1
|
Lefebvre SN, Nijland M, Maslov I, Slotboom DJ. Single-molecule visualization of ATP-induced dynamics of the subunit composition of an ECF transporter complex under turnover conditions. Nat Commun 2025; 16:4448. [PMID: 40360487 PMCID: PMC12075633 DOI: 10.1038/s41467-025-59674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Energy-Coupling Factor (ECF) transporters are ATP-binding cassette (ABC) transporters essential for uptake of vitamins and cofactors in prokaryotes. They have been linked to pathogen virulence and are potential targets for antimicrobials. ECF transporters have been proposed to use a unique transport mechanism where a substrate-translocating subunit (S-component) dynamically associates with and dissociates from an ATP-hydrolyzing motor (ECF module). This model is contentious, because it is based largely on experimental conditions without compartments or continuous bilayers. Here, we used single-molecule spectroscopy to investigate the conformational dynamics of the vitamin B12 transporter ECF-CbrT in membranes under vectorial transport conditions. We observed ATP hydrolysis-dependent dissociation of the S-component CbrT from, and re-association with the ECF module, in absence and presence of vitamin B12 consistent with futile ATP hydrolysis activity. The single-molecule spectroscopy experiments suggest that S-component expulsion from and re-association with the ECF module are an integral part of the translocation mechanism.
Collapse
Affiliation(s)
- Solène N Lefebvre
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Mark Nijland
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Ivan Maslov
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Xu W, Wang Y, Cui S, Zheng Q, Lin Y, Cui Q, Xie Y, Zeng Y, Zhang C, Li Y, Jin X, Qin M, Sun H, Hao H, Cao L. Methylcobalamin protects against liver failure via engaging gasdermin E. Nat Commun 2025; 16:1233. [PMID: 39890804 PMCID: PMC11785938 DOI: 10.1038/s41467-024-54826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/21/2024] [Indexed: 02/03/2025] Open
Abstract
Gasdermin E (GSDME) is a pyroptotic cell death effector and a promising target for pyroptotic tissue injury. Here we perform high-throughput screening and demonstrate that methylcobalamin (MeCbl), an endogenous coenzyme form of vitamin B12, is a specific GSDME inhibitor and highly effective against cholestatic liver failure. MeCbl specifically blocks GSDME cleavage by directly binding with GSDME. In cholestasis-, cisplatin- or concanavalin A (Con A)-induced male mouse models, MeCbl significantly suppresses liver transaminase activities and inflammation, alleviates hepatocyte death, and reduces mortality of mice by blocking GSDME cleavage. The conserved Cys180 residue in GSDME is essential for caspase-3/GzmB recognition. MeCbl in base-off conformation coordinates to Cys180 to prevent caspase-3/GzmB-GSDME interactions and thereby GSDME-mediated pyroptosis. In summary, our study discovers MeCbl as a specific GSDME inhibitor that is promisingly to be developed as an effective drug against cholestatic liver failure, and other GSDME triggered sterile inflammation and/or organ failure.
Collapse
Affiliation(s)
- Wanfeng Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, P. R. China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qiuling Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yanghao Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qingqing Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuxin Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuming Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Chuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yujie Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xin Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Minna Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
3
|
Martínez Felices JM, Barreto YB, Thangaratnarajah C, Whittaker JJ, Alencar AM, Guskov A, Slotboom DJ. Cobalamin decyanation by the membrane transporter BtuM. Structure 2024; 32:1165-1173.e3. [PMID: 38733996 DOI: 10.1016/j.str.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
BtuM is a bacterial cobalamin transporter that binds the transported substrate in the base-off state, with a cysteine residue providing the α-axial coordination of the central cobalt ion via a sulfur-cobalt bond. Binding leads to decyanation of cobalamin variants with a cyano group as the β-axial ligand. Here, we report the crystal structures of untagged BtuM bound to two variants of cobalamin, hydroxycobalamin and cyanocobalamin, and unveil the native residue responsible for the β-axial coordination, His28. This coordination had previously been obscured by non-native histidines of His-tagged BtuM. A model in which BtuM initially binds cobinamide reversibly with low affinity (KD = 4.0 μM), followed by the formation of a covalent bond (rate constant of 0.163 s-1), fits the kinetics data of substrate binding and decyanation of the cobalamin precursor cobinamide by BtuM. The covalent binding mode suggests a mechanism not used by any other transport protein.
Collapse
Affiliation(s)
- Jose M Martínez Felices
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Yan Borges Barreto
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands; Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Chancievan Thangaratnarajah
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Jacob J Whittaker
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Adriano M Alencar
- Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Albert Guskov
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands.
| |
Collapse
|
4
|
Partipilo M, Slotboom DJ. The S-component fold: a link between bacterial transporters and receptors. Commun Biol 2024; 7:610. [PMID: 38773269 PMCID: PMC11109136 DOI: 10.1038/s42003-024-06295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Nijland M, Lefebvre SN, Thangaratnarajah C, Slotboom DJ. Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC transporter BacA. Nat Commun 2024; 15:2626. [PMID: 38521790 PMCID: PMC10960864 DOI: 10.1038/s41467-024-46917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BacA is a mycobacterial ATP-binding cassette (ABC) transporter involved in the translocation of water-soluble compounds across the lipid bilayer. Whole-cell-based assays have shown that BacA imports cobalamin as well as unrelated hydrophilic compounds such as the antibiotic bleomycin and the antimicrobial peptide Bac7 into the cytoplasm. Surprisingly, there are indications that BacA also mediates the export of different antibacterial compounds, which is difficult to reconcile with the notion that ABC transporters generally operate in a strictly unidirectional manner. Here we resolve this conundrum by developing a fluorescence-based transport assay to monitor the transport of cobalamin across liposomal membranes. We find that BacA transports cobalamin in both the import and export direction. This highly unusual bidirectionality suggests that BacA is mechanistically distinct from other ABC transporters and facilitates ATP-driven diffusion, a function that may be important for the evolvability of specific transporters, and may bring competitive advantages to microbial communities.
Collapse
Affiliation(s)
- Mark Nijland
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Solène N Lefebvre
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Chancievan Thangaratnarajah
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Mascarenhas R, Guha A, Li Z, Ruetz M, An S, Seravalli J, Banerjee R. Cobalt-Sulfur Coordination Chemistry Drives B 12 Loading onto Methionine Synthase. J Am Chem Soc 2023:10.1021/jacs.3c07941. [PMID: 37916782 PMCID: PMC11063128 DOI: 10.1021/jacs.3c07941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in nature. Cobalamin (or vitamin B12) is an essential cobalt-containing organometallic cofactor in mammals and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the β-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.
Collapse
Affiliation(s)
- Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arkajit Guha
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhu Li
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Javier Seravalli
- Department of Biological Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Mascarenhas R, Guha A, Li Z, Ruetz M, An S, Seravalli J, Banerjee R. Cobalt-sulfur coordination chemistry drives B 12 loading onto methionine synthase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550549. [PMID: 37546824 PMCID: PMC10402061 DOI: 10.1101/2023.07.25.550549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in Nature. Cobalamin (or vitamin B 12 ) is an essential cobalt-containing organometallic cofactor in mammals, and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination, for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the β-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.
Collapse
|
8
|
Mateos G, Martínez-Bonilla A, Martínez JM, Amils R. Vitamin B 12 Auxotrophy in Isolates from the Deep Subsurface of the Iberian Pyrite Belt. Genes (Basel) 2023; 14:1339. [PMID: 37510244 PMCID: PMC10378866 DOI: 10.3390/genes14071339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Vitamin B12 is an enzymatic cofactor that is essential for both eukaryotes and prokaryotes. The development of life in extreme environments depends on cofactors such as vitamin B12 as well. The genomes of twelve microorganisms isolated from the deep subsurface of the Iberian Pyrite Belt have been analyzed in search of enzymatic activities that require vitamin B12 or are involved in its synthesis and import. Results have revealed that vitamin B12 is needed by these microorganisms for several essential enzymes such as ribonucleotide reductase, methionine synthase and epoxyqueosine reductase. Isolate Desulfosporosinus sp. DEEP is the only analyzed genome that holds a set core of proteins that could lead to the production of vitamin B12. The rest are dependent on obtaining it from the subsurface oligotrophic environment in which they grow. Sought proteins involved in the import of vitamin B12 are not widespread in the sample. The dependence found in the genomes of these microorganisms is supported by the production of vitamin B12 by microorganisms such as Desulfosporosinus sp. DEEP, showing that the operation of deep subsurface biogeochemical cycles is dependent on cofactors such as vitamin B12.
Collapse
Affiliation(s)
- Guillermo Mateos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Adrián Martínez-Bonilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Astrobiología (CAB-INTA), 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
9
|
Fatima S, Boggs DG, Ali N, Thompson PJ, Thielges MC, Bridwell-Rabb J, Olshansky L. Engineering a Conformationally Switchable Artificial Metalloprotein. J Am Chem Soc 2022; 144:21606-21616. [DOI: 10.1021/jacs.2c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saman Fatima
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - David G. Boggs
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Noor Ali
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| |
Collapse
|
10
|
Ding Y, Choy LY, Chew MH, Lin Q, Johns PW. Effects of Metal Ions on Cyanocobalamin Stability in Heated Milk
Protein‐Based
Matrices. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Ding
- Abbott Nutrition Research and Development, 20 Biopolis Way, #09‐01/02 Centros Building 138668 Singapore Singapore
| | - Li Yin Choy
- Abbott Nutrition Research and Development, 20 Biopolis Way, #09‐01/02 Centros Building 138668 Singapore Singapore
| | - Min Hui Chew
- Abbott Nutrition Research and Development, 20 Biopolis Way, #09‐01/02 Centros Building 138668 Singapore Singapore
| | - Qi Lin
- Abbott Nutrition Research and Development, 20 Biopolis Way, #09‐01/02 Centros Building 138668 Singapore Singapore
| | - Paul W. Johns
- Abbott Nutrition Research and Development, 20 Biopolis Way, #09‐01/02 Centros Building 138668 Singapore Singapore
| |
Collapse
|
11
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
12
|
Nijland M, Martínez Felices JM, Slotboom DJ, Thangaratnarajah C. Membrane transport of cobalamin. VITAMINS AND HORMONES 2022; 119:121-148. [PMID: 35337617 DOI: 10.1016/bs.vh.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A wide variety of organisms encode cobalamin-dependent enzymes catalyzing essential metabolic reactions, but the cofactor cobalamin (vitamin B12) is only synthesized by a subset of bacteria and archaea. The biosynthesis of cobalamin is complex and energetically costly, making cobalamin variants and precursors metabolically valuable. Auxotrophs for these molecules have evolved uptake mechanisms to compensate for the lack of a synthesis pathway. Bacterial transport of cobalamin involves the passage over one or two lipidic membranes in Gram-positive and -negative bacteria, respectively. In higher eukaryotes, a complex system of carriers, receptors and transporters facilitates the delivery of the essential molecule to the tissues. Biochemical and genetic approaches have identified different transporter families involved in cobalamin transport. The majority of the characterized cobalamin transporters are active transport systems that belong to the ATP-binding cassette (ABC) superfamily of transporters. In this chapter, we describe the different cobalamin transport systems characterized to date that are present in bacteria and humans, as well as yet-to-be-identified transporters.
Collapse
Affiliation(s)
- Mark Nijland
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Jose M Martínez Felices
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Dirk J Slotboom
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands.
| | - Chancievan Thangaratnarajah
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| |
Collapse
|
13
|
Roux A, Talon R, Alsalman Z, Engilberge S, D'Aléo A, Di Pietro S, Robin A, Bartocci A, Pilet G, Dumont E, Wagner T, Shima S, Riobé F, Girard E, Maury O. Influence of Divalent Cations in the Protein Crystallization Process Assisted by Lanthanide-Based Additives. Inorg Chem 2021; 60:15208-15214. [PMID: 34597021 DOI: 10.1021/acs.inorgchem.1c01635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of lanthanide complexes as powerful auxiliaries for biocrystallography prompted us to systematically analyze the influence of the commercial crystallization kit composition on the efficiency of two lanthanide additives: [Eu(DPA)3]3- and Tb-Xo4. This study reveals that the tris(dipicolinate) complex presents a lower chemical stability and a strong tendency toward false positives, which are detrimental for its use in a high-throughput robotized crystallization platform. In particular, the crystal structures of (Mg(H2O)6)3[Eu(DPA)3]2·7H2O (1), {(Ca(H2O)4)3[Eu(DPA)3]2}n·10nH2O (2), and {Cu(DPA)(H2O)2}n (3), resulting from spontaneous crystallization in the presence of a divalent alkaline-earth cation and transmetalation, are reported. On the other hand, Tb-Xo4 is perfectly soluble in the crystallization media, stable in the presence of alkaline-earth dications, and slowly decomposes (within days) by transmetalation with transition metals. The original structure of [Tb4L4(H2O)4]Cl4·15H2O (4) is also described, where L represents a bis(pinacolato)triazacyclononane ligand. This paper also highlights a potential synergy of interactions between Tb-Xo4 and components of the crystallization mixtures, leading to the formation of complex adducts like {AdkA/Tb-Xo4/Mg2+/glycerol} in the protein binding sites. The observation of such multicomponent adducts illustrated the complexity and versatility of the supramolecular chemistry occurring at the surface of the proteins.
Collapse
Affiliation(s)
- Amandine Roux
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France.,Polyvalan, Lyon F-69342, France
| | - Romain Talon
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Zaynab Alsalman
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | | | - Anthony D'Aléo
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Sebastiano Di Pietro
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Adeline Robin
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Alessio Bartocci
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Guillaume Pilet
- CNRS UMR 5615, Université Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex F-69622, France
| | - Elise Dumont
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France.,Institut Universitaire de France, 1 rue Descartes, Paris 75005, France
| | - Tristan Wagner
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg D-35043, Germany.,Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, 1-Celsiusstrasse, Bremen 35043, Germany
| | - Seigo Shima
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg D-35043, Germany
| | - François Riobé
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| | - Eric Girard
- CEA, CNRS, IBS, Université Grenoble Alpes, Grenoble F-38000, France
| | - Olivier Maury
- Laboratoire de Chimie, ENS de Lyon, CNRS, UMR 5182, Université Lyon, Lyon F-69342, France
| |
Collapse
|
14
|
Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int J Mol Sci 2021; 22:ijms22094522. [PMID: 33926061 PMCID: PMC8123684 DOI: 10.3390/ijms22094522] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Many microbial producers of coenzyme B12 family cofactors together with their metabolically interdependent pathways are comprehensively studied and successfully used both in natural ecosystems dominated by auxotrophs, including bacteria and mammals, and in the safe industrial production of vitamin B12. Metabolic reconstruction for genomic and metagenomic data and functional genomics continue to mine the microbial and genetic resources for biosynthesis of the vital vitamin B12. Availability of metabolic engineering techniques and usage of affordable and renewable sources allowed improving bioprocess of vitamins, providing a positive impact on both economics and environment. The commercial production of vitamin B12 is mainly achieved through the use of the two major industrial strains, Propionobacterium shermanii and Pseudomonas denitrificans, that involves about 30 enzymatic steps in the biosynthesis of cobalamin and completely replaces chemical synthesis. However, there are still unresolved issues in cobalamin biosynthesis that need to be elucidated for future bioprocess improvements. In the present work, we review the current state of development and challenges for cobalamin (vitamin B12) biosynthesis, describing the major and novel prospective strains, and the studies of environmental factors and genetic tools effecting on the fermentation process are reported.
Collapse
Affiliation(s)
- Larissa Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
- Correspondence:
| | - Liudmila Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Maksim Marchenok
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Oksana Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Liudmila Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| |
Collapse
|
15
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
16
|
Li Z, Mascarenhas R, Twahir UT, Kallon A, Deb A, Yaw M, Penner-Hahn J, Koutmos M, Warncke K, Banerjee R. An Interprotein Co-S Coordination Complex in the B 12-Trafficking Pathway. J Am Chem Soc 2020; 142:16334-16345. [PMID: 32871076 DOI: 10.1021/jacs.0c06590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The CblC and CblD chaperones are involved in early steps in the cobalamin trafficking pathway. Cobalamin derivatives entering the cytoplasm are converted by CblC to a common cob(II)alamin intermediate via glutathione-dependent alkyltransferase or reductive elimination activities. Cob(II)alamin is subsequently converted to one of two biologically active alkylcobalamins by downstream chaperones. The function of CblD has been elusive although it is known to form a complex with CblC under certain conditions. Here, we report that CblD provides a sulfur ligand to cob(II)alamin bound to CblC, forming an interprotein coordination complex that rapidly oxidizes to thiolato-cob(III)alamin. Cysteine scanning mutagenesis and EPR spectroscopy identified Cys-261 on CblD as the sulfur donor. The unusual interprotein Co-S bond was characterized by X-ray absorption spectroscopy and visualized in the crystal structure of the human CblD thiolato-cob(III)alamin complex. Our study provides insights into how cobalamin coordination chemistry could be utilized for cofactor translocation in the trafficking pathway.
Collapse
Affiliation(s)
- Zhu Li
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Umar T Twahir
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, United States
| | - Albert Kallon
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Aniruddha Deb
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - James Penner-Hahn
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Markos Koutmos
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
17
|
Slotboom DJ, Ettema TW, Nijland M, Thangaratnarajah C. Bacterial multi-solute transporters. FEBS Lett 2020; 594:3898-3907. [PMID: 32810294 DOI: 10.1002/1873-3468.13912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Bacterial membrane proteins of the SbmA/BacA family are multi-solute transporters that mediate the uptake of structurally diverse hydrophilic molecules, including aminoglycoside antibiotics and antimicrobial peptides. Some family members are full-length ATP-binding cassette (ABC) transporters, whereas other members are truncated homologues that lack the nucleotide-binding domains and thus mediate ATP-independent transport. A recent cryo-EM structure of the ABC transporter Rv1819c from Mycobacterium tuberculosis has shed light on the structural basis for multi-solute transport and has provided insight into the mechanism of transport. Here, we discuss how the protein architecture makes SbmA/BacA family transporters prone to inadvertent import of antibiotics and speculate on the question which physiological processes may benefit from multi-solute transport.
Collapse
Affiliation(s)
- Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Thijs W Ettema
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Mark Nijland
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Chancievan Thangaratnarajah
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Chatterjee N, Cook LCC, Lyles KV, Nguyen HAT, Devlin DJ, Thomas LS, Eichenbaum Z. A Novel Heme Transporter from the Energy Coupling Factor Family Is Vital for Group A Streptococcus Colonization and Infections. J Bacteriol 2020; 202:e00205-20. [PMID: 32393520 PMCID: PMC7317044 DOI: 10.1128/jb.00205-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.
Collapse
Affiliation(s)
| | - Laura C C Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hong Anh T Nguyen
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Darius J Devlin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lamar S Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, Kyrpides NC, Podar M, Ovchinnikov S, Ragsdale SW, Parks JM. Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Commun Biol 2020; 3:320. [PMID: 32561885 PMCID: PMC7305189 DOI: 10.1038/s42003-020-1047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) to form highly toxic methylmercury. HgcA consists of a corrinoid binding domain and a transmembrane domain, and HgcB is a dicluster ferredoxin. However, their detailed structure and function have not been thoroughly characterized. We modeled the HgcAB complex by combining metagenome sequence data mining, coevolution analysis, and Rosetta structure calculations. In addition, we overexpressed HgcA and HgcB in Escherichia coli, confirmed spectroscopically that they bind cobalamin and [4Fe-4S] clusters, respectively, and incorporated these cofactors into the structural model. Surprisingly, the two domains of HgcA do not interact with each other, but HgcB forms extensive contacts with both domains. The model suggests that conserved cysteines in HgcB are involved in shuttling HgII, methylmercury, or both. These findings refine our understanding of the mechanism of Hg methylation and expand the known repertoire of corrinoid methyltransferases in nature. Connor J. Cooper et al. expressed HgcA and HgcB in Escherichia coli and modeled the structure of the HgcAB complex by combining metagenome sequence data, coevolution analysis, and ab initio structure calculations. This study provides insights into the biochemical mechanism of mercury (Hg) methylation.
Collapse
Affiliation(s)
- Connor J Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Kaiyuan Zheng
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Katherine W Rush
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Brian C Sanders
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Georgios A Pavlopoulos
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Institute for Fundamental Biomedical Research, Biomedical Science Research Center "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, California, USA
| | - Mircea Podar
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Jerry M Parks
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA. .,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA.
| |
Collapse
|
21
|
Jochim A, Adolf L, Belikova D, Schilling NA, Setyawati I, Chin D, Meyers S, Verhamme P, Heinrichs DE, Slotboom DJ, Heilbronner S. An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis. eLife 2020; 9:e57322. [PMID: 32515736 PMCID: PMC7299338 DOI: 10.7554/elife.57322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.
Collapse
Affiliation(s)
- Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Lea Adolf
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | | | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | | | | | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
- German Centre for Infection Research (DZIF), Partner Site TübingenTübingenGermany
- (DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight InfectionsTübingenGermany
| |
Collapse
|
22
|
Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW, Guskov A, Slotboom DJ. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 2020; 580:409-412. [DOI: 10.1038/s41586-020-2072-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
|
23
|
|
24
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
25
|
Finkenwirth F, Sippach M, Pecina SN, Gäde M, Ruta J, Ricke A, Bondarenko E, Klare JP, Zinke M, Lange S, Lange A, Steinhoff HJ, Eitinger T. Dynamic interactions of CbiN and CbiM trigger activity of a cobalt energy-coupling-factor transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183114. [PMID: 31666178 DOI: 10.1016/j.bbamem.2019.183114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Energy-coupling factor (ECF) transporters for uptake of vitamins and transition-metal ions into prokaryotic cells share a common architecture consisting of a substrate-specific integral membrane protein (S), a transmembrane coupling protein (T) and two cytoplasmic ATP-binding-cassette-family ATPases. S components rotate within the membrane to expose their binding pockets alternately to the exterior and the cytoplasm. In contrast to vitamin transporters, metal-specific systems rely on additional proteins with essential but poorly understood functions. CbiN, a membrane protein composed of two transmembrane helices tethered by an extracytoplasmic loop of 37 amino-acid residues represents the auxiliary component that temporarily interacts with the CbiMQO2 Co2+ transporter. CbiN was previously shown to induce significant Co2+ transport activity in the absence of CbiQO2 in cells producing the S component CbiM plus CbiN or a Cbi(MN) fusion. Here we analyzed the mode of interaction between the two protein domains. Any deletion in the CbiN loop abolished transport activity. In silico predicted protein-protein contacts between segments of the CbiN loop and loops in CbiM were confirmed by cysteine-scanning mutagenesis and crosslinking. Likewise, an ordered structure of the CbiN loop was observed by electron paramagnetic resonance analysis after site-directed spin labeling. The N-terminal loop of CbiM containing three of four metal ligands was partially immobilized in wild-type Cbi(MN) but completely immobile in inactive variants with CbiN loop deletions. Decreased dynamics of the inactive form was also detected by solid-state nuclear magnetic resonance of isotope-labeled protein in proteoliposomes. In conclusion, CbiM-CbiN loop-loop interactions facilitate metal insertion into the binding pocket.
Collapse
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Michael Sippach
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Sinah N Pecina
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Mario Gäde
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Julia Ruta
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Adrian Ricke
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Elena Bondarenko
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Johann P Klare
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Maximilian Zinke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | | | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
| |
Collapse
|
26
|
Engilberge S, Wagner T, Santoni G, Breyton C, Shima S, Franzetti B, Riobé F, Maury O, Girard E. Protein crystal structure determination with the crystallophore, a nucleating and phasing agent. J Appl Crystallogr 2019; 52:722-731. [PMID: 31396026 PMCID: PMC6662991 DOI: 10.1107/s1600576719006381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Obtaining crystals and solving the phase problem remain major hurdles encountered by bio-crystallographers in their race to obtain new high-quality structures. Both issues can be overcome by the crystallophore, Tb-Xo4, a lanthanide-based molecular complex with unique nucleating and phasing properties. This article presents examples of new crystallization conditions induced by the presence of Tb-Xo4. These new crystalline forms bypass crystal defects often encountered by crystallographers, such as low-resolution diffracting samples or crystals with twinning. Thanks to Tb-Xo4's high phasing power, the structure determination process is greatly facilitated and can be extended to serial crystallography approaches.
Collapse
Affiliation(s)
- Sylvain Engilberge
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, CS 10090, 38044 Grenoble, France
| | - Tristan Wagner
- Microbial Protein Structure Group, Karl-von-Frisch-Strasse 10, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cécile Breyton
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, CS 10090, 38044 Grenoble, France
| | - Seigo Shima
- Microbial Protein Structure Group, Karl-von-Frisch-Strasse 10, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Bruno Franzetti
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, CS 10090, 38044 Grenoble, France
| | - Francois Riobé
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Eric Girard
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, CS 10090, 38044 Grenoble, France
| |
Collapse
|
27
|
Finkenwirth F, Eitinger T. ECF-type ABC transporters for uptake of vitamins and transition metal ions into prokaryotic cells. Res Microbiol 2019; 170:358-365. [PMID: 31283960 DOI: 10.1016/j.resmic.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022]
Abstract
Energy-coupling factor (ECF) transporters mediate the uptake of micronutrients in prokaryotes. They consist of two ATP-binding-cassette family ATPases, a transmembrane coupling protein (T component) and a substrate-binding membrane protein (S component). ECF transporters for Co2+ and Ni2+ ions have one or two additional proteins with extracytoplasmic regions but poorly understood function. Homologs of T components with a predicted localization in plastids are widespread in plants but their physiological role is unclear. S components in eukaryotes are very rare and restricted to biotin-specific variants. Apart from a potential contribution to the export of flavins to serve the assembly of extracytoplasmic electron transfer chains, ECF transporters function as importers.
Collapse
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|