOI: 10.1038/s41401-023-01076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
Parallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects. In this study, we developed two mouse models. One is cardiomyocyte and temporal-specific inactivation of the E1α subunit (BCKDHA-cKO) of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which blocks BCAA catabolism. Another model is cardiomyocyte specific inactivation of the BCKDH kinase (BCKDK-cKO), which promotes BCAA catabolism by constitutively activating BCKDH activity in adult cardiomyocytes. Functional and molecular characterizations showed E1α inactivation in cardiomyocytes was sufficient to induce loss of cardiac function, systolic chamber dilation and pathological transcriptome reprogramming. On the other hand, inactivation of BCKDK in intact heart does not have an impact on baseline cardiac function or cardiac dysfunction under pressure overload. Our results for the first time established the cardiomyocyte cell autonomous role of BCAA catabolism in cardiac physiology. These mouse lines will serve as valuable model systems to investigate the underlying mechanisms of BCAA catabolic defect induced heart failure and to provide potential insights for BCAA targeted therapy.
Collapse
Affiliation(s)
- Jia-Yu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christoph D Rau
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ro-Po Lee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jieping Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Lauren Petersen
- Health Science Center, University of Utah, Salt Lake City, UT, USA
| | - Cansheng Zhu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Yea-Lyn Pak
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore, Singapore
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore, Singapore
| | - Zhaoping Li
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
34
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
35
|
Karwi QG, Lopaschuk GD. Branched-Chain Amino Acid Metabolism in the Failing Heart. Cardiovasc Drugs Ther 2023; 37:413-420. [PMID: 35150384 DOI: 10.1007/s10557-022-07320-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 01/11/2023]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dysfunction in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids (BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
36
|
Roberson PA, Kincheloe GN, Welles JE, Xu D, Sam-Clarke M, MacLean PS, Lang CH, Jefferson LS, Kimball SR. Glucose-Induced Activation of mTORC1 is Associated with Hexokinase2 Binding to Sestrins in HEK293T Cells. J Nutr 2023; 153:988-998. [PMID: 37061344 PMCID: PMC10273196 DOI: 10.1016/j.tjnut.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sestrins (SESN1-3) act as proximal sensors in leucine-induced activation of the protein kinase mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), a key regulator of cell growth and metabolism. OBJECTIVE In the present study, the hypothesis that SESNs also mediate glucose-induced activation of mTORC1 was tested. METHODS Rats underwent overnight fasting, and in the morning, either saline or a glucose solution (4 g⋅kg-1 BW/10 mL⋅kg-1) was administered by oral gavage; mTORC1 activation in the tibialis anterior muscle was assessed. To further assess the mechanism through which glucose promotes mTORC1 activation, wild-type (WT) HEK293T and HEK293T cells lacking either all 3 SESNs (SESNTKO) or hexokinase 2 (HK2KO) were deprived of glucose, followed by glucose addback, and mTORC1 activation was assessed. In addition, glucose-induced changes in the association of the SESNs with components of the GAP activity toward the Rags (GATOR2) complex and with hexokinase 2 (HK2) were assessed by co-immunoprecipitation. One- and two-way ANOVA with Tukey post hoc comparisons were used. RESULTS Glucose administration to fasted rats promoted mTORC1 activation. Similarly, glucose readdition (GluAB) to the medium of glucose-deprived WT cells also promoted mTORC1 activation. By contrast, SESNTKO cells demonstrated attenuated mTORC1 activation following GluAB compared with WT cells. Interestingly, HK2 associated with all 3 SESNs in a glucose-dependent manner, i.e., HK2 abundance in SESN immunoprecipitates was high in cells deprived of glucose and decreased in response to GluAB. Moreover, similar to SESNTKO cells, the sensitivity of mTORC1 to GluAB was attenuated in HK2KO cells compared with WT cells. CONCLUSIONS The results of this study demonstrate that the SESNs and HK2 play important roles in glucose-induced mTORC1 activation in HEK293T cells. However, unlike leucine-induced mTORC1 activation, the effect was independent of the changes in SESN-GATOR2 interaction, and instead, it was associated with alterations in the association of SESNs with HK2.
Collapse
Affiliation(s)
- Paul A Roberson
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Gregory N Kincheloe
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Jaclyn E Welles
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Dandan Xu
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Mahalia Sam-Clarke
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Paul S MacLean
- Divisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles H Lang
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Leonard S Jefferson
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Scot R Kimball
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA.
| |
Collapse
|
37
|
Murakami Y, Wei FY, Kawamura Y, Horiguchi H, Kadomatsu T, Miyata K, Miura K, Oike Y, Ando Y, Ueda M, Tomizawa K, Chujo T. NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Commun Biol 2023; 6:307. [PMID: 36949224 PMCID: PMC10033821 DOI: 10.1038/s42003-023-04680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
In mammalian mitochondria, translation of the AUA codon is supported by 5-formylcytidine (f5C) modification in the mitochondrial methionine tRNA anticodon. The 5-formylation is initiated by NSUN3 methylase. Human NSUN3 mutations are associated with mitochondrial diseases. Here we show that Nsun3 is essential for embryonic development in mice with whole-body Nsun3 knockout embryos dying between E10.5 and E12.5. To determine the functions of NSUN3 in adult tissue, we generated heart-specific Nsun3 knockout (Nsun3HKO) mice. Nsun3HKO heart mitochondria were enlarged and contained fragmented cristae. Nsun3HKO resulted in enhanced heart contraction and age-associated mild heart enlargement. In the Nsun3HKO hearts, mitochondrial mRNAs that encode respiratory complex subunits were not down regulated, but the enzymatic activities of the respiratory complexes decreased, especially in older mice. Our study emphasizes that mitochondrial tRNA anticodon modification is essential for mammalian embryonic development and shows that tissue-specific loss of a single mitochondrial tRNA modification can induce tissue aberration that worsens in later adulthood.
Collapse
Affiliation(s)
- Yoshitaka Murakami
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3298, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
38
|
Gao F, Liang T, Lu YW, Fu X, Dong X, Pu L, Hong T, Zhou Y, Zhang Y, Liu N, Zhang F, Liu J, Malizia AP, Yu H, Zhu W, Cowan DB, Chen H, Hu X, Mably JD, Wang J, Wang DZ, Chen J. A defect in mitochondrial protein translation influences mitonuclear communication in the heart. Nat Commun 2023; 14:1595. [PMID: 36949106 PMCID: PMC10033703 DOI: 10.1038/s41467-023-37291-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
The regulation of the informational flow from the mitochondria to the nucleus (mitonuclear communication) is not fully characterized in the heart. We have determined that mitochondrial ribosomal protein S5 (MRPS5/uS5m) can regulate cardiac function and key pathways to coordinate this process during cardiac stress. We demonstrate that loss of Mrps5 in the developing heart leads to cardiac defects and embryonic lethality while postnatal loss induces cardiac hypertrophy and heart failure. The structure and function of mitochondria is disrupted in Mrps5 mutant cardiomyocytes, impairing mitochondrial protein translation and OXPHOS. We identify Klf15 as a Mrps5 downstream target and demonstrate that exogenous Klf15 is able to rescue the overt defects and re-balance the cardiac metabolome. We further show that Mrps5 represses Klf15 expression through c-myc, together with the metabolite L-phenylalanine. This critical role for Mrps5 in cardiac metabolism and mitonuclear communication highlights its potential as a target for heart failure therapies.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuxia Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yu Zhang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vertex pharmaceuticals, VCGT, 316-318 Northern Ave, Boston, MA, 02210, USA
| | - Andrea P Malizia
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - John D Mably
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, 33602, USA.
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
39
|
Interplay between Exercise, Circadian Rhythm, and Cardiac Metabolism and Remodeling. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
40
|
Abstract
Research conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.
Collapse
Affiliation(s)
- Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Cardiology, Duke University, Durham, NC, USA.
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
41
|
Ogawa T, Kouzu H, Osanami A, Tatekoshi Y, Sato T, Kuno A, Fujita Y, Ino S, Shimizu M, Toda Y, Ohwada W, Yano T, Tanno M, Miki T, Miura T. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol Rep 2023; 11:e15608. [PMID: 36802195 PMCID: PMC9938007 DOI: 10.14814/phy2.15608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023] Open
Abstract
Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Yugo Fujita
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Shoya Ino
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| |
Collapse
|
42
|
Lu X, Yang B, Qi R, Xie Q, Li T, Yang J, Tong T, Niu K, Li M, Pan W, Zhang Y, Shi D, Li S, Dai C, Shen C, Wang X, Wang Y, Song J. Targeting WWP1 ameliorates cardiac ischemic injury by suppressing KLF15-ubiquitination mediated myocardial inflammation. Theranostics 2023; 13:417-437. [PMID: 36593958 PMCID: PMC9800727 DOI: 10.7150/thno.77694] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Previous studies have suggested that myocardial inflammation plays a critical role after ischemic myocardial infarction (MI); however, the underlying mechanisms still need to be fully elucidated. WW domain-containing ubiquitin E3 ligase 1 (WWP1) is considered as an important therapeutic target for cardiovascular diseases due to its crucial function in non-ischemic cardiomyopathy, though it remains unknown whether targeting WWP1 can alleviate myocardial inflammation and ischemic injury post-MI. Methods: Recombinant adeno-associated virus 9 (rAAV9)-cTnT-mediated WWP1 or Kruppel-like factor 15 (KLF15) gene transfer and a natural WWP1 inhibitor Indole-3-carbinol (I3C) were used to determine the WWP1 function in cardiomyocytes. Cardiac function, tissue injury, myocardial inflammation, and signaling changes in the left ventricular tissues were analyzed after MI. The mechanisms underlying WWP1 regulation of cardiomyocyte phenotypes in vitro were determined using the adenovirus system. Results: We found that WWP1 expression was up-regulated in cardiomyocytes located in the infarct border at the early phase of MI and in hypoxia-treated neonatal rat cardiac myocytes (NRCMs). Cardiomyocyte-specific WWP1 overexpression augmented cardiomyocyte apoptosis, increased infarct size and deteriorated cardiac function. In contrast, inhibition of WWP1 in cardiomyocytes mitigated MI-induced cardiac ischemic injury. Mechanistically, WWP1 triggered excessive cardiomyocyte inflammation after MI by targeting KLF15 to catalyze K48-linked polyubiquitination and degradation. Ultimately, WWP1-mediated degradation of KLF15 contributed to the up-regulation of p65 acetylation, and activated the inflammatory signaling of MAPK in ischemic myocardium and hypoxia-treated cardiomyocytes. Thus, targeting of WWP1 by I3C protected against cardiac dysfunction and remodeling after MI. Conclusions: Our study provides new insights into the previously unrecognized role of WWP1 in cardiomyocyte inflammation and progression of ischemic injury induced by MI. Our findings afford new therapeutic options for patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xia Lu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boshen Yang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruiqiang Qi
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China
| | - Qifei Xie
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China
| | - Taixi Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weijun Pan
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yongxin Zhang
- The first clinical medical college, Southern Medical University, Guangzhou 510000, China
| | - Dongmei Shi
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suiji Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoqing Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.,✉ Corresponding authors: Juan Song, E-mail: ; Yan Wang, E-mail: ; Xiaoqing Wang, E-mail:
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China.,✉ Corresponding authors: Juan Song, E-mail: ; Yan Wang, E-mail: ; Xiaoqing Wang, E-mail:
| | - Juan Song
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361004, China.,✉ Corresponding authors: Juan Song, E-mail: ; Yan Wang, E-mail: ; Xiaoqing Wang, E-mail:
| |
Collapse
|
43
|
Barbosa MIA, Belinha J, Jorge RMN, Carvalho AX. Computational simulation of cellular proliferation using a meshless method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:106974. [PMID: 35834900 DOI: 10.1016/j.cmpb.2022.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE During cell proliferation, cells grow and divide in order to obtain two new genetically identical cells. Understanding this process is crucial to comprehend other biological processes. Computational models and algorithms have emerged to study this process and several examples can be found in the literature. The objective of this work was to develop a new computational model capable of simulating cell proliferation. This model was developed using the Radial Point Interpolation Method, a meshless method that, to the knowledge of the authors, was never used to solve this type of problem. Since the efficiency of the model strongly depends on the efficiency of the meshless method itself, the optimal numbers of integration points per integration cell and of nodes for each influence-domain were investigated. Irregular nodal meshes were also used to study their influence on the algorithm. METHODS For the first time, an iterative discrete model solved by the Radial Point Interpolation Method based on the Galerkin weak form was used to establish the system of equations from the reaction-diffusion integro-differential equations, following a new phenomenological law proposed by the authors that describes the growth of a cell over time while dependant on oxygen and glucose availability. The discretization flexibility of the meshless method allows to explicitly follow the geometric changes of the cell until the division phase. RESULTS It was found that an integration scheme of 6 × 6 per integration cell and influence-domains with only seven nodes allows to predict the cellular growth and division with the best balance between the relative error and the computing cost. Also, it was observed that using irregular meshes do not influence the solution. CONCLUSIONS Even in a preliminary phase, the obtained results are promising, indicating that the algorithm might be a potential tool to study cell proliferation since it can predict cellular growth and division. Moreover, the Radial Point Interpolation Method seems to be a suitable method to study this type of process, even when irregular meshes are used. However, to optimize the algorithm, the integration scheme and the number of nodes inside the influence-domains must be considered.
Collapse
Affiliation(s)
- M I A Barbosa
- Institute of Science and Innovation in Mechanical and Industrial Engineering, University of Porto, Rua Dr. Roberto Frias, S/N, Porto 4200-465, Portugal
| | - J Belinha
- Department of Mechanical Engineering, School of Engineering Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal.
| | - R M Natal Jorge
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, S/N, Porto 4200-465, Portugal.
| | - A X Carvalho
- Cytoskeletal Dynamics Department, Institute for Research and Innovation in Health (I3S),University of Porto, Portugal, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| |
Collapse
|
44
|
The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomed Pharmacother 2022; 153:113390. [DOI: 10.1016/j.biopha.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|
45
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Izumi M, Sonoki K, Akifusa S. Correlation of Salivary Occult Blood with the Plasma Concentration of Branched-Chain Amino Acids: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158930. [PMID: 35897295 PMCID: PMC9332040 DOI: 10.3390/ijerph19158930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Background: Plasma branched-chain amino acids (BCAA) levels are predictors of glycometabolic disorders, leading to diabetes. Microbes, including periodontal pathogens, are thought to be associated with elevated plasma BCAA levels. This study aimed to evaluate the relationship between salivary occult blood (SOB) and plasma BCAA levels in middle-aged Japanese individuals. Methods: Sixty-four Japanese individuals aged ≥ 40 years were recruited for this study, which was conducted in Fukuoka Prefecture, Japan, from August to December 2021. Individuals diagnosed with and/or treated for diabetes were excluded from the study. The body mass index (BMI); plasma concentrations of total, high-density, and low-density lipoprotein cholesterol; triglyceride, glucose, and BCAA; and glycosylated hemoglobin ratio were measured. A basic periodontal examination was performed after the SOB test. Results: The median age of participants (men—20; women—44) was 55 (range, 41–78) years. The plasma BCAA concentration in the SOB-positive group (477 [400–658] μmol/L) was higher than that in the SOB-negative group (432 [307–665] μmol/L). Linear regression analysis revealed that SOB remained independently associated with the plasma BCAA level with statistical significance (β = 0.17, p = 0.02) after adjusting for sex, age, and BMI. Conclusions: SOB was positively correlated with plasma BCAA levels in middle-aged Japanese individuals. Thus, SOB may be a predictor of elevated plasma BCAA levels.
Collapse
|
47
|
Ferro F, Spelat R, Valente C, Contessotto P. Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction. Biomolecules 2022; 12:biom12070969. [PMID: 35883525 PMCID: PMC9312956 DOI: 10.3390/biom12070969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition defined by structural and functional abnormalities in the heart that gradually result in reduced cardiac output (HFrEF) and/or increased cardiac pressures at rest and under stress (HFpEF). The presence of asymptomatic individuals hampers HF identification, resulting in delays in recognizing patients until heart dysfunction is manifested, thus increasing the chance of poor prognosis. Given the recent advances in metabolomics, in this review we dissect the main alterations occurring in the metabolic pathways behind the decrease in cardiac function caused by HF. Indeed, relevant preclinical and clinical research has been conducted on the metabolite connections and differences between HFpEF and HFrEF. Despite these promising results, it is crucial to note that, in addition to identifying single markers and reliable threshold levels within the healthy population, the introduction of composite panels would strongly help in the identification of those individuals with an increased HF risk. That said, additional research in the field is required to overcome the current drawbacks and shed light on the pathophysiological changes that lead to HF. Finally, greater collaborative data sharing, as well as standardization of procedures and approaches, would enhance this research field to fulfil its potential.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
- Correspondence:
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Camilla Valente
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| | - Paolo Contessotto
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| |
Collapse
|
48
|
Xu B, Li F, Zhang W, Su Y, Tang L, Li P, Joshi J, Yang A, Li D, Wang Z, Wang S, Xie J, Gu H, Zhu W. Identification of metabolic pathways underlying FGF1 and CHIR99021-mediated cardioprotection. iScience 2022; 25:104447. [PMID: 35707727 PMCID: PMC9189130 DOI: 10.1016/j.isci.2022.104447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Acute myocardial infarction is a leading cause of death worldwide. We have previously identified two cardioprotective molecules — FGF1 and CHIR99021— that confer cardioprotection in mouse and pig models of acute myocardial infarction. Here, we aimed to determine if improved myocardial metabolism contributes to this cardioprotection. Nanofibers loaded with FGF1 and CHIR99021 were intramyocardially injected to ischemic myocardium of adult mice immediately following surgically induced myocardial infarction. Animals were euthanized 3 and 7 days later. Our data suggested that FGF1/CHIR99021 nanofibers enhanced the heart’s capacity to utilize glycolysis as an energy source and reduced the accumulation of branched-chain amino acids in ischemic myocardium. The impact of FGF1/CHIR99021 on metabolism was more obvious in the first three days post myocardial infarction. Taken together, these findings suggest that FGF1/CHIR99021 protects the heart against ischemic injury via improving myocardial metabolism which may be exploited for treatment of acute myocardial infarction in humans. FGF1/CHIR confer cardioprotection in myocardial infarction animals FGF1/CHIR enhance the capability of ischemic hearts to produce energy via glycolysis FGF1/CHIR reduce the abundance of branched chain amino acids in ischemic hearts This study reveals a novel approach to correct metabolic disorders in ischemic hearts
Collapse
Affiliation(s)
- Bing Xu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259.,Department of Cardiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fan Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259.,Department of Kinesiology, South China Normal University, Guangzhou 510631, China
| | - Wenjing Zhang
- Center for Translational Science, Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Yajuan Su
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Aaron Yang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Zhao Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Jingwei Xie
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haiwei Gu
- Center for Translational Science, Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| |
Collapse
|
49
|
Zhao X, Huang X, Peng W, Han M, Zhang X, Zhu K, Shao B. Chlorine disinfection byproduct of diazepam affects nervous system function and possesses gender-related difference in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113568. [PMID: 35490575 DOI: 10.1016/j.ecoenv.2022.113568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated disinfection byproducts in water posed potential health threat to humans. Nowadays, chlorinated derivatives of diazepam were ubiquitously detected in drinking water. Among these derivatives, 2-methylamino-5-chlorobenzophenone (MACB) was capable of penetrating the blood-brain barrier (BBB) and induced microglial phagocytosis of neurons in zebrafish. However, little is known about the MACB metabolism in vivo. Here, we determined the metabolism of MACB in zebrafish and microglia cell model. We found that MACB mainly disrupted the metabolism of branched-chain amino acids (Leu, Ile and Val) in zebrafish model and gamma-aminobutyric acid (GABA) pathway-related amino acids in microglia model. Additionally, we demonstrated that MACB can be metabolized by the mixed-function oxidase CYP1A2 enzyme which could be inhibited by estrogen causing the gender-difference in the accumulation of MACB in vivo. These results indicated that MACB perturbed metabolism and induced neurological disorders, particularly in the female zebrafish.
Collapse
Affiliation(s)
- Xiaole Zhao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xiaoyong Huang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Muke Han
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Xin Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China.
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China.
| |
Collapse
|
50
|
Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduct Target Ther 2022; 7:171. [PMID: 35654769 PMCID: PMC9163108 DOI: 10.1038/s41392-022-00971-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.
Collapse
|