1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Han Y, Wu Y, Lu J, Liang Q, Qu X, Li J, Miao P, Yang J, Li G. Construction of Bifunctional Protein/Peptide Complex for Sensitive Detection of Transglutaminase 2. ACS Sens 2025; 10:2760-2767. [PMID: 40127312 DOI: 10.1021/acssensors.4c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bifunctional protein complexes play essential roles in the biomedical field, particularly in biochemical analysis. However, traditional protein engineering methods (e.g., gene fusion and covalent modification) suffer limitations of complex design, low efficiency, and lack of universality. In this work, we propose a straightforward, efficient, and universal strategy for the preparation of a bifunctional protein complex. Green fluorescent protein (GFP) is engineered using the protein purification tag and coordinate-mediated peptide assembly, facilitating both target recognition and signal reporting. It is further applied to develop a sensitive biosensor for the detection of a target protein. Due to the substantial loading of functional components within the complex, the proposed biosensor demonstrates a simple procedure and high sensitivity. Furthermore, the analysis of clinical samples has been achieved to distinguish breast cancer patients from healthy individuals. Given the abundance of histidine-tagged proteins and the customizable nature of peptides, this work is expected to provide a valuable concept for bifunctional protein engineering in biosensing and broader biomedical applications.
Collapse
Affiliation(s)
- Yiwei Han
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanbing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jianyang Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Qizhi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jinlong Li
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Montepietra D, Germelli L, Marchetti L, Tozzini V, Angeloni E, Giacomelli C, Storti B, Bizzarri R, Barresi E, Taliani S, Brancolini G, Da Pozzo E. An intramolecular FRET biosensor for the detection of SARS-CoV-2 in biological fluids. NANOSCALE 2025; 17:8803-8815. [PMID: 40091661 DOI: 10.1039/d4nr05040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of a FRET-based sensor for detecting the Spike surface antigen of SARS-CoV-2 in biological fluids is described here, exploiting the fluorescence properties of Green Fluorescent Protein (GFP). Our design strategy combines experimental and molecular modeling and simulations to build a smart modular architecture, allowing for future optimization and versatile applications. The prototype structure incorporates two reporter elements at the N-terminus and C-terminus, with two interaction elements mediating their separation. This design supports two fluorescence measurement methods: direct measurement and the molecular beacon approach. The former detects changes in GFP fluorescence intensity due to interactions with the Spike protein, while the latter involves an organic quencher that restores GFP fluorescence upon Spike protein binding. In silico design of linkers, using molecular dynamics (MD) simulations, ensured optimal flexibility and stability. The AAASSGGGASGAGG linker was selected for its balance between flexibility and stability, while the LEAPAPA linker was chosen for its minimal structural impact on the interaction elements. Fluorophores' behavior was analyzed, showing stable FRET efficiency, essential for reliable detection. Quenching efficiency calculations, based on Förster energy transfer theory, validated the sensor's sensitivity. Further, MD simulations assessed GFP stability, confirming minimal unfolding tendencies, which explains the sensor functioning mechanism. The sensor was successfully produced in E. coli, and functional validation demonstrated its ability to detect the Spike protein, with fluorescence recovery proportional to protein concentration, while the modular computer aided design allowed for sensitivity optimization. The developed biosensor prototype offers a promising tool for rapid and precise viral detection in clinical settings.
Collapse
Affiliation(s)
- Daniele Montepietra
- Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 4100 Modena, Italy
| | - Lorenzo Germelli
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Laura Marchetti
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Valentina Tozzini
- Istituto Nanoscienze - CNR-NANO, Lab NEST CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- INFN Sezione Pisa, Largo Bruno Pontecorvo, 56127 Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Barbara Storti
- Istituto Nanoscienze - CNR-NANO, Lab NEST CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ranieri Bizzarri
- Istituto Nanoscienze - CNR-NANO, Lab NEST CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine - University of Pisa, via Roma 55, 56126 PISA, Italy
| | - Elisabetta Barresi
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Sabrina Taliani
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| | - Giorgia Brancolini
- Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy - University of Pisa, via Bonanno 6, 56127 Pisa, Italy.
| |
Collapse
|
4
|
Bilgin N, Hintzen JCJ, Mecinović J. Chemical tools for probing histidine modifications. Chem Commun (Camb) 2025; 61:3805-3820. [PMID: 39936705 DOI: 10.1039/d4cc06586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Histidine is a unique amino acid with critical roles in protein structure and function, ranging from metal ion binding to enzyme catalysis. Histidine residues in proteins also undergo diverse posttranslational modifications, including methylation, phosphorylation and hydroxylation, by various enzymes, some of them being only recently identified and characterised. In this review, we describe the development of chemical tools for understanding the role of histidine residues in chemical and biological systems. We spotlight the application of histidine analogues in probing biomedically important posttranslational modifications of histidine residues in proteins, and we highlight novel bioconjugation methods that enable chemoselective modifications of histidine residues in peptides and proteins.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
5
|
Thanasi IA, Bouloc N, McMahon C, Wang N, Szijj PA, Butcher T, Rochet LNC, Love EA, Merritt A, Baker JR, Chudasama V. Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity. Chem Sci 2025; 16:2763-2776. [PMID: 39811008 PMCID: PMC11726237 DOI: 10.1039/d4sc06500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications. Thus, research in this area for the controlled loading of an entity via reaction with lysine residues is of high importance. In this article, we present an approach to achieve this by exploiting the quantitative and reversible site-selective modification of disulfides using pyridazinediones, which facilitates near-quantitative proximity-induced reactions with lysines to enable controlled loading of an entity. The strategy was appraised on several clinically relevant antibody fragments and enabled the formation of mono-labelled lysine-modified antibody fragment conjugates via the formation of stable amide bonds and the use of click chemistry for modular modification. Furthermore, through the use of multiple cycles of this novel strategy, an orthogonally bis-labelled lysine-modified antibody fragment conjugate was also furnished.
Collapse
Affiliation(s)
- Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Nathalie Bouloc
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ning Wang
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Peter A Szijj
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Andy Merritt
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
6
|
Miłogrodzka I, Le Brun AP, Banaszak Holl MM, van 't Hag L. The role of N-terminal acetylation of COVID fusion peptides in the interactions with liquid-ordered lipid bilayers. J Colloid Interface Sci 2025; 679:446-456. [PMID: 39490263 DOI: 10.1016/j.jcis.2024.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The partitioning of viral fusion peptides in lipid membranes with varying order was investigated due to the fusion mechanism being a potential therapeutic approach. Using a planar bilayer model and advanced techniques such as neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D), the structural aspects of peptide-lipid interactions were explored. The study focused on two target membranes: one forming a liquid-ordered domain and the other forming a liquid-disordered domain. Surprisingly, the COVID fusion peptide did not bind significantly to either membrane, as demonstrated by both QCM-D and NR data, suggesting negligible or no interaction with the bilayers. However, the acetylated COVID fusion peptide showed distinct behaviour, indicating a crucial role of N-terminal acetylation in binding to cholesterol-rich liquid-ordered domains. The acetylated peptide induced changes in the structure and thickness of the ordered bilayer with cholesterol whereas proteins and peptides commonly only bind to disordered phases. This study provides valuable insights into the mechanisms of viral membrane fusion and highlights the importance of acetylation in influencing peptide-lipid interactions, laying the groundwork for potential antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Izabela Miłogrodzka
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia; Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia; Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
7
|
Hanaya K, Taguchi K, Wada Y, Kawano M. One-Step Maleimide-Based Dual Functionalization of Protein N-Termini. Angew Chem Int Ed Engl 2025; 64:e202417134. [PMID: 39564713 PMCID: PMC11773299 DOI: 10.1002/anie.202417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Maleimide derivatives are privileged reagents for chemically modifying proteins through the Michael addition reaction with cysteine due to their selectivity, operational simplicity, and commercial availability. However, since accessible free cysteine is rarely found in natural proteins, it is highly desirable to find alternative targets to enable direct bioconjugation of proteins with maleimides. In this study, we have developed an operationally simple and straightforward method for the N-terminal modification of proteins without the need for mutagenesis via a copper(II)-mediated [3+2] cycloaddition reaction with maleimides and 2-pyridinecarboxaldehyde (2-PCA) derivatives under non-denaturing conditions at pH 6 and 37 °C in aqueous media. Our method utilizes commercially available maleimides to attach diverse functionalities to various N-terminal amino acids. We demonstrate the preparation of a ternary protein complex cross-linked at the N-termini and dually modified trastuzumab equipped with monomethyl auristatin E (MMAE), a cytotoxic agent, and a Cy5 fluorophore (MMAE-Cy5-trastuzumab). MMAE-Cy5-trastuzumab retained human epidermal growth factor receptor 2 (HER2) recognition activity and exerted cytotoxicity against HER2-positive cells. Furthermore, MMAE-Cy5-trastuzumab allowed successful visualization of HER2-positive cancer cells in mouse tumors. This straightforward method will expand the accessibility of protein conjugates with well-defined structures in a wide range of research fields.
Collapse
Affiliation(s)
- Kengo Hanaya
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Kazuaki Taguchi
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Yuki Wada
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| |
Collapse
|
8
|
Bartlett RJ, Crisostomo KD, Zhang Q. Reversible Conjugation of Polypeptides and Proteins Utilizing a [3.3.1] Scaffold under Mild Conditions. Org Lett 2024; 26:6428-6432. [PMID: 39038165 DOI: 10.1021/acs.orglett.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An investigation of reversible protein conjugation and deconjugation is presented. Despite numerous available protein conjugation methods, there has been limited documentation of achieving protein conjugation in a controlled and reversible manner. This report introduces a protocol that enables protein modification in a multicomponent fashion under aqueous buffer and mild conditions. A readily available mercaptobenzaldehyde derivative can modify the primary amine of peptides and proteins with a distinctive [3.3.1] scaffold. This modification can be reversed under mild conditions in a controlled fashion, restoring the original protein motif. The effectiveness of this approach has been demonstrated in the modification and quantifiable regeneration of insulin protein.
Collapse
Affiliation(s)
- Ryan J Bartlett
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Kelly D Crisostomo
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
9
|
Møller DN, Kofoed C, Thygesen MB, Sørensen KK, Jensen KJ. Highly selective chemical modification of poly-His tagged peptides and proteins. Methods Enzymol 2024; 698:111-139. [PMID: 38886029 DOI: 10.1016/bs.mie.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chemical modifications to proteins have wide applications. They may be used in, for example, the production of biopharmaceuticals and fluorescent probes. Despite their importance, highly regioselective chemical protein modifications are often challenging to achieve. We have developed two highly selective methods for protein acylation using poly-His tags inserted either at the N-terminus or in combination with a specific Lys residue. For this, we used an N-terminal Gly-His6 (Gly-His tag) or the sequence Hism-Lys-Hisn (Lys-His tag), respectively. The Gly-His tag directed the acylation to the N-terminal Nα-amine when reacted with 4-methoxyphenyl esters to yield stable conjugates. Next, the Lys-His tag was developed to allow modifications at the C-terminus or in loop regions of proteins. This gave a high selectivity of acylation of the designated Lys Nε-amine in the tag over native Lys residues in the protein under mild conditions. Here, we describe the synthesis of aromatic esters carrying different functionalities and reactivity tuning substituents on the phenol. The expression of poly-His tagged proteins, and the procedure for the highly selective peptide and protein acylations are detailed in this contribution. The versatility of these methods has been demonstrated by the attachment of different functionalities such as fluorophores, biotin, and azides to different proteins and an antibody.
Collapse
Affiliation(s)
- Delphine N Møller
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Kofoed
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
10
|
Machida H, Kanemoto K. N-Terminal-Specific Dual Modification of Peptides through Copper-Catalyzed [3+2] Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202320012. [PMID: 38282290 DOI: 10.1002/anie.202320012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Site-specific introduction of multiple components into peptides is greatly needed for the preparation of densely functionalized and structurally uniform peptides. In this regard, N-terminal-specific peptide modification is attractive, but it can be difficult due to the presence of highly nucleophilic lysine ϵ-amine. In this work, we developed a method for the N-terminal-specific dual modification of peptides through a three-component [3+2] cycloaddition with aldehydes and maleimides under mild copper catalysis. This approach enables exclusive functionalization at the glycine N-terminus of iminopeptides, regardless of the presence of lysine ϵ-amine, thus affording the cycloadducts in excellent yields. Tolerating a broad range of functional groups and molecules, the present method provides the opportunity to rapidly construct doubly functionalized peptides using readily accessible aldehyde and maleimide modules.
Collapse
Affiliation(s)
- Haruka Machida
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
11
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Wang X, Chang W, Khosraviani M, Phung W, Peng L, Cohen S, Andrews BT, Sun Y, Davies CW, Koerber JT, Yang J, Song A. Application of N-Terminal Site-Specific Biotin and Digoxigenin Conjugates to Clinical Anti-drug Antibody Assay Development. Bioconjug Chem 2024; 35:174-186. [PMID: 38050929 DOI: 10.1021/acs.bioconjchem.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.
Collapse
Affiliation(s)
- Xiangdan Wang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wenping Chang
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Mehraban Khosraviani
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wilson Phung
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, California 94080, United States
| | - Lingling Peng
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Sivan Cohen
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Benjamin T Andrews
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Yonglian Sun
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Christopher W Davies
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - James T Koerber
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Jihong Yang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Arauzo-Aguilera K, Buscajoni L, Koch K, Thompson G, Robinson C, Berkemeyer M. Yields and product comparison between Escherichia coli BL21 and W3110 in industrially relevant conditions: anti-c-Met scFv as a case study. Microb Cell Fact 2023; 22:104. [PMID: 37208750 PMCID: PMC10197847 DOI: 10.1186/s12934-023-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION In the biopharmaceutical industry, Escherichia coli is one of the preferred expression hosts for large-scale production of therapeutic proteins. Although increasing the product yield is important, product quality is a major factor in this industry because greatest productivity does not always correspond with the highest quality of the produced protein. While some post-translational modifications, such as disulphide bonds, are required to achieve the biologically active conformation, others may have a negative impact on the product's activity, effectiveness, and/or safety. Therefore, they are classified as product associated impurities, and they represent a crucial quality parameter for regulatory authorities. RESULTS In this study, fermentation conditions of two widely employed industrial E. coli strains, BL21 and W3110 are compared for recombinant protein production of a single-chain variable fragment (scFv) in an industrial setting. We found that the BL21 strain produces more soluble scFv than the W3110 strain, even though W3110 produces more recombinant protein in total. A quality assessment on the scFv recovered from the supernatant was then performed. Unexpectedly, even when our scFv is correctly disulphide bonded and cleaved from its signal peptide in both strains, the protein shows charge heterogeneity with up to seven distinguishable variants on cation exchange chromatography. Biophysical characterization confirmed the presence of altered conformations of the two main charged variants. CONCLUSIONS The findings indicated that BL21 is more productive for this specific scFv than W3110. When assessing product quality, a distinctive profile of the protein was found which was independent of the E. coli strain. This suggests that alterations are present in the recovered product although the exact nature of them could not be determined. This similarity between the two strains' generated products also serves as a sign of their interchangeability. This study encourages the development of innovative, fast, and inexpensive techniques for the detection of heterogeneity while also provoking a debate about whether intact mass spectrometry-based analysis of the protein of interest is sufficient to detect heterogeneity in a product.
Collapse
Affiliation(s)
| | - Luisa Buscajoni
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Karin Koch
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Gary Thompson
- Wellcome Trust Biological NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Matthias Berkemeyer
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| |
Collapse
|
15
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Zhang J, Sui P, Yang W, Shirshin EA, Zheng M, Wei B, Xu C, Wang H. Site-specific modification of N-terminal α-amino groups of succinylated collagen. Int J Biol Macromol 2023; 225:310-317. [PMID: 36356876 DOI: 10.1016/j.ijbiomac.2022.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Polymer based protein engineering provides an attractive strategy to endow novel properties to protein and overcome the inherent limitations of both counterparts. The exquisite control of site and density of attached polymers on the proteins is crucial for the bioactivities and properties of the protein-polymer bioconjugates, but is still a challenge. Collagen is the major structural protein in extracellular matrix of animals. Based on the advancements of polymer-based protein engineering, collagen bioconjugates has been widely fabricated and applied as biomaterials. However, the site-specific synthesis of well-defined collagen-polymer bioconjugates is still not achieved. Herein, a versatile strategy for the specific modification of N-terminal α-amino groups in collagen was developed. Firstly, all reactive amino groups of tropocollagen (collagen with telopeptides) were protected by succinic anhydride. Then, the telopeptides were digested to give the active N-terminal α-amino groups, which were subsequently attached with poly(N-isopropylacrylamide) (PNIPAAm) via "grafting from" method based on the atom transfer radical polymerization (ATRP). The site-specific N-terminal PNIPAAm modified succinylated collagen was prepared and its structure, thermal responsive behaviour, and properties was explored.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peishan Sui
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wendian Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
18
|
Protein cysteine S-glycosylation: oxidative hydrolysis of protein S-glycosidic bonds in aqueous alkaline environments. Amino Acids 2023; 55:61-74. [PMID: 36460841 PMCID: PMC9877059 DOI: 10.1007/s00726-022-03208-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Some glycoproteins contain carbohydrates S-linked to cysteine (Cys) residues. However, relatively few S-glycosylated proteins have been detected, due to the lack of an effective research methodology. This work outlines a general concept for the detection of S-glycosylation sites in proteins. The approach was verified by exploratory experiments on a model mixture of β-S-glucosylated polypeptides obtained by the chemical transformation of lysozyme P00698. The model underwent two processes: (1) oxidative hydrolysis of S-glycosidic bonds under alkaline conditions to expose the thiol group of Cys residues; (2) thiol S-alkylation leading to thiol S-adduct formation at the former S-glycosylation sites. Oxidative hydrolysis was conducted in aqueous urea, dimethyl sulfoxide, or trifluoroethanol, with silver nitrate as the reaction promoter, in the presence of triethylamine and/or pyridine. The concurrent formation of stable protein silver thiolates, gluconic acid, and silver nanoclusters was observed. The essential de-metalation of protein silver thiolates using dithiothreitol preceded the S-labeling of Cys residues with 4-vinyl pyridine or a fluorescent reagent. The S-labeled model was sequenced by tandem mass spectrometry to obtain data on the modifications and their distribution over the protein chains. This enabled the efficiency of both S-glycosidic bonds hydrolysis and S-glycosylation site labeling to be evaluated. Suggestions are also given for testing this novel strategy on real proteomic samples.
Collapse
|
19
|
Jensen KJ, Thygesen MB, Sørensen KK, Wu S, Treiberg T, Schoffelen S. Selective Acylation of Proteins at Gly and Lys in His Tags. Chembiochem 2022; 23:e202200359. [PMID: 35984670 DOI: 10.1002/cbic.202200359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
The chemical modification of proteins is of great importance in chemical biology, biotechnology, and for the production of modified biopharmaceuticals, as it enables introduction of fluorophores, biotin, half-life extending moieties, and more. We have developed two methods that use poly-His sequences to direct the highly selective acylation of proteins, either at the N-terminus or at a specific Lys residue. For the former, we used an N-terminal Gly-His6 segment (Gly-His tag) that directed acylation of the N-terminal Nα -amine with 4-methoxyphenyl esters, resulting in stable conjugates. Next, we developed the peptide sequences Hisn -Lys-Hism (Lys-His tags) that direct the acylation of the designated Lys Nϵ -amine under mild conditions and with high selectivity over native Lys residues. Both the Gly-His and Lys-His tags maintain the capacity for immobilized metal ion affinity chromatography. We have demonstrated the robustness of these methods by attaching different moieties such as azides, fluorophores, and biotin to different proteins, including antibodies.
Collapse
Affiliation(s)
- Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Shunliang Wu
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Tuule Treiberg
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Sanne Schoffelen
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Ollivier N, Sénéchal M, Desmet R, Snella B, Agouridas V, Melnyk O. A biomimetic electrostatic assistance for guiding and promoting N-terminal protein chemical modification. Nat Commun 2022; 13:6667. [PMID: 36335111 PMCID: PMC9637170 DOI: 10.1038/s41467-022-34392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The modification of protein electrostatics by phosphorylation is a mechanism used by cells to promote the association of proteins with other biomolecules. In this work, we show that introducing negatively charged phosphoserines in a reactant is a powerful means for directing and accelerating the chemical modification of proteins equipped with oppositely charged arginines. While the extra charged amino acid residues induce no detectable affinity between the reactants, they bring site-selectivity to a reaction that is otherwise devoid of such a property. They also enable rate accelerations of four orders of magnitude in some cases, thereby permitting chemical processes to proceed at the protein level in the low micromolar range, using reactions that are normally too slow to be useful in such dilute conditions.
Collapse
Affiliation(s)
- Nathalie Ollivier
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Magalie Sénéchal
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rémi Desmet
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Benoît Snella
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vangelis Agouridas
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France ,Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017; Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Hansen RA, Märcher A, Gothelf KV. One-Step Conversion of NHS Esters to Reagents for Site-Directed Labeling of IgG Antibodies. Bioconjug Chem 2022; 33:1811-1817. [PMID: 36202104 DOI: 10.1021/acs.bioconjchem.2c00392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody conjugates are extensively used for diagnostics and therapeutics, and as a tool for molecular biology. To prepare such conjugates N-hydroxysuccinimide (NHS) esters are most often used due to the straightforward experimental procedure and the commercial accessibility of the reagents. Such conjugates are however highly heterogeneous, since only the reactivity of the lysines determines the distribution of labels. This has inspired the development of methods that experimentally are as facile but produce conjugates of higher quality. Herein, we report the development of a reagent that can, in one step, be activated with an NHS ester of choice and subsequently can be directly used for site-directed labeling of antibodies. The reagent can be prepared in three synthetic steps and produces conjugates with similar ease as for NHS esters, however in a site-directed manner. We show that the reagent is quantitatively activated by a variety of NHS esters, and we use these to functionalize IgG1, IgG2, and IgG4 antibodies.
Collapse
Affiliation(s)
- Rikke A Hansen
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
22
|
Yuan D, Zhang Y, Lim KH, Leung SKP, Yang X, Liang Y, Lau WCY, Chow KT, Xia J. Site-Selective Lysine Acetylation of Human Immunoglobulin G for Immunoliposomes and Bispecific Antibody Complexes. J Am Chem Soc 2022; 144:18494-18503. [PMID: 36167521 DOI: 10.1021/jacs.2c07594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-selective acetylation of a single lysine residue in a protein that reaches a lysine acetyltransferase's accuracy, precision, and reliability is challenging. Here, we report a peptide-guided, proximity-driven group transfer reaction that acetylates a single lysine residue, Lys 248, of the fragment crystallizable region (Fc region) in the heavy chain of the human Immunoglobulin G (IgG). An Fc-interacting peptide bound with the Fc domain and positioned a phenolic ester close to Lys 248, which induced a nucleophilic reaction and resulted in the transfer of an acetyl group to Lys 248. The acetylation reaction proceeded to a decent yield under the physiological condition without the need for deglycosylation, unnatural amino acids, or catalysts. Along with acetylation, functional moieties such as azide, alkyne, fluorescent molecules, or biotin could also be site-selectively installed on Lys 248, allowing IgG's further derivatization. We then synthesized an antibody-lipid conjugate and constructed antibody-conjugated liposomes (immunoliposomes), targeting HER2-positive (HER2+) cancer cells. We also built a bispecific antibody complex (bsAbC) covalently linking an anti-HER2 antibody and an anti-CD3 antibody. The bsAbC showed in vitro effector-cell-mediated cytotoxicity at nanomolar concentrations. Compared with bispecific antibodies (bsAbs), bsAbCs are constructed based on native IgGs and contain two antigen-binding sites to each antigen, twice that of bsAbs. Altogether, this work reports a method of site-selective acetylation of native antibodies, highlights a facile way of site-selective IgG functionalization, and underscores the potential of bsAbCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Dingdong Yuan
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yu Zhang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - King Hoo Lim
- Department of Biomedical Sciences, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Stephen King Pong Leung
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizi Yang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yujie Liang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Wilson Chun Yu Lau
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Kwan T Chow
- Department of Biomedical Sciences, The City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
23
|
Guo C, Xu K, Chen C, Wang J, Li H. Site-Specific Synthesis of Protein-Oligo Conjugates through Histidine-Maleimide-Mediated Imidazolidinone Formation. Bioconjug Chem 2022; 33:1885-1891. [DOI: 10.1021/acs.bioconjchem.2c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Guo
- R&D Department, Genscript Biotech, 28 Yongxi Street, Nanjing, Jiangsu 211100, China
| | - Kang Xu
- R&D Department, Genscript Biotech, 28 Yongxi Street, Nanjing, Jiangsu 211100, China
| | - Chen Chen
- R&D Department, Genscript Biotech, 28 Yongxi Street, Nanjing, Jiangsu 211100, China
| | - Jianpeng Wang
- R&D Department, Genscript Biotech, 28 Yongxi Street, Nanjing, Jiangsu 211100, China
| | - Hong Li
- R&D Department, Genscript Biotech, 28 Yongxi Street, Nanjing, Jiangsu 211100, China
| |
Collapse
|
24
|
Hanaya K, Yamoto K, Taguchi K, Matsumoto K, Higashibayashi S, Sugai T. Single‐Step N‐Terminal Modification of Proteins via a Bio‐Inspired Copper(II)‐Mediated Aldol Reaction. Chemistry 2022; 28:e202201677. [DOI: 10.1002/chem.202201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kengo Hanaya
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kaho Yamoto
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kazuaki Taguchi
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Kazuaki Matsumoto
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | | | - Takeshi Sugai
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| |
Collapse
|
25
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
26
|
Mikkelsen JH, Gustafsson MBF, Skrydstrup T, Jensen KB. Selective N-Terminal Acylation of Peptides and Proteins with Tunable Phenol Esters. Bioconjug Chem 2022; 33:625-633. [PMID: 35320668 DOI: 10.1021/acs.bioconjchem.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective modification of peptides and proteins is of foremost importance for the development of biopharmaceuticals and exploring biochemical pathways, as well as other applications. Here, we present a study on the development of a general and easily applicable selective method for N-terminal acylation of biomolecules, applying a new type of phenol esters. Key to the success was the development of highly tunable phenol activators bearing in the ortho-position, sulfonic acid or sulfonamide, acting as a steric shield for hydrolysis, and electron-withdrawing groups in the other ortho- and para-position for controlling the reactivity of the activated phenol esters. A library of heptapeptides, testing all 20 natural amino acids positioned at the N-terminal, were acylated in a selective manner at the N-terminus. The majority showed high conversion and excellent Nα-selectivity. Several biologically relevant biomolecules, including DesB30 insulin and human growth hormone, could also be modified at the N-terminal in a highly selective way, exemplified by either a fluorophore or a fatty acid sidechain. Finally, taking advantage of the possibility to accurately adjust the reactivity of the phenol esters, we present a potential strategy for the construction of dual active biopharmaceuticals through the employment of a bifunctional acylation linker and demonstrate its use in the creation of a GLP-1 insulin analogue, coupled through the lysine residue of GLP-1 and the N-terminal PheB1 amine of DesB30 insulin.
Collapse
Affiliation(s)
- Jesper H Mikkelsen
- Global Research Technologies, Novo Nordisk Research Park, 2760 Måløv, Denmark.,Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk Research Park, 2760 Måløv, Denmark
| |
Collapse
|
27
|
Kofoed C, Wu S, Sørensen KK, Treiberg T, Arnsdorf J, Bjørn SP, Jensen TL, Voldborg BG, Thygesen MB, Jensen KJ, Schoffelen S. Highly Selective Lysine Acylation in Proteins Using a Lys-His Tag Sequence. Chemistry 2022; 28:e202200147. [PMID: 35099088 DOI: 10.1002/chem.202200147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/07/2022]
Abstract
Chemical modification of proteins has numerous applications, but it has been challenging to achieve the required high degree of selectivity on lysine amino groups. Recently, we described the highly selective acylation of proteins with an N-terminal Gly-His6 segment. This tag promoted acylation of the N-terminal Nα -amine resulting in stable conjugates. Herein, we report the peptide sequences Hisn -Lys-Hism , which we term Lys-His tags. In combination with simple acylating agents, they facilitate the acylation of the designated Lys Nϵ -amine under mild conditions and with high selectivity over native Lys residues. We show that the Lys-His tags, which are 7 to 10 amino acids in length and still act as conventional His tags, can be inserted in proteins at the C-terminus or in loops, thus providing high flexibility regarding the site of modification. Finally, the selective and efficient acylation of the therapeutic antibody Rituximab, pure or mixed with other proteins, demonstrates the scope of the Lys-His tag acylation method.
Collapse
Affiliation(s)
- Christian Kofoed
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
- Present address: Frick Chemistry Laboratories, Princeton University, 08544, New Jersey, USA
| | - Shunliang Wu
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Tuule Treiberg
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Johnny Arnsdorf
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Sara P Bjørn
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Tanja L Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Bjørn G Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Sanne Schoffelen
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Jensen KB, Mikkelsen JH, Jensen SP, Kidal S, Friberg G, Skrydstrup T, Gustafsson MBF. New Phenol Esters for Efficient pH-Controlled Amine Acylation of Peptides, Proteins, and Sepharose Beads in Aqueous Media. Bioconjug Chem 2022; 33:172-179. [PMID: 34962390 DOI: 10.1021/acs.bioconjchem.1c00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper describes the discovery, synthesis, and use of novel water-soluble acylation reagents for efficient and selective modification, cross-linking, and labeling of proteins and peptides, as well as for their use in the effective modification of sepharose beads under pH control in aqueous media. The reagents are based on a 2,4-dichloro-6-sulfonic acid phenol ester core combined with a variety of linker structures. The combination of these motifs leads to an ideal balance between hydrolytic stability and reactivity. At high pH, good to excellent conversions (up to 95%) and regioselectivity (up to 99:1 Nε/Nα amine ratio) in the acylation were realized, exemplified by the chemical modification of incretin peptides and insulin. At neutral pH, an unusually high preference toward the N-terminal phenylalanine in an insulin derivative was observed (>99:1 Nα/Nε), which is up until now unprecedented in the literature for more elaborate reagents. In addition, the unusually high hydrolytic stability of these reagents and their ability to efficiently react at low concentrations (28 μM or 0.1 mg/mL) are exemplified with a hydroxy linker-based reagent and are a unique feature of this work.
Collapse
Affiliation(s)
- Kim B Jensen
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
| | - Jesper H Mikkelsen
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
| | - Simon P Jensen
- CMC API Development, Novo Nordisk A/S, Smørmosevej 17-19, Bagsværd 2880, Denmark
| | - Steffen Kidal
- CMC API Development, Novo Nordisk A/S, Smørmosevej 17-19, Bagsværd 2880, Denmark
| | - Gitte Friberg
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
| | | |
Collapse
|
29
|
Jiang H, Chen W, Wang J, Zhang R. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Stokowa-Soltys K, Szczerba K, Pacewicz M, Wieczorek R, Wezynfeld NE, Bal W. Interactions of neurokinin B with copper(II) ions and their potential biological consequences. Dalton Trans 2022; 51:14267-14276. [DOI: 10.1039/d2dt02033e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a blood pressure disorder associated with significant proteinuria. Hypertensive women have increased levels of neurokinin B (NKB) and Cu(II) ions in blood plasma during pregnancy. NKB bears the...
Collapse
|
31
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
32
|
Brune KD, Liekniņa I, Sutov G, Morris AR, Jovicevic D, Kalniņš G, Kazāks A, Kluga R, Kastaljana S, Zajakina A, Jansons J, Skrastiņa D, Spunde K, Cohen AA, Bjorkman PJ, Morris HR, Suna E, Tārs K. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. Chembiochem 2021; 22:3199-3207. [PMID: 34520613 DOI: 10.1002/cbic.202100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Collapse
Affiliation(s)
- Karl D Brune
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Grigorij Sutov
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania
| | - Alexander R Morris
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK
| | - Dejana Jovicevic
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Sabine Kastaljana
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Karīna Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Howard R Morris
- BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK.,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| |
Collapse
|
33
|
López-Laguna H, Voltà-Durán E, Parladé E, Villaverde A, Vázquez E, Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 2021; 54:107817. [PMID: 34418503 DOI: 10.1016/j.biotechadv.2021.107817] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|
34
|
Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting
N‐terminal
cysteine. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Asiimwe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | | | | | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | - Jun‐Seok Lee
- Department of Pharmacology Korea University College of Medicine Seoul Korea
| |
Collapse
|
35
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
36
|
Sørensen KK, Mishra NK, Paprocki MP, Mehrotra A, Jensen KJ. High-Performance Reversed-Phase Flash Chromatography Purification of Peptides and Chemically Modified Insulins. Chembiochem 2021; 22:1818-1822. [PMID: 33443297 DOI: 10.1002/cbic.202000826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Preparative reversed-phase HPLC is the established method for the purification of peptides, but has significant limitations. We systematically investigated the use of high-performance reversed-phase flash chromatography (HPFC) to rapidly purify laboratory-scale quantities of crude, synthetic peptides and chemically modified insulins. We demonstrated these methods for a diverse set of peptides, including short, medium, and long peptides. Depending on the purity profile of the peptide, HPFC can be used either as the sole purification method, or as a pre-purification method prior to final HPLC purification. Furthermore, HPFC is suitable for the purification of peptides that are not fully in solution. We provide guidelines for the HPFC of synthetic peptides and small proteins, including the choice of columns, eluents, and gradients. We believe that HPFC is a valuable alternative to HPLC purification of peptides and small proteins.
Collapse
Affiliation(s)
- Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Narendra K Mishra
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Maciej P Paprocki
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
37
|
Bagwan N, El Ali HH, Lundby A. Proteome-wide profiling and mapping of post translational modifications in human hearts. Sci Rep 2021; 11:2184. [PMID: 33500497 PMCID: PMC7838296 DOI: 10.1038/s41598-021-81986-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Post translational modifications (PTMs) are covalent modifications of proteins that can range from small chemical modifications to addition of entire proteins. PTMs contribute to regulation of protein function and thereby greatly increase the functional diversity of the proteome. In the heart, a few well-studied PTMs, such as phosphorylation and glycosylation, are known to play essential roles for cardiac function. Yet, only a fraction of the ~ 300 known PTMs have been studied in a cardiac context. Here we investigated the proteome-wide map of PTMs present in human hearts by utilizing high-resolution mass spectrometry measurements and a suite of PTM identification algorithms. Our approach led to identification of more than 150 different PTMs across three of the chambers in human hearts. This finding underscores that decoration of cardiac proteins by PTMs is much more diverse than hitherto appreciated and provides insights in cardiac protein PTMs not yet studied. The results presented serve as a catalogue of which PTMs are present in human hearts and outlines the particular protein and the specific amino acid modified, and thereby provides a detail-rich resource for exploring protein modifications in human hearts beyond the most studied PTMs.
Collapse
Affiliation(s)
- Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik H El Ali
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenahagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
38
|
The impact of technical failures on recombinant production of soluble proteins in Escherichia coli: a case study on process and protein robustness. Bioprocess Biosyst Eng 2021; 44:1049-1061. [PMID: 33491129 PMCID: PMC8144139 DOI: 10.1007/s00449-021-02514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Technical failures lead to deviations in process parameters that can exceed studied process boundaries. The impact on cell and target protein is often unknown. However, investigations on common technical failures might yield interesting insights into process and protein robustness. Recently, we published a study on the impact of technical failures on an inclusion body process that showed high robustness due to the inherent stability of IBs. In this follow-up study, we investigated the influence of technical failures during production of two soluble, cytosolic proteins in E. coli BL21(DE3). Cell physiology, productivity and protein quality were analyzed, after technical failures in aeration, substrate supply, temperature and pH control had been triggered. In most cases, cell physiology and productivity recovered during a subsequent regeneration phase. However, our results highlight that some technical failures lead to persistent deviations and affect the quality of purified protein.
Collapse
|
39
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
40
|
Alnaas AA, Watson-Siriboe A, Tran S, Negussie M, Henderson JA, Osterberg JR, Chon NL, Harrott BM, Oviedo J, Lyakhova T, Michel C, Reisdorph N, Reisdorph R, Shearn CT, Lin H, Knight JD. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. J Biol Chem 2020; 296:100159. [PMID: 33277360 PMCID: PMC7857503 DOI: 10.1074/jbc.ra120.014618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Mikias Negussie
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Jack A Henderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Nara L Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Beckston M Harrott
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Julianna Oviedo
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Tatyana Lyakhova
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| |
Collapse
|
41
|
Cerofolini L, Fragai M, Luchinat C, Ravera E. Orientation of immobilized antigens on common surfaces by a simple computational model: Exposition of SARS-CoV-2 Spike protein RBD epitopes. Biophys Chem 2020; 265:106441. [PMID: 32745829 PMCID: PMC7387289 DOI: 10.1016/j.bpc.2020.106441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The possibility of immobilizing a protein with antigenic properties on a solid support offers significant possibilities in the development of immunosensors and vaccine formulations. For both applications, the orientation of the antigen should ensure ready accessibility of the antibodies to the epitope. However, an experimental assessment of the orientational preferences necessarily proceeds through the preparation/isolation of the antigen, the immobilization on different surfaces and one or more biophysical characterization steps. To predict a priori whether favorable orientations can be achieved or not would allow one to select the most promising experimental routes, partly mitigating the time cost towards the final product. In this manuscript, we apply a simple computational model, based on united-residue modelling, to the prediction of the orientation of the receptor binding domain of the SARS-CoV-2 spike protein on surfaces commonly used in lateral-flow devices. These calculations can account for the experimental observation that direct immobilization on gold gives sufficient exposure of the epitope to obtain a response in immunochemical assays.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
42
|
Tang TMS, Cardella D, Lander AJ, Li X, Escudero JS, Tsai YH, Luk LYP. Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chem Sci 2020; 11:5881-5888. [PMID: 32874509 PMCID: PMC7441500 DOI: 10.1039/d0sc02023k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) are ideal for peptide and protein labeling. However, because of the reaction reversibility, a large excess of labels or backbone modified substrates are needed. In turn, simple and cheap reagents can be used to label N-terminal cysteine, but its availability inherently limits the potential applications. Aiming to address these issues, we have created a chemo-enzymatic labeling system that exploits the substrate promiscuity of AEP with the facile chemical reaction between N-terminal cysteine and 2-formyl phenylboronic acid (FPBA). In this approach, AEP is used to ligate polypeptides with a Asn-Cys-Leu recognition sequence with counterparts possessing an N-terminal Gly-Leu. Instead of being a labeling reagent, the commercially available FPBA serves as a scavenger converting the byproduct Cys-Leu into an inert thiazolidine derivative. This consequently drives the AEP labeling reaction forward to product formation with a lower ratio of label to protein substrate. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP-ligation/FPBA-coupling system was further demonstrated by site-specifically labeling the N- or C-termini of various proteins.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Davide Cardella
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Alexander J Lander
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Xuefei Li
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Jorge S Escudero
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Yu-Hsuan Tsai
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Louis Y P Luk
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
43
|
Tabata S, Jevtic M, Kurashige N, Fuchida H, Kido M, Tani K, Zenmyo N, Uchinomiya S, Harada H, Itakura M, Hamachi I, Shigemoto R, Ojida A. Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling. iScience 2019; 22:256-268. [PMID: 31786521 PMCID: PMC6906691 DOI: 10.1016/j.isci.2019.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
Electron microscopy (EM) is a technology that enables visualization of single proteins at a nanometer resolution. However, current protein analysis by EM mainly relies on immunolabeling with gold-particle-conjugated antibodies, which is compromised by large size of antibody, precluding precise detection of protein location in biological samples. Here, we develop a specific chemical labeling method for EM detection of proteins at single-molecular level. Rational design of α-helical peptide tag and probe structure provided a complementary reaction pair that enabled specific cysteine conjugation of the tag. The developed chemical labeling with gold-nanoparticle-conjugated probe showed significantly higher labeling efficiency and detectability of high-density clusters of tag-fused G protein-coupled receptors in freeze-fracture replicas compared with immunogold labeling. Furthermore, in ultrathin sections, the spatial resolution of the chemical labeling was significantly higher than that of antibody-mediated labeling. These results demonstrate substantial advantages of the chemical labeling approach for single protein visualization by EM.
Collapse
Affiliation(s)
- Shigekazu Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marijo Jevtic
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nobutaka Kurashige
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Munetsugu Kido
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kazushi Tani
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Naoki Zenmyo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Shohei Uchinomiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Harumi Harada
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
44
|
|
45
|
Zenmyo N, Tokumaru H, Uchinomiya S, Fuchida H, Tabata S, Hamachi I, Shigemoto R, Ojida A. Optimized Reaction Pair of the CysHis Tag and Ni(II)-NTA Probe for Highly Selective Chemical Labeling of Membrane Proteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Naoki Zenmyo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Tokumaru
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Uchinomiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigekazu Tabata
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
46
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|
47
|
Schweida D, Barraud P, Regl C, Loughlin FE, Huber CG, Cabrele C, Schubert M. The NMR signature of gluconoylation: a frequent N-terminal modification of isotope-labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:71-79. [PMID: 30737614 PMCID: PMC6441400 DOI: 10.1007/s10858-019-00228-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/24/2019] [Indexed: 05/05/2023]
Abstract
N-terminal gluconoylation is a moderately widespread modification in recombinant proteins expressed in Escherichia coli, in particular in proteins bearing an N-terminal histidine-tag. This post-translational modification has been investigated mainly by mass spectrometry. Although its NMR signals must have been observed earlier in spectra of 13C/15N labeled proteins, their chemical shifts were not yet reported. Here we present the complete 1H and 13C chemical shift assignment of the N-terminal gluconoyl post-translational modification, based on a selection of His-tagged protein constructs (CCL2, hnRNP A1 and Lin28) starting with Met-Gly-...-(His)6. In addition, we show that the modification can hydrolyze over time, resulting in a free N-terminus and gluconate. This leads to the disappearance of the gluconoyl signals and the appearance of gluconate signals during the NMR measurements. The chemical shifts presented here can now be used as a reference for the identification of gluconoylation in recombinant proteins, in particular when isotopically labeled.
Collapse
Affiliation(s)
- David Schweida
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zurich, Switzerland
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261 CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christof Regl
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Fionna E Loughlin
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zurich, Switzerland
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria.
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zurich, Switzerland.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|