1
|
Call N, Tomkinson AE. Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases. DNA Repair (Amst) 2025; 149:103843. [PMID: 40347914 DOI: 10.1016/j.dnarep.2025.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The joining of DNA single- and double-strand breaks (SSB and DSB) is essential for maintaining genome stability and integrity. While this is ultimately accomplished in human cells by the DNA ligases encoded by the LIG1, LIG3 and LIG4 genes, these enzymes are recruited to DNA breaks through specific interactions with proteins involved in break sensing and recognition and/or break processing. In this review, we focus on the interplay between the DNA break-activated poly (ADP-ribose) polymerases, PARP1 and PARP2, poly (ADP-ribose) (PAR) and the DNA ligases in DNA replication and repair. The most extensively studied example of this interplay is the recruitment of DNA ligase IIIα (LigIIIα) and other repair proteins to SSBs through an interaction between XRCC1, a scaffold protein and partner protein of nuclear LigIIIα, and PAR synthesized by PARP1 and to a lesser extent PARP2. Recently, these proteins have been implicated in a back-up pathway for joining Okazaki fragments that appears to have a critical function even in cells with no defect in the major LigI-dependent pathway. Finally, we discuss the effects of FDA-approved PARP1/2 inhibitors on DNA replication and repair in cancer and non-malignant cells and the potential utility of DNA ligase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Nicolas Call
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
2
|
Kulkarni S, Seneviratne N, Tosun Ç, Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair (Amst) 2025; 149:103830. [PMID: 40203475 DOI: 10.1016/j.dnarep.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Advanced epithelial ovarian cancer of the high-grade serous subtype (HGSOC) remains a significant clinical challenge due to the development of resistance to current platinum-based chemotherapies. PARP1/2 inhibitors (PARPi) exploit the well-characterised homologous recombination repair deficiency (HRD) in HGSOC and offer an effective targeted approach to treatment. Several clinical trials demonstrated that PARPi (olaparib, rucaparib, niraparib) significantly improved progression-free survival (PFS) in HGSOC in the recurrent maintenance setting. However, 40-70 % of patients develop Resistance to PARPi presenting an ongoing challenge in the clinic. Therefore, there is an unmet need for novel targeted therapies and biomarkers to identify intrinsic or acquired resistance to PARPi in ovarian cancer. Understanding the mechanisms of resistance to PARPi is crucial for identifying molecular vulnerabilities, developing effective biomarkers for patient stratification and guiding treatment decisions. Here, we summarise the current landscape of mechanisms associated with PARPi resistance such as restored homologous recombination repair functionality, replication fork stability and alterations to PARP1 and PARP2 and the DNA damage response. We highlight the role of circulating tumour DNA (ctDNA) in identifying acquired resistance biomarkers and its potential in guiding 'real-time' treatment decisions. Moreover, we explore other innovative treatment strategies aimed at overcoming specific resistance mechanisms, including the inhibition of ATR, WEE1 and POLQ. We also examine the role of PARPi rechallenge in patients with acquired resistance.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Çağla Tosun
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Srinivasan Madhusudan
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
3
|
Wu W, Wu W, Xie X, Li J, Gao Y, Xie L, Zhong C, Xiao J, Cai M, Yin D, Hu K. DNMT1 is required for efficient DSB repair and maintenance of replication fork stability, and its loss reverses resistance to PARP inhibitors in cancer cells. Oncogene 2025:10.1038/s41388-025-03409-w. [PMID: 40234721 DOI: 10.1038/s41388-025-03409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Cancer cells with breast cancer susceptibility gene (BRCA) mutations inevitably acquire resistance to PARP inhibitors (PARPi), and new strategies to maximize the efficacy of PARPi are urgently needed for the treatment of patients with BRCA1/2-mutant cancers. Here, we provide evidence that DNMT1 plays essential roles in DNA repair and the maintenance of replication fork stability by associating with the RPA complex and the SFPQ/NONO/FUS complex. DNMT1 depletion impairs RPA1 recruitment to stalled replication forks and inhibits DNA‒RNA hybrid (R-loop) resolution as well as the retention of RPA1 and SFPQ/NONO/FUS complexes at double-stranded DNA breaks (DSBs). Moreover, PARP1 activity is required for DNMT1 retention at DSB sites by modulating its protein stability, which is tightly and dynamically regulated by PARP1-mediated PARylation and PARG- and NUDT16-mediated dePARylation. DNMT1 PARylation further recruits the E3 ubiquitin ligase CHFR to enhance its ubiquitination and target it for proteasome-dependent degradation. Notably, DNMT1 is also required for irradiation (IR)-mediated and PARPi-induced activation of the G2 arrest checkpoint. The combination of DNMT1i with PARPi significantly attenuates PARPi-induced ATR-Chk1 signaling and enhances the degradation of the stalled replication fork mediated by PARPi, resulting in increased chromosomal aberrations and cell death in BRCA-proficient and BRCA-deficient cancer cells. Therefore, our findings provide novel insights into the mechanism by which DNMT1 inhibitors (DNMT1i) reverse PARPi resistance and indicate that targeting the PARP-DNMT1 pathway is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manbo Cai
- Department of Oncology Radiotherapy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Li P, Wu D, Yu X. Targeting dePARylation in cancer therapy. DNA Repair (Amst) 2025; 148:103824. [PMID: 40056493 DOI: 10.1016/j.dnarep.2025.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Poly(ADP-ribosyl)ation (PARylation), a reversible post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs), plays crucial roles in DNA replication and DNA damage repair. Since interfering PARylation induces selective cytotoxicity in tumor cells with homologous recombination defects, PARP inhibitors (PARPi) have significant clinical impacts in treating BRCA-mutant cancer patients. Likewise, dePARylation is also essential for optimal DNA damage response and genomic stability. This process is mediated by a group of dePARylation enzymes, such as poly(ADP-ribose) glycohydrolase (PARG). Currently, several novel PARG inhibitors have been developed and examined in preclinical and clinical studies, demonstrating promising anti-cancer activity distinct from PARP inhibitors. This review discusses the role of dePARylation in genome stability and the potential of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2025; 70:271-286. [PMID: 38704090 PMCID: PMC11976428 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
6
|
Liu H, Pillai M, Leung AKL. PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications. Trends Biochem Sci 2025; 50:224-241. [PMID: 39922741 DOI: 10.1016/j.tibs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Biomolecular condensates are cellular compartments that selectively enrich proteins and other macromolecules despite lacking enveloping membranes. These compartments often form through phase separation triggered by multivalent nucleic acids. Emerging data have revealed that poly(ADP-ribose) (PAR), a nucleic acid-based protein modification catalyzed by ADP-ribosyltransferases (commonly known as PARPs), plays a crucial role in this process. This review focuses on the role of PARPs and ADP-ribosylation, and explores the principles and mechanisms by which PAR regulates condensate formation, dissolution, and dynamics. Future studies with advanced tools to examine PAR binding sites, substrate interactions, PAR length and structure, and transitions from condensates to aggregates will be key to unraveling the complexity of ADP-ribosylation in health and disease, including cancer, viral infection, and neurodegeneration.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Cross-Disciplinary Graduate Program in Biomedical Sciences (XDBio), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Meenakshi Pillai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Lin X, Leung K, Wolfe K, Call N, Bhandari S, Huang X, Lee B, Tomkinson A, Zha S. XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to DNA damage sites. Nucleic Acids Res 2025; 53:gkaf086. [PMID: 39970298 PMCID: PMC11838041 DOI: 10.1093/nar/gkaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
Poly-ADP-ribose polymerases 1 and 2 (PARP1 and 2) are critical sensors of DNA-strand breaks and targets for cancer therapy. Upon DNA damage, PARP1 and 2 synthesize poly-ADP-ribose (PAR) chains on themselves and other substrates, facilitating DNA single-strand break repair by recruiting PAR-binding DNA repair factors, including X-ray repair cross-complementing group 1 (XRCC1) and aprataxin and polynucleotide kinase phosphatase-like factor (APLF). While diverse DNA lesions activate PARP1, PARP2 is selectively activated by 5' phosphorylated nicks. They function independently and compensate for each other. Previous studies suggest that PARP1 and its PAR chains act upstream to recruit PARP2 to DNA damage sites. Here, we report that the scaffold protein XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to damage sites. XRCC1-deficiency causes hyperactivation of PARP1 while attenuating micro-irradiation-induced PARP2 foci. Mechanistically, the BRCT1 domain of XRCC1 binds to PAR, while its BRCT2 domain interacts with the PARP2 catalytic domain independently of the PARP2 enzymatic activity and the LIG3 BRCT domain via residues D575 and Y576. This mode of PARP2 enrichment is important for the recruitment of certain PAR-binding proteins, such as APLF, but dispensable for others, such as the XRCC1-BRCT1 domain. These findings highlight the distinct role of PARP1 and PARP2 in PAR synthesis and uncover unexpected hierarchical roles of PARP1 and XRCC1 upstream of PARP2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | | | - Kaitlynn F Wolfe
- Columbia College, Columbia University, New York, NY 10027, United States
| | - Nicolas Call
- Department of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, United States
| | - Seema Khattri Bhandari
- Department of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, United States
| | - Xiaoyu Huang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Alan E Tomkinson
- Department of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| |
Collapse
|
8
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Targeting the PARylation-Dependent Ubiquitination Signaling Pathway for Cancer Therapies. Biomolecules 2025; 15:237. [PMID: 40001540 PMCID: PMC11852910 DOI: 10.3390/biom15020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates for subsequent ubiquitination and degradation events through the coordinated action of enzymes, including the E3 ligase RNF146 and the ADP-ribosyltransferase tankyrase. Notably, this pathway has emerged as a key regulator of tumorigenesis, immune modulation, and cell death. This review elucidates the molecular mechanisms of the PARdU pathway, including the RNF146-tankyrase interaction, substrate specificity, and upstream regulatory pathways. It also highlights the biological functions of PARdU in DNA damage repair, signaling pathways, and metabolic regulation, with a focus on its therapeutic potential in cancer treatment. Strategies targeting PARdU, such as tankyrase and RNF146 inhibitors, synthetic lethality approaches, and immune checkpoint regulation, offer promising avenues for precision oncology. These developments underscore the potential of PARdU as a transformative therapeutic target in combating various types of human cancer.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Huang D, Su Z, Mei Y, Shao Z. The complex universe of inactive PARP1. Trends Genet 2024; 40:1074-1085. [PMID: 39306519 DOI: 10.1016/j.tig.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial member of the PARP family, which modifies targets through ADP-ribosylation and plays key roles in a variety of biological processes. PARP inhibitors (PARPis) hinder ADP-ribosylation and lead to the retention of PARP1 at the DNA lesion (also known as trapping), which underlies their toxicity. However, inhibitors and mutations that make PARP1 inactive do not necessarily correlate with trapping potency, challenging the current understanding of inactivation-caused trapping. Recent studies on mouse models indicate that both trapping and non-trapping inactivating mutations of PARP1 lead to embryonic lethality, suggesting the unexpected toxicity of the current inhibition strategy. The allosteric model, complicated automodification, and various biological functions of PARP1 all contribute to the complexity of PARP1 inactivation.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ziyi Su
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanxia Mei
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengping Shao
- Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
10
|
Rajabi F, Smith R, Liu-Bordes WY, Schertzer M, Huet S, Londoño-Vallejo A. DNA damage-induced EMT controlled by the PARP-dependent chromatin remodeler ALC1 promotes DNA repair efficiency through RAD51 in tumor cells. Mol Biol Cell 2024; 35:ar151. [PMID: 39504452 PMCID: PMC11656468 DOI: 10.1091/mbc.e24-08-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) allows cancer cells to metastasize while acquiring resistance to apoptosis and chemotherapeutic agents with significant implications for patients' prognosis and survival. Despite its clinical relevance, the mechanisms initiating EMT during cancer progression remain poorly understood. We demonstrate that DNA damage triggers EMT and that activation of poly (ADP-ribose) polymerase (PARP) and the PARP-dependent chromatin remodeler ALC1 (CHD1L) was required for this response. Our results suggest that this activation directly facilitates access to the chromatin of EMT transcriptional factors (TFs) which then initiate cell reprogramming. We also show that EMT-TFs bind to the RAD51 promoter to stimulate its expression and to promote DNA repair by homologous recombination. Importantly, a clinically relevant PARP inhibitor reversed or prevented EMT in response to DNA damage while resensitizing tumor cells to other genotoxic agents. Overall, our observations shed light on the intricate relationship between EMT, DNA damage response, and PARP inhibitors, providing potential insights for in cancer therapeutics.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Present addresses: Cancer Genomics lab, Inserm-U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, 94805, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | - Michael Schertzer
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
| | - Arturo Londoño-Vallejo
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
| |
Collapse
|
11
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
12
|
Weijers SA, Vermeulen M, Kliza KW. The quest to identify ADP-ribosylation readers: methodological advances. Trends Biochem Sci 2024; 49:1000-1013. [PMID: 39304454 DOI: 10.1016/j.tibs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
ADP-ribosylation regulates numerous fundamental cellular processes in health and disease. However, the limited availability of suitable tools and methods prevents the identification and characterization of certain components of the ADP-ribosylation signaling network and, consequently, efficient utilization of their biomedical potential. Identification of ADP-ribose (ADPr) readers has been particularly impeded by challenges associated with the development of ADPr-based enrichment probes. These difficulties were finally overcome in several recent studies describing various approaches to identifying ADPr readers in an unbiased, proteome-wide manner. In this review we discuss these different strategies and their limitations, benefits and drawbacks, and summarize how these technologies contribute to a dissection of ADP-ribosylation signaling networks. We also address unmet technological needs and future directions to investigate interactions with ADPr linkages.
Collapse
Affiliation(s)
- Suzanne A Weijers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Katarzyna W Kliza
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
13
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen M, Schultz C. A Genetically Encoded Sensor for Real-Time Monitoring of Poly-ADP-Ribosylation Dynamics In Vitro and in Cells. ACS Sens 2024; 9:5246-5252. [PMID: 39351594 PMCID: PMC11520908 DOI: 10.1021/acssensors.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hydrolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for understanding the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semiquantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
Affiliation(s)
- Alix Thomas
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Kapil Upadhyaya
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Daniel Bejan
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Hayden Adoff
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Michael Cohen
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Carsten Schultz
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| |
Collapse
|
14
|
Dai L, Lu S, Mao L, Zhong M, Feng G, He S, Yuan G. A Novel Prognostic Model of Hepatocellular Carcinoma per Two NAD+ Metabolic Synthesis-Associated Genes. Int J Mol Sci 2024; 25:10362. [PMID: 39408693 PMCID: PMC11476713 DOI: 10.3390/ijms251910362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a formidable challenge to global human health, while recent years have witnessed the important role of NAD+ in tumorigenesis and progression. However, the expression pattern and prognostic value of NAD+ in HCC still remain elusive. Gene expression files and corresponding clinical pathological files associated with HCC were obtained from the Cancer Genome Atlas (TCGA) database, and genes associated with NAD+ were retrieved from the GSEA and differentially analyzed in tumor and normal tissues. A consensus clustering analysis was conducted by breaking down TCGA patients into four distinct groups, while Kaplan-Meier curves were generated to investigate the disparity in clinical pathology and endurance between clusters. A prognostic model based on NAD+-associated genes was established and assessed by combining LASSO-Cox regression, uni- and multi-variate Cox regression, and ROC curve analyses. Investigations were conducted to determine the expression of distinct mRNAs and proteins in both HCC and non-tumor tissues. A novel two-gene signature including poly (ADP-Ribose) polymerase 2 (PARP2) and sirtuin 6 (SIRT6) was obtained through LASSO-Cox regression and was identified to have favorable prognostic performance in HCC patients from TCGA. Analyses of both single and multiple variables showed that the prognostic model was a distinct prognostic factor in the endurance of liver cancer patients in both the training and trial groups. The nomogram also exhibited clinical significance in the prognosis of HCC patients. Immunohistochemistry, qRT-PCR, and Western blotting revealed that HCC samples exhibited higher PARP2 and SIRT6 expression levels than those of normal controls. This study identified a robust prognostic model comprising two NAD+-associated genes using bioinformatic methods, which is accurate in predicting the survival outcome of HCC patients. This model might benefit the early diagnosis of HCC and further facilitate the management of individualized medical service and clinical decision-making.
Collapse
Affiliation(s)
- Luo Dai
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| | - Shiliu Lu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| | - Linfeng Mao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| | - Gangping Feng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (L.D.); (S.L.); (L.M.); (M.Z.); (G.F.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning 530021, China
| |
Collapse
|
15
|
Zhou B, Jiang ZH, Dai MR, Ai YL, Xiao L, Zhong CQ, Wu LZ, Chen QT, Chen HZ, Wu Q. Full-length GSDME mediates pyroptosis independent from cleavage. Nat Cell Biol 2024; 26:1545-1557. [PMID: 38997456 DOI: 10.1038/s41556-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Gasdermin (GSDM) family proteins, known as the executors of pyroptosis, undergo protease-mediated cleavage before inducing pyroptosis. We here discovered a form of pyroptosis mediated by full-length (FL) GSDME without proteolytic cleavage. Intense ultraviolet-C irradiation-triggered DNA damage activates nuclear PARP1, leading to extensive formation of poly(ADP-ribose) (PAR) polymers. These PAR polymers are released to the cytoplasm, where they activate PARP5 to facilitate GSDME PARylation, resulting in a conformational change in GSDME that relieves autoinhibition. Moreover, ultraviolet-C irradiation promotes cytochrome c-catalysed cardiolipin peroxidation to elevate lipid reactive oxygen species, which is then sensed by PARylated GSDME, leading to oxidative oligomerization and plasma membrane targeting of FL-GSDME for perforation, eventually inducing pyroptosis. Reagents that concurrently stimulate PARylation and oxidation of FL-GSDME, synergistically promoting pyroptotic cell death. Overall, the present findings elucidate an unreported mechanism underlying the cleavage-independent function of GSDME in executing cell death, further enriching the paradigms and understanding of FL-GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Meng-Ran Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan-Li Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liu-Zheng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qi-Tao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Zhang H, Zha S. The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication. DNA Repair (Amst) 2024; 140:103690. [PMID: 38823186 DOI: 10.1016/j.dnarep.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.
Collapse
Affiliation(s)
- Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.
| |
Collapse
|
17
|
Kassab MA, Chen Y, Wang X, He B, Brown EJ, Yu X. RNA 2'-O-methylation promotes persistent R-loop formation and AID-mediated IgH class switch recombination. BMC Biol 2024; 22:151. [PMID: 38977974 PMCID: PMC11232215 DOI: 10.1186/s12915-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA.
- Present address: Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yibin Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Present address: Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Xin Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Present address: Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Bo He
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Present address: Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94705, USA
| | - Eric J Brown
- Present address: Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA.
- Present address: Westlake University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
18
|
Liang X, Duan Q, Li B, Wang Y, Bu Y, Zhang Y, Kuang Z, Mao L, An X, Wang H, Yang X, Wan N, Feng Z, Shen W, Miao W, Chen J, Liu S, Storz JF, Liu J, Nevo E, Li K. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc Natl Acad Sci U S A 2024; 121:e2322291121. [PMID: 38913905 PMCID: PMC11228492 DOI: 10.1073/pnas.2322291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yueting Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yonglu Zhang
- Fengjia Town Health Center, Rushan City, Weihai City264200, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Wei Shen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Weilan Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiaqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
19
|
Qin Y, Dong X, Lu M, Jing L, Chen Q, Guan F, Xiang Z, Huang J, Yang C, He X, Qu J, Yang Z. PARP1 interacts with WDR5 to enhance target gene recognition and facilitate tumorigenesis. Cancer Lett 2024; 593:216952. [PMID: 38750719 DOI: 10.1016/j.canlet.2024.216952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.
Collapse
Affiliation(s)
- Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Guan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengkai Xiang
- Department of Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen MS, Schultz C. A genetically encoded sensor for real-time monitoring of poly-ADP-ribosylation dynamics in-vitro and in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598597. [PMID: 38915511 PMCID: PMC11195289 DOI: 10.1101/2024.06.11.598597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nico-tinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hy-drolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for under-standing the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semi-quantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
|
21
|
Smith-Pillet ES, Billur R, Langelier MF, Talele TT, Pascal JM, Black BE. A PARP2-specific active site α-helix melts to permit DNA damage-induced enzymatic activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594972. [PMID: 38826291 PMCID: PMC11142140 DOI: 10.1101/2024.05.20.594972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
PARP1 and PARP2 recognize DNA breaks immediately upon their formation, generate a burst of local PARylation to signal their location, and are co-targeted by all current FDA-approved forms of PARP inhibitors (PARPi) used in the cancer clinic. Recent evidence indicates that the same PARPi molecules impact PARP2 differently from PARP1, raising the possibility that allosteric activation may also differ. We find that unlike for PARP1, destabilization of the autoinhibitory domain of PARP2 is insufficient for DNA damage-induced catalytic activation. Rather, PARP2 activation requires further unfolding of an active site α-helix absent in PARP1. Only one clinical PARPi, Olaparib, stabilizes the PARP2 active site α-helix, representing a structural feature with the potential to discriminate small molecule inhibitors. Collectively, our findings reveal unanticipated differences in local structure and changes in activation-coupled backbone dynamics between PARP1 and PARP2.
Collapse
Affiliation(s)
- Emily S. Smith-Pillet
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
- Graduate Program in Biochemistry, Biophysics, Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140-6059 USA
| | - Ramya Billur
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Université de Montréal Montréal, (Québec), H3C 3J7 Canada
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439 USA
| | - John M. Pascal
- Département de Biochimie et Médecine Moléculaire, Université de Montréal Montréal, (Québec), H3C 3J7 Canada
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
- Graduate Program in Biochemistry, Biophysics, Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140-6059 USA
| |
Collapse
|
22
|
Lin X, Leung KSK, Wolfe KF, Lee BJ, Zha S. XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to DNA damage sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594230. [PMID: 38798615 PMCID: PMC11118530 DOI: 10.1101/2024.05.14.594230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poly-ADP-ribose polymerases 1 and 2 (PARP1 and PARP2) are crucial sensors of DNA-strand breaks and emerging cancer therapy targets. Once activated by DNA breaks, PARP1 and PARP2 generate poly-ADP-ribose (PAR) chains on themselves and other substrates to promote DNA single-strand break repair (SSBR). PARP1 can be activated by diverse DNA lesions, whereas PARP2 specifically recognizes 5' phosphorylated nicks. They can be activated independently and provide mutual backup in the absence of the other. However, whether PARP1 and PARP2 have synergistic functions in DNA damage response remains elusive. Here, we show that PARP1 and the PAR chains generated by PARP1 recruit PARP2 to the vicinity of DNA damage sites through the scaffold protein XRCC1. Using quantitative live-cell imaging, we found that loss of XRCC1 markedly reduces irradiation-induced PARP2 foci in PARP1-proficient cells. The central BRCT domain (BRCT1) of XRCC1 binds to the PAR chain, while the C-terminal BRCT domain (BRCT2) of XRCC1 interacts with the catalytic domain of PARP2, facilitating its localization near the breaks. Together, these findings unveil a new function of XRCC1 in augmenting PARP2 recruitment in response to PARP1 activation and explain why PARP1, but not PARP2, is aggregated and hyperactivated in XRCC1-deficient cells.
Collapse
|
23
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
24
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584665. [PMID: 38559022 PMCID: PMC10980059 DOI: 10.1101/2024.03.12.584665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PARP1&2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1&2 at DNA lesions. Here, we report that unlike Parp2 -/- mice, which develop normally, mice expressing catalytically-inactive Parp2 (E534A, Parp2 EA/EA ) succumb to Tp53- and Chk2 -dependent erythropoietic failure in utero , mirroring Lig1 -/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks) between Okazaki fragments, typically resolved by Lig1. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, particularly harmful to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inhibition on erythropoiesis, revealing the mechanism behind the PARPi-induced anemia and leukemia, especially those with TP53/CHK2 loss. Significance This work shows that the hematological toxicities associated with PARP inhibitors stem not from impaired PARP1 or PARP2 enzymatic activity but rather from the presence of inactive PARP2 protein. Mechanistically, these toxicities reflect a unique role of PARP2 at 5'-phosphorylated DNA nicks during DNA replication in erythroblasts.
Collapse
|
25
|
Chen L, Gai X, Yu X. Pre-rRNA facilitates the recruitment of RAD51AP1 to DNA double-strand breaks. J Biol Chem 2024; 300:107115. [PMID: 38403248 PMCID: PMC10959706 DOI: 10.1016/j.jbc.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.
Collapse
Affiliation(s)
- Linlin Chen
- School of Life Sciences, Fudan University, Shanghai, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
26
|
Wu W, Wu W, Zhou Y, Yang Q, Zhuang S, Zhong C, Li W, Li A, Zhao W, Yin X, Zu X, Chak-Lui Wong C, Yin D, Hu K, Cai M. The dePARylase NUDT16 promotes radiation resistance of cancer cells by blocking SETD3 for degradation via reversing its ADP-ribosylation. J Biol Chem 2024; 300:105671. [PMID: 38272222 PMCID: PMC10926213 DOI: 10.1016/j.jbc.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a critical posttranslational modification that plays a vital role in maintaining genomic stability via a variety of molecular mechanisms, including activation of replication stress and the DNA damage response. The nudix hydrolase NUDT16 was recently identified as a phosphodiesterase that is responsible for removing ADP-ribose units and that plays an important role in DNA repair. However, the roles of NUDT16 in coordinating replication stress and cell cycle progression remain elusive. Here, we report that SETD3, which is a member of the SET-domain containing protein (SETD) family, is a novel substrate for NUDT16, that its protein levels fluctuate during cell cycle progression, and that its stability is strictly regulated by NUDT16-mediated dePARylation. Moreover, our data indicated that the E3 ligase CHFR is responsible for the recognition and degradation of endogenous SETD3 in a PARP1-mediated PARylation-dependent manner. Mechanistically, we revealed that SETD3 associates with BRCA2 and promotes its recruitment to stalled replication fork and DNA damage sites upon replication stress or DNA double-strand breaks, respectively. Importantly, depletion of SETD3 in NUDT16-deficient cells did not further exacerbate DNA breaks or enhance the sensitivity of cancer cells to IR exposure, suggesting that the NUDT16-SETD3 pathway may play critical roles in the induction of tolerance to radiotherapy. Collectively, these data showed that NUDT16 functions as a key upstream regulator of SETD3 protein stability by reversing the ADP-ribosylation of SETD3, and NUDT16 participates in the resolution of replication stress and facilitates HR repair.
Collapse
Affiliation(s)
- Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingshi Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiao Yang
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuting Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjia Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Aixin Li
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wanzhen Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaomin Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Carmen Chak-Lui Wong
- Li Ka Shing Faculty of Medicine, Department of Pathology, The University of Hong Kong, Hong Kong, Guangdong, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Manbo Cai
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
27
|
Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, Kühnemuth R, Stoynov S, Seidel CAM, Brugués J, Jahnel M, Franzmann TM, Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 2024; 187:945-961.e18. [PMID: 38320550 DOI: 10.1016/j.cell.2024.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Collapse
Affiliation(s)
- Nagaraja Chappidi
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Thomas Quail
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Simon Doll
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jan Brugués
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Marcus Jahnel
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
28
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
29
|
Lin Z, Wang L, Xing Z, Wang F, Cheng X. Update on Combination Strategies of PARP Inhibitors. Cancer Control 2024; 31:10732748241298329. [PMID: 39500600 PMCID: PMC11539152 DOI: 10.1177/10732748241298329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The application of PARP inhibitors has revolutionized cancer treatment and has achieved significant advancements, particularly with regard to tumors with defects in genes involved in homologous recombination repair (HRR) processes, such as BRCA1 and BRCA2. Despite the promising outcomes of PARP inhibitors, certain limitations and challenges still exist, including acquired drug resistance, severe side effects, and limited therapeutic benefits for patients without homologous recombination deficiency (HRD). Various combinations involving PARP inhibitors have been developed to overcome these limitations. Among these, combinations with immune checkpoint inhibitors, antiangiogenic agents, and various small-molecule inhibitors are well-studied strategies that show great potential for optimizing the efficacy of PARP inhibitors, overcoming resistance mechanisms, and expanding target populations. However, the efficiency and overlapping toxicity of these combination strategies for cancers vary among studies, thereby limiting their use. In this review, we describe the mechanisms and limitations of PARP inhibitors to better understand the mechanisms of combination treatments. Furthermore, we have summarized recent studies on the combination of PARP inhibitors with a range of medications and discussed their clinical efficacy. The objective of this review is to enhance the comprehensiveness of information pertaining to this topic.
Collapse
Affiliation(s)
- Zhuoqun Lin
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ziyu Xing
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenfen Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
| | - Xiaodong Cheng
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, P.R. China
| |
Collapse
|
30
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
32
|
Deeksha W, Abhishek S, Rajakumara E. PAR recognition by PARP1 regulates DNA-dependent activities and independently stimulates catalytic activity of PARP1. FEBS J 2023; 290:5098-5113. [PMID: 37462479 DOI: 10.1111/febs.16907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribosyl)ation is predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single-strand (SSB) and double-strand (DSB) DNA breaks are bona fide stimulators of PARP1 activity. However, PAR-mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT, and WGR, hitherto uncharacterized, as PAR reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared with PAR but bind with weak or no affinity to DNA breaks as standalone domains. Conversely, ZnF1 and ZnF2 of PARP1 recognize DNA breaks but bind weakly to PAR. In addition, PAR reader domains, together, exhibit a synergy to recognize PAR or PARylated protein. Further competition-binding studies suggest that PAR binding releases DNA from PARP1, and the WGR domain facilitates DNA release. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampered the DNA-dependent stimulation. Altogether, our work discovers dedicated high-affinity PAR reader domains of PARP1 and uncovers a novel mechanism of allosteric regulation of DNA-dependent and DNA-independent activities of PARP1 by its catalytic product PAR.
Collapse
Affiliation(s)
- Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
33
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
35
|
Xin D, Gai X, Ma Y, Li Z, Li Q, Yu X. Pre-rRNA Facilitates TopBP1-Mediated DNA Double-Strand Break Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206931. [PMID: 37582658 PMCID: PMC10558638 DOI: 10.1002/advs.202206931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/28/2023] [Indexed: 08/17/2023]
Abstract
In response to genotoxic stress-induced DNA damage, TopBP1 mediates ATR activation for signaling transduction and DNA damage repair. However, the detailed molecular mechanism remains elusive. Here, using unbiased protein affinity purification and RNA sequencing, it is found that TopBP1 is associated with pre-ribosomal RNA (pre-rRNA). Pre-rRNA co-localized with TopBP1 at DNA double-strand breaks (DSBs). Similar to pre-rRNA, ribosomal proteins also colocalize with TopBP1 at DSBs. The recruitment of TopBP1 to DSBs is suppressed when cells are transiently treated with RNA polymerase I inhibitor (Pol I-i) to suppress pre-rRNA biogenesis but not protein translation. Moreover, the BRCT4-5 of TopBP1 recognizes pre-rRNA and forms liquid-liquid phase separation (LLPS) with pre-rRNA, which may be the molecular basis of DSB-induced foci of TopBP1. Finally, Pol I-i treatment impairs TopBP1-associated cell cycle checkpoint activation and homologous recombination repair. Collectively, this study reveals that pre-rRNA plays a key role in the TopBP1-dependent DNA damage response.
Collapse
Affiliation(s)
- Di Xin
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochen Gai
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Yidi Ma
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Zexing Li
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Qilin Li
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochun Yu
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| |
Collapse
|
36
|
Groslambert J, Prokhorova E, Wondisford AR, Tromans-Coia C, Giansanti C, Jansen J, Timinszky G, Dobbelstein M, Ahel D, O'Sullivan RJ, Ahel I. The interplay of TARG1 and PARG protects against genomic instability. Cell Rep 2023; 42:113113. [PMID: 37676774 PMCID: PMC10933786 DOI: 10.1016/j.celrep.2023.113113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation. We reveal its function in the DNA damage response and show that the loss of TARG1 sensitizes cells to inhibitors of topoisomerase II, ATR, and PARP. Furthermore, we find a PARP1-mediated synthetic lethal interaction between TARG1 and PARG, driven by the toxic accumulation of ADP-ribosylation, that induces replication stress and genomic instability. Finally, we show that histone PARylation factor 1 (HPF1) deficiency exacerbates the toxicity and genomic instability induced by excessive ADP-ribosylation, suggesting a close crosstalk between components of the serine- and aspartate/glutamate-linked ADP-ribosylation pathways. Altogether, our data identify TARG1 as a potential biomarker for the response of cancer cells to PARP and PARG inhibition and establish that the interplay of TARG1 and PARG protects cells against genomic instability.
Collapse
Affiliation(s)
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Callum Tromans-Coia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Celeste Giansanti
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
37
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
38
|
Deeksha W, Abhishek S, Giri J, Rajakumara E. Regulation of PARP1 and its apoptotic variant activity by single-stranded DNA. FEBS J 2023; 290:4533-4542. [PMID: 37246313 DOI: 10.1111/febs.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
PARP1 is a nuclear protein involved in the maintenance of genomic stability. It catalyses the formation of poly(ADP-ribose) (PAR) to recruit repair proteins at the site of DNA lesions, such as double-strand and single-strand breaks. In the process of DNA replication or repair, there could occur stretch of ssDNA, usually protected by ssDNA binding proteins, but when present in abundance can turn into DNA beaks and cause cell death. PARP1 is an extremely sensitive sensor of DNA breaks; however, the interaction of PARP1 with single-stranded DNA (ssDNA) remains unexplored. Here, we report that the two Zn-fingers, ZnF1 and ZnF2, of PARP1, mediate high-affinity recognition of ssDNA. Our studies suggest that although PAR and ssDNA are chemical analogues, they are recognized by a distinct set of domains of PARP1, yet PAR not only induces dislodging of ssDNA from PARP1 but also hampers the ssDNA-dependent PARP1 activity. It is noteworthy that PAR carrier apoptotic fragment PARP1ΔZnF1-2 gets cleaved from PARP1 to facilitate apoptosis, leaving behind the DNA-bound ZnF1-ZnF2PARP1 . Our studies demonstrate that the PARP1ΔZnF1-2 is competent for ssDNA-dependent stimulation only in the presence of another apoptotic fragment ZnF1-ZnF2PARP1 , suggesting the indispensability of DNA-bound ZnF1-ZnF2PARP1 dual domains for the same.
Collapse
Affiliation(s)
- Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
39
|
Zhao ZC, Jiang MY, Huang JH, Lin C, Guo WL, Zhong ZH, Huang QQ, Liu SL, Deng HW, Zhou YC. Honokiol induces apoptosis-like death in Cryptocaryon irritans Tomont. Parasit Vectors 2023; 16:287. [PMID: 37587480 PMCID: PMC10428556 DOI: 10.1186/s13071-023-05910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Cryptocaryon irritans, a common parasite in tropical and subtropical marine teleost fish, has caused serious harm to the marine aquaculture industry. Honokiol was proven to induce C. irritans tomont cytoplasm shrinkage and death in our previous study, but the mechanism by which it works remains unknown. METHODS In this study, the changes of apoptotic morphology and apoptotic ratio were detected by microscopic observation and AnnexinV-FITC/PI staining. The effects of honokiol on intracellular calcium ([Ca2+]i) concentration, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), quantity of DNA fragmentations (QDF) and caspase activities were detected by Fluo-3 staining, JC-1 staining, DCFH-DA staining, Tunel method and caspase activity assay kit. The effects of honokiol on mRNA expression levels of 61 apoptosis-related genes in tomonts of C. irritans were detected by real-time PCR. RESULTS The results of the study on the effects of honokiol concentration on C. irritans tomont apoptosis-like death showed that the highest levels of prophase apoptosis-like death rate (PADR), [Ca2+]i concentration, ROS, the activities of caspase-3/9 and the lowest necrosis ratio (NER) were obtained at a concentration of 1 μg/ml, which was considered the most suitable for inducing C. irritans tomont apoptosis-like death. When C. irritans tomonts were treated with 1 μg/ml honokiol, the [Ca2+]i concentration began to increase significantly at 1 h. Following this, the ROS, QDF and activities of caspase-3/9 began to increase significantly, and the ΔΨm began to decrease significantly at 2 h; the highest PADR was obtained at 4 h. The mRNA expression of 14 genes was significantly upregulated during honokiol treatment. Of these genes, itpr2, capn1, mc, actg1, actb, parp2, traf2 and fos were enriched in the pathway related to apoptosis induced by endoplasmic reticulum (ER) stress. CONCLUSIONS This article shows that honokiol can induce C. irritans tomont apoptosis-like death. These results suggest that honokiol may disrupt [Ca2+]i homeostasis in ER and then induce C. irritans tomont apoptosis-like death by caspase cascade or mitochondrial pathway, which might represent a novel therapeutic intervention for C. irritans infection.
Collapse
Affiliation(s)
- Zi-Chen Zhao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Man-Yi Jiang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Ji-Hui Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- Technology Center of Haikou Customs District, Haikou, 570105, People's Republic of China
| | - Chuan Lin
- Aquaculture Department, Hainan Agriculture School, Haikou, 571101, People's Republic of China
| | - Wei-Liang Guo
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| | - Zhi-Hong Zhong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Qing-Qin Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Shao-Long Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Heng-Wei Deng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong-Can Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
40
|
Abstract
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
42
|
Kumar R, Mehta D, Nayak D, Sunil S. Characterization of an Aedes ADP-Ribosylation Protein Domain and Role of Post-Translational Modification during Chikungunya Virus Infection. Pathogens 2023; 12:pathogens12050718. [PMID: 37242388 DOI: 10.3390/pathogens12050718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Poly ADP-ribose polymerases (PARPs) catalyze ADP-ribosylation, a subclass of post-translational modification (PTM). Mono-ADP-ribose (MAR) moieties bind to target molecules such as proteins and nucleic acids, and are added as part of the process which also leads to formation of polymer chains of ADP-ribose. ADP-ribosylation is reversible; its removal is carried out by ribosyl hydrolases such as PARG (poly ADP-ribose glycohydrolase), TARG (terminal ADP-ribose protein glycohydrolase), macrodomain, etc. In this study, the catalytic domain of Aedes aegypti tankyrase was expressed in bacteria and purified. The tankyrase PARP catalytic domain was found to be enzymatically active, as demonstrated by an in vitro poly ADP-ribosylation (PARylation) experiment. Using in vitro ADP-ribosylation assay, we further demonstrate that the chikungunya virus (CHIKV) nsp3 (non-structural protein 3) macrodomain inhibits ADP-ribosylation in a time-dependent way. We have also demonstrated that transfection of the CHIKV nsP3 macrodomain increases the CHIKV viral titer in mosquito cells, suggesting that ADP-ribosylation may play a significant role in viral replication.
Collapse
Affiliation(s)
- Ramesh Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453252, India
| | - Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453252, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
43
|
Bianchi AR, La Pietra A, Guerretti V, De Maio A, Capriello T, Ferrandino I. Synthesis and Degradation of Poly(ADP-ribose) in Zebrafish Brain Exposed to Aluminum. Int J Mol Sci 2023; 24:ijms24108766. [PMID: 37240112 DOI: 10.3390/ijms24108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(ADPribosyl)ation is a post-translational protein modification, catalyzed by poly(ADP-ribose) polymerase (PARPs) enzymes, responsible for ADP-ribose polymer synthesis (PAR) from NAD+. PAR turnover is assured by poly(ADPR) glycohydrolase (PARGs) enzymes. In our previous study, the altered histology of zebrafish brain tissue, resulting in demyelination and neurodegeneration also with poly(ADPribosyl)ation hyperactivation, was demonstrated after aluminum (Al) exposure for 10 and 15 days. On the basis of this evidence, the aim of the present research was to study the synthesis and degradation of poly(ADP-ribose) in the brain of adult zebrafish exposed to 11 mg/L of Al for 10, 15, and 20 days. For this reason, PARP and PARG expression analyses were carried out, and ADPR polymers were synthesized and digested. The data showed the presence of different PARP isoforms, among which a human PARP1 counterpart was also expressed. Moreover, the highest PARP and PARG activity levels, responsible for the PAR production and its degradation, respectively, were measured after 10 and 15 days of exposure. We suppose that PARP activation is related to DNA damage induced by Al, while PARG activation is needed to avoid PAR accumulation, which is known to inhibit PARP and promote parthanatos. On the contrary, PARP activity decrease at longer exposure times suggests that neuronal cells could adopt the stratagem of reducing polymer synthesis to avoid energy expenditure and allow cell survival.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Alessandra La Pietra
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Valeria Guerretti
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
44
|
Malhotra MK, Pahuja S, Kiesel BF, Appleman LJ, Ding F, Lin Y, Tawbi HA, Stoller RG, Lee JJ, Belani CP, Chen AP, Giranda VL, Shepherd SP, Emens LA, Ivy SP, Chu E, Beumer JH, Puhalla S. A phase 1 study of veliparib (ABT-888) plus weekly carboplatin and paclitaxel in advanced solid malignancies, with an expansion cohort in triple negative breast cancer (TNBC) (ETCTN 8620). Breast Cancer Res Treat 2023; 198:487-498. [PMID: 36853577 PMCID: PMC10710035 DOI: 10.1007/s10549-023-06889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Veliparib is a poly-ADP-ribose polymerase (PARP) inhibitor, and it has clinical activity with every 3 weeks carboplatin and paclitaxel. In breast cancer, weekly paclitaxel is associated with improved overall survival. We aimed to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of veliparib with weekly carboplatin and paclitaxel as well as safety, pharmacokinetics, and preliminary clinical activity in triple negative breast cancer (TNBC). METHODS Patients with locally advanced/metastatic solid tumors and adequate organ function were eligible. A standard 3 + 3 dose-escalation design was followed by a TNBC expansion cohort. Veliparib doses ranging from 50 to 200 mg orally bid were tested with carboplatin (AUC 2) and paclitaxel (80 mg/m2) given weekly in a 21-day cycle. Adverse events (AE) were evaluated by CTCAE v4.0, and objective response rate (ORR) was determined by RECIST 1.1. RESULTS Thirty patients were enrolled, of whom 22 had TNBC. Two dose-limiting toxicities were observed. The RP2D was determined to be 150 mg PO bid veliparib with weekly carboplatin and paclitaxel 2 weeks on, 1 week off, based on hematologic toxicity requiring dose reduction in the first 5 cycles of treatment. The most common grade 3/4 AEs included neutropenia, anemia, and thrombocytopenia. PK parameters of veliparib were comparable to single-agent veliparib. In 23 patients with evaluable disease, the ORR was 65%. In 19 patients with TNBC with evaluable disease, the ORR was 63%. CONCLUSION Veliparib can be safely combined with weekly paclitaxel and carboplatin, and this triplet combination has promising clinical activity.
Collapse
Affiliation(s)
- Monica K Malhotra
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shalu Pahuja
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hussein A Tawbi
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald G Stoller
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chandra P Belani
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, USA
- Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | | | - Leisha A Emens
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Therapeutics Program, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- UPMC Magee Women's Hospital, 300 Halket Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
45
|
Langelier MF, Lin X, Zha S, Pascal JM. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. SCIENCE ADVANCES 2023; 9:eadf7175. [PMID: 36961901 PMCID: PMC10038340 DOI: 10.1126/sciadv.adf7175] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
PARP1 and PARP2 detect DNA breaks, which activates their catalytic production of poly(ADP-ribose) that recruits repair factors and contributes to PARP1/2 release from DNA. PARP inhibitors (PARPi) are used in cancer treatment and target PARP1/2 catalytic activity, interfering with repair and increasing PARP1/2 persistence on DNA damage. In addition, certain PARPi exert allosteric effects that increase PARP1 retention on DNA. However, no clinical PARPi exhibit this allosteric behavior toward PARP1. In contrast, we show that certain clinical PARPi exhibit an allosteric effect that retains PARP2 on DNA breaks in a manner that depends on communication between the catalytic and DNA binding regions. Using a PARP2 mutant that mimics an allosteric inhibitor effect, we observed increased PARP2 retention at cellular damage sites. The PARPi AZD5305 also exhibited a clear reverse allosteric effect on PARP2. Our results can help explain the toxicity of clinical PARPi and suggest ways to improve PARPi moving forward.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
46
|
Guneri-Sozeri PY, Özden-Yılmaz G, Kisim A, Cakiroglu E, Eray A, Uzuner H, Karakülah G, Pesen-Okvur D, Senturk S, Erkek-Ozhan S. FLI1 and FRA1 transcription factors drive the transcriptional regulatory networks characterizing muscle invasive bladder cancer. Commun Biol 2023; 6:199. [PMID: 36805539 PMCID: PMC9941102 DOI: 10.1038/s42003-023-04561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.
Collapse
Affiliation(s)
- Perihan Yagmur Guneri-Sozeri
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gülden Özden-Yılmaz
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Asli Kisim
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Ece Cakiroglu
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Hamdiye Uzuner
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Devrim Pesen-Okvur
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Serif Senturk
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
47
|
Kato J, Yamashita S, Ishiwata-Endo H, Oka S, Yu ZX, Liu C, Springer DA, Noguchi A, Peiravi M, Hoffmann V, Lizak MJ, Medearis M, Kim IK, Moss J. ADP-ribose-acceptor hydrolase 2 ( Arh2 ) deficiency results in cardiac dysfunction, tumorigenesis, inflammation, and decreased survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527494. [PMID: 36798189 PMCID: PMC9934554 DOI: 10.1101/2023.02.07.527494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity. To determine its possible in vivo activities, Arh2 -knockout (KO) and - heterozygous (Het) mice were generated using CRISPR-Cas9. Arh2 -KO mice exhibited decreased cardiac contractility by MRI, echocardiography and dobutamine stress with cardiomegaly and abnormal motor function. Arh2 -Het mice showed results similar to those seen in Arh2 -KO mice except for cardiomegaly. Arh2 -KO and -Het mice and mouse embryonic fibroblasts (MEFs) developed spontaneous tumors and subcutaneous tumors in nude mice. We identified 13 mutations in Arh2 -Het MEFs and heterozygous tumors, corresponding to human ARH2 mutations in cancers obtained from COSMIC. Of interest, the L116R mutation in Arh2 gene plays a critical role in aggressive tumorigenesis in nude mice, corresponding to human ARH2 mutations in stomach adenocarcinoma. Both genders of Arh2 -KO and -Het mice showed increased unexpectedly deaths and decreased survival rate during a 24-month observation, caused by tumor, inflammation, non-inflammation (e.g., cardiomegaly, dental dysplasia), and congenital diseases. Thus, Arh2 plays a pivotal role in cardiac function, tumorigenesis, inflammation, and overall survival.
Collapse
|
48
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
49
|
Löffler T, Krüger A, Zirak P, Winterhalder MJ, Müller AL, Fischbach A, Mangerich A, Zumbusch A. Influence of chain length and branching on poly(ADP-ribose)-protein interactions. Nucleic Acids Res 2023; 51:536-552. [PMID: 36625274 PMCID: PMC9881148 DOI: 10.1093/nar/gkac1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Hundreds of proteins interact with poly(ADP-ribose) (PAR) via multiple PAR interaction motifs, thereby regulating their physico-chemical properties, sub-cellular localizations, enzymatic activities, or protein stability. Here, we present a targeted approach based on fluorescence correlation spectroscopy (FCS) to characterize potential structure-specific interactions of PAR molecules of defined chain length and branching with three prime PAR-binding proteins, the tumor suppressor protein p53, histone H1, and the histone chaperone APLF. Our study reveals complex and structure-specific PAR-protein interactions. Quantitative Kd values were determined and binding affinities for all three proteins were shown to be in the nanomolar range. We report PAR chain length dependent binding of p53 and H1, yet chain length independent binding of APLF. For all three PAR binders, we found a preference for linear over hyperbranched PAR. Importantly, protein- and PAR-structure-specific binding modes were revealed. Thus, while the H1-PAR interaction occurred largely on a bi-molecular 1:1 basis, p53-and potentially also APLF-can form complex multivalent PAR-protein structures. In conclusion, our study gives detailed and quantitative insight into PAR-protein interactions in a solution-based setting at near physiological buffer conditions. The results support the notion of protein and PAR-structure-specific binding modes that have evolved to fit the purpose of the respective biochemical functions and biological contexts.
Collapse
Affiliation(s)
| | | | - Peyman Zirak
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | | | - Anna-Lena Müller
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | - Arthur Fischbach
- Department of Biology, Universität Konstanz, Konstanz D-78457, Germany
| | - Aswin Mangerich
- To whom correspondence should be addressed. Tel: +49 33200 88 5301;
| | - Andreas Zumbusch
- Correspondence may also be addressed to Andreas Zumbusch. Tel: +49 7531 882027;
| |
Collapse
|
50
|
Challa S, Whitaker AL, Kraus WL. Detecting Poly (ADP-Ribose) In Vitro and in Cells Using PAR Trackers. Methods Mol Biol 2023; 2609:75-90. [PMID: 36515830 DOI: 10.1007/978-1-0716-2891-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ADP-ribosylation (ADPRylation) is a reversible posttranslational modification resulting in the covalent attachment of ADP-ribose (ADPR) moieties on substrate proteins. Naturally occurring protein motifs and domains, including WWEs, PBZs (PAR binding zinc fingers), and macrodomains, act as "readers" for protein-linked ADPR. Although recombinant, antibody-like ADPR detection reagents containing these readers have facilitated the detection of ADPR, they are limited in their ability to capture the dynamic nature of ADPRylation. Herein, we describe the preparation and use of poly(ADP-ribose) (PAR) Trackers (PAR-Ts)-optimized dimerization-dependent or split-protein reassembly PAR sensors containing a naturally occurring PAR binding domain fused to both halves of dimerization-dependent GFP (ddGFP) or split nano luciferase (NanoLuc), respectively. We also describe how these tools can be used for the detection and quantification of PAR levels in biochemical assays with extracts and in living cells. These protocols will allow users to explore the broad utility of PAR-Ts for detecting PAR in various experimental and biological systems.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Amy L Whitaker
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|