1
|
Chen W, Meng Y, Zhan S, Xiong F, Wang L, Yao J. An exploration on the involvement of the methyltransferase like 3-m 6A‑zinc finger MYM-type containing 1 axis in the progression of liver hepatocellular carcinoma. Int J Biol Macromol 2025; 309:142820. [PMID: 40187452 DOI: 10.1016/j.ijbiomac.2025.142820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
An existing study has underlined the involvement of Methyltransferase Like 3 (METTL3) and its mediated N6-methyladenosine (m6A) modification on zinc finger MYM-type containing 1 (ZMYM1) in cancers, and we aimed to explore their implication in liver hepatocellular carcinoma (LIHC). The levels of METTL3 and ZMYM1 in LIHC cells were gauged via qPCR. The involvement of METTL3 in LIHC progression was explored via assays in vitro and in vivo, and the mechanisms underlying the effects of METTL3 on LIHC were explored via m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and confocal immunofluorescence assays. METTL3, the m6A methyltransferase of interest, expressed relatively higher in LIHC. The promoting effects of METTL3 on LIHC progression were confirmed both in vitro and in vivo, and the relevant mechanisms maybe related to ZMYM1, a target of METTL3. Such effects of METTL3-m6A-ZMYM1 axis on the progression of LIHC were confirmed to be related to the inactivation of RAS/ERK/c-FOS pathway and the reduction in E-cadherin expression yet the elevation in N-cadherin and Vimentin expressions, therefore accelerating the metastasis in LIHC. Our study highlighted the possible involvement of METTL3-mediated m6A modification in LIHC and explored METTL3-m6A-ZMYM1 axis as a possible therapeutic target for the anti-metastatic strategy against LIHC.
Collapse
Affiliation(s)
- Wenbiao Chen
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yiteng Meng
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Shenggang Zhan
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
2
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025; 26:1290-1314. [PMID: 39870965 PMCID: PMC11894219 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
3
|
Xu L, Xuan H, Shi X. Dysregulation of the p300/CBP histone acetyltransferases in human cancer. Epigenomics 2025; 17:193-208. [PMID: 39929233 PMCID: PMC11812348 DOI: 10.1080/17501911.2024.2447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
p300 (E1A binding protein 300) and CBP (CREB-binding protein) are critical regulators of chromatin dynamics and gene expression, playing essential roles in various cellular processes, including proliferation, differentiation, apoptosis, and immune responses. These homologous histone acetyltransferases (HATs) function as transcriptional co-activators by acetylating histones and non-histone proteins. p300/CBP is essential for development, and dysregulation of p300 and CBP has been implicated in several human diseases, particularly cancer. Somatic mutations that inactivate p300/CBP are frequently observed across various cancer types. Additionally, other mutations leading to translocations or truncations of p300/CBP can result in enhanced catalytic activity, potentially representing novel gain-of-function mutations that promote tumor progression. In this review, we discuss the mechanisms underlying the regulation of p300/CBP HAT activity, its dysregulation in cancer, and the development of p300/CBP inhibitors and their potential in cancer therapies.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Wang X, Wang L, Zhou Z, Jiang C, Bao Z, Wang Y, Zhang Y, Song L, Zhao Y, Li X, Li Q, Shen Y, Yu Y, Mi W. The ATAC complex represses the transcriptional program of the autophagy-lysosome pathway via its E3 ubiquitin ligase activity. Cell Rep 2024; 43:115033. [PMID: 39643968 DOI: 10.1016/j.celrep.2024.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
The Ada two A-containing (ATAC) complex, containing histone acetyltransferases general control non-derepressible 5 (GCN5) or p300/CBP-associated factor (PCAF), has gained recognition as a prominent transcriptional coactivator. Recent revelations unveiled E3 ligase activity present in both GCN5 and PCAF; however, how the dual enzymatic activities of the ATAC complex orchestrate distinct transcriptional programs and signaling networks remains largely elusive. Our study unveils the function of the ATAC complex as a negative regulator of the autophagy-lysosome pathway's transcriptional program by modulating the stability of transcription factors TFE3 and TFEB. The ATAC complex primarily impacts TFE3/TFEB destabilization through its E3 ligase activity rather than its acetyltransferase function. GCN5/PCAF-mediated ubiquitination prompts the proteasome-dependent degradation of TFE3 and TFEB. Furthermore, inactivation of the ATAC complex amplifies TFE3/TFEB-mediated autophagy-lysosome functions, thereby promoting cell survival during nutrient deprivation. In summary, our findings establish the "ATAC complex-TFE3/TFEB-autophagy-lysosome" axis as an intrinsic regulatory pathway for resisting starvation-induced cell death.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lingling Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhili Zhou
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chenhao Jiang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ziyu Bao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuexin Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Ying Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lili Song
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yueling Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinying Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qianqian Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yujun Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Ying Yu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China.
| | - Wenyi Mi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Hammond T, Choi JB, Membreño MW, Demeter J, Ng R, Bhattacharya D, Nguyen TN, Hartmann GG, Bossard C, Skotheim JM, Jackson PK, Pasca A, Rubin SM, Sage J. THE FAM53C/DYRK1A axis regulates the G1/S transition of the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627280. [PMID: 39713326 PMCID: PMC11661141 DOI: 10.1101/2024.12.10.627280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A growing number of therapies are being developed to target the cell cycle machinery for the treatment of cancer and other human diseases. Consequently, a greater understanding of the factors regulating cell cycle progression becomes essential to help enhance the response to these new therapies. Here, using data from the Cancer Dependency Map, we identified the poorly-studied factor FAM53C as a new regulator of cell cycle progression. We found that FAM53C is critical for this cell cycle transition and that it acts upstream of the CyclinD-CDK4/6-RB axis in the regulation of the G1/S transition. By mass spectrometry, biochemical, and cellular assays, we identified and validated DYRK1A as a cell cycle kinase that is inhibited by and directly interacts with FAM53C. DYRK1A kinase inhibition rescues the G1 arrest induced by FAM53C knock-down. Consistent with the role for FAM53C identified in cells in culture, FAM53C knockout human cortical organoids display increased cell cycle arrest and growth defects. In addition, Fam53C knockout mice show defects in body growth and behavioral phenotypes. Because DYRK1A dysregulation contributes to developmental disorders such as Down syndrome as well as tumorigenesis, future strategies aiming at regulating FAM53C activity may benefit a broad range of patients.
Collapse
|
6
|
Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y, Zhang K. DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2421496121. [PMID: 39636855 DOI: 10.1073/pnas.2421496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Lysine lactylation (Kla) is a new type of histone mark implicated in the regulation of various functional processes such as transcription. However, how this histone mark acts in cancers remains unexplored due in part to a lack of knowledge about its reader proteins. Here, we observe that cervical cancer (CC) cells undergo metabolic reprogram by which lactate accumulation and thereby boosts histone lactylation, particularly H3K14la. Utilizing a multivalent photoaffinity probe in combination with quantitative proteomics approach, we identify DPF2 as a candidate target of H3K14la. Biochemical studies as well as CUT&Tag analysis reveal that DPF2 is capable of binding to H3K14la and colocalizes with it on promoters of oncogenic genes. Notably, disrupting the DPF2-H3K14la interaction through structure-guided mutation blunts those cancer-related gene expression along with cell survival. Together, our findings reveal DPF2 as a bona fide H3K14la effector that couples histone lactylation to gene transcription and cell survival, offering insight into how histone Kla engages in transcription and tumorigenesis.
Collapse
Affiliation(s)
- Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zheng
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanpu Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China
| |
Collapse
|
7
|
Xu C, Deng Y, Gong X, Wang H, Man J, Wang H, Cheng K, Gui H, Fu S, Wei S, Zheng X, Che T, Ding L, Yang L. Exploring Cuproptosis-Related Genes and Diagnostic Models in Renal Ischemia-Reperfusion Injury Using Bioinformatics, Machine Learning, and Experimental Validation. J Inflamm Res 2024; 17:8997-9020. [PMID: 39583859 PMCID: PMC11583769 DOI: 10.2147/jir.s490357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background Renal ischemia-reperfusion injury (RIRI) is a significant cause of acute kidney injury, complicating clinical interventions such as kidney transplants and partial nephrectomy. Recent research has indicated the role of cuproptosis, a copper-dependent cell death pathway, in various pathologies, but its specific involvement in RIRI remains insufficiently understood. This study aims to investigate the role of cuproptosis-related genes in RIRI and establish robust diagnostic models. Methods We analyzed transcriptomic data from 203 RIRI and 188 control samples using bioinformatics tools to identify cuproptosis-related differentially expressed genes (CRDEGs). The relationship between CRDEGs and immune cells was explored using immune infiltration analysis and correlation analysis. Gene Set Enrichment Analysis (GSEA) was conducted to identify pathways associated with CRDEGs. Machine learning models, including Least Absolute Shrinkage and Selection Operator(LASSO) logistic regression, Support Vector Machine Recursive Feature Elimination (SVM-RFE), Clustering analysis, and weighted gene co-expression network analysis (WGCNA), were used to construct diagnostic gene models. The models were validated using independent datasets. Experimental validation was conducted in vivo using a mouse bilateral RIRI model and in vitro using an HK-2 cell hypoxia-reoxygenation (HR) model with copper chelation intervention. HE, PAS, and TUNEL staining, along with plasma creatinine and blood urea nitrogen (BUN) measurements, were used to evaluate the protective effect of the copper chelator D-Penicillamine (D-PCA) on RIRI in mice. JC-1 and TUNEL staining were employed to assess apoptosis in HK-2 cells under hypoxia-reoxygenation conditions. Immunofluorescence and Western blot (WB) techniques were used to verify the expression levels of the SDHB and NDUFB6 genes. Results A total of 18 CRDEGs were identified, many of which were significantly correlated with immune cell infiltration. GSEA revealed that these genes were involved in pathways related to oxidative phosphorylation and immune response regulation. Four key cuproptosis marker genes (LIPA, LIPT1, SDHB, and NDUFB6) were incorporated into a Cuproptosis Marker Gene Model(CMGM), achieving an area under the curve (AUC) of 0.741-0.834 in validation datasets. In addition, a five-hub-gene SVM model (MOAP1, PPP2CA, SYL2, ZZZ3, and SFRS2) was developed, demonstrating promising diagnostic performance. Clustering analysis revealed two RIRI subtypes (C1 and C2) with distinct molecular profiles and pathway activities, particularly in oxidative phosphorylation and immune responses. Experimental results showed that copper chelation alleviated renal damage and cuproptosis in both in vivo and in vitro models. Conclusion Our study reveals that cuproptosis-related genes are significantly involved in RIRI, particularly influencing mitochondrial dysfunction and immune responses. The diagnostic models developed showed promising predictive performance across independent datasets. Copper chelation demonstrated potential therapeutic effects, suggesting that cuproptosis regulation may be a viable therapeutic strategy for RIRI. This work provides a foundation for further exploration of copper metabolism in renal injury contexts.
Collapse
Affiliation(s)
- Changhong Xu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Yun Deng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Xinyi Gong
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Huabin Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Jiangwei Man
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Kun Cheng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Huiming Gui
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Shenghu Wei
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Xiaoling Zheng
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People’s Republic of China
| | - Tuanjie Che
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People’s Republic of China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| |
Collapse
|
8
|
Li P, Liu P, Zang D, Li C, Wang C, Zhu Y, Liu M, Lu L, Wu X, Nie H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. Int J Mol Sci 2024; 25:10771. [PMID: 39409099 PMCID: PMC11477308 DOI: 10.3390/ijms251910771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
The BTB gene superfamily is widely distributed among higher eukaryotes and plays a significant role in numerous biological processes. However, there is limited knowledge about the structure and function of BTB genes in the critically endangered species Alligator sinensis, which is endemic to China. A total of 170 BTB genes were identified from the A. sinensis genome, classified into 13 families, and unevenly distributed across 16 chromosomes. Analysis of gene duplication events yielded eight pairs of tandem duplication genes and six pairs of segmental duplication genes. Phylogenetics shows that the AsBTB genes are evolutionarily conserved. The cis-regulatory elements in the AsBTB family promoter region reveal their involvement in multiple biological processes. Protein interaction network analysis indicates that the protein interactions of the AsBTB genes are centered around CLU-3, mainly participating in the regulation of biological processes through the ubiquitination pathway. The expression profile and protein interaction network analysis of AsBTB genes during sex differentiation and early gonadal development indicate that AsBTB genes are widely expressed in this process and involves numerous genes and pathways for regulation. This study provides a basis for further investigation of the role of the BTB gene in sex differentiation and gonadal development in A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| | - Haitao Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| |
Collapse
|
9
|
Chen C, Chen C, Wang A, Jiang Z, Zhao F, Li Y, Han Y, Niu Z, Tian S, Bai X, Zhang K, Zhai G. ENL reads histone β-hydroxybutyrylation to modulate gene transcription. Nucleic Acids Res 2024; 52:10029-10039. [PMID: 38880495 PMCID: PMC11417371 DOI: 10.1093/nar/gkae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Histone modifications are typically recognized by chromatin-binding protein modules (referred to as 'readers') to mediate fundamental processes such as transcription. Lysine β-hydroxybutyrylation (Kbhb) is a new type of histone mark that couples metabolism to gene expression. However, the readers that prefer histone Kbhb remain elusive. This knowledge gap should be filled in order to reveal the molecular mechanism of this epigenetic regulation. Herein, we developed a chemical proteomic approach, relying upon multivalent photoaffinity probes to capture binders of the mark, and identified ENL as a novel target of H3K9bhb. Biochemical studies and CUT&Tag analysis further suggested that ENL favorably binds to H3K9bhb, and co-localizes with it on promoter regions to modulate gene expression. Notably, disrupting the interaction between H3K9bhb and ENL via structure-based mutation led to the suppressed expression of genes such MYC that drive cell proliferation. Together, our work offered a chemoproteomics approach and identified ENL as a novel histone β-hydroxybutyrylation effector that regulates gene transcription, providing new insight into the regulation mechanism and function of histone Kbhb.
Collapse
Affiliation(s)
- Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Cong Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
Li X, Cui J, Wang L, Cao C, Liu H. Integrated multi-omics profiling reveals the ZZZ3/CD70 axis is a super-enhancer-driven regulator of diffuse large B-cell lymphoma cell-natural killer cell interactions. Exp Biol Med (Maywood) 2024; 249:10155. [PMID: 39376717 PMCID: PMC11457841 DOI: 10.3389/ebm.2024.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Tumor immune microenvironment is crucial for diffuse large B-cell lymphoma (DLBCL) development. However, the mechanisms by which super-enhancers (SEs) regulate the interactions between DLBCL cells and tumor-infiltrating immune cells remains largely unknown. This study aimed to investigate the role of SE-controlled genes in regulating the interactions between DLBCL cells and tumor-infiltrating immune cells. Single-cell RNA-seq, bulk RNA-seq and H3K27ac ChIP-seq data were downloaded from the Heidelberg Open Research Data database and Gene Expression Omnibus database. HOMER algorithm and Seurat package in R were used for bioinformatics analysis. Cell proliferation and lactate dehydrogenase (LDH) release was detected by MTS and LDH release assays, respectively. Interaction between B cell cluster and CD8+ T cell and NK cell cluster was most obviously enhanced in DLBCL, with CD70-CD27, MIF-CD74/CXCR2 complex, MIF-CD74/CD44 complex and CCL3-CCR5 interactions were significantly increased. NK cell sub-cluster showed the strongest interaction with B cell cluster. ZZZ3 upregulated the transcription of CD70 by binding to its SE. Silencing CD70 in DOHH2 cells significantly promoted the proliferation of co-cultured NK92 cells and LDH release from DOHH2 cells, which was counteracted by ZZZ3 overexpression in DOHH2 cells. CD70 silencing combined with PD-L1 blockade promoted LDH release from DOHH2 cells co-cultured with NK92 cells. In conclusion, DLBCL cells inhibited the proliferation and killing of infiltrating NK cells by regulating ZZZ3/CD70 axis. Targeting ZZZ3/CD70 axis combined with PD-L1 blockade is expected to be a promising strategy for DLBCL treatment.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/immunology
- CD27 Ligand/metabolism
- CD27 Ligand/genetics
- Cell Line, Tumor
- Tumor Microenvironment
- Gene Expression Regulation, Neoplastic
- Cell Proliferation
- Multiomics
Collapse
|
11
|
Schwab S, Hu Y, van Erp B, Cajili MKM, Hartmann MD, Hernandez Alvarez B, Alva V, Boyle AL, Dame RT. Histones and histone variant families in prokaryotes. Nat Commun 2024; 15:7950. [PMID: 39261503 PMCID: PMC11390915 DOI: 10.1038/s41467-024-52337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Histones are important chromatin-organizing proteins in eukaryotes and archaea. They form superhelical structures around which DNA is wrapped. Recent studies have shown that some archaea and bacteria contain alternative histones that exhibit different DNA binding properties, in addition to highly divergent sequences. However, the vast majority of these histones are identified in metagenomes and thus are difficult to study in vivo. The recent revolutionary breakthroughs in computational protein structure prediction by AlphaFold2 and RoseTTAfold allow for unprecedented insights into the potential function and structure of previously uncharacterized proteins. Here, we categorize the prokaryotic histone space into 17 distinct groups based on AlphaFold2 predictions. We identify a superfamily of histones, termed α3 histones, which are common in archaea and present in several bacteria. Importantly, we establish the existence of a large family of histones throughout archaea and in some bacteriophages that, instead of wrapping DNA, bridge DNA, thereby diverging from conventional nucleosomal histones.
Collapse
Affiliation(s)
- Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Marc K M Cajili
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
- School of Chemistry, University of Bristol, Bristol, UK
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
María Del Rocío PB, Palomares Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Syx D, Callewaert B, Vergult S. Loss-of-function of the Zinc Finger Homeobox 4 ( ZFHX4) gene underlies a neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311381. [PMID: 39148819 PMCID: PMC11326360 DOI: 10.1101/2024.08.07.24311381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.
Collapse
Affiliation(s)
- Pérez Baca María Del Rocío
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- University College London, London, England, Great Britain
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Wellens R, Tapia VS, Seoane PI, Bennett H, Adamson A, Coutts G, Rivers-Auty J, Lowe M, Green JP, Lopez-Castejon G, Brough D, Hoyle C. Proximity labelling of pro-interleukin-1α reveals evolutionary conserved nuclear interactions. Nat Commun 2024; 15:6750. [PMID: 39117622 PMCID: PMC11310415 DOI: 10.1038/s41467-024-50901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Interleukin-1α is a suggested dual-function cytokine that diverged from interleukin-1β in mammals potentially by acquiring additional biological roles that relate to highly conserved regions in the pro-domain of interleukin-1α, including a nuclear localisation sequence and histone acetyltransferase-binding domains. Why evolution modified pro-interleukin-1α's subcellular location and protein interactome, and how this shaped interleukin-1α's intracellular role, is unknown. Here we show that TurboID proximity labelling with pro-interleukin-1α suggests a nuclear role for pro-interleukin-1α that involves interaction with histone acetyltransferases, including EP300. We also identify and validate inactivating mutations in the pro-interleukin-1α nuclear localisation sequence of multiple mammalian species, including toothed whales, castorimorpha and marsupials. However, histone acetyltransferase-binding domains are conserved in those species that have lost pro-interleukin-1α nuclear localisation. Together, these data suggest that histone acetyltransferase binding and nuclear localisation occurred together, and that while some species lost the nuclear localisation sequence in their pro-interleukin-1α, histone acetyltransferase binding ability was maintained. The nuclear localisation sequence was lost from several distinct species at different evolutionary times, suggesting convergent evolution, and that the loss of the nuclear localisation sequence confers some important biological outcome.
Collapse
Affiliation(s)
- Rose Wellens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Victor S Tapia
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Coutts
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Gloria Lopez-Castejon
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
14
|
Lo Conte M, Lucchino V, Scalise S, Zannino C, Valente D, Rossignoli G, Murfuni MS, Cicconetti C, Scaramuzzino L, Matassa DS, Procopio A, Martello G, Cuda G, Parrotta EI. Unraveling the impact of ZZZ3 on the mTOR/ribosome pathway in human embryonic stem cells homeostasis. Stem Cell Reports 2024; 19:729-743. [PMID: 38701777 PMCID: PMC11103890 DOI: 10.1016/j.stemcr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.
Collapse
Affiliation(s)
- Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giada Rossignoli
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Maria Stella Murfuni
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Nizza 52, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo Torino, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Danilo Swann Matassa
- Department of Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| | | |
Collapse
|
15
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
16
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
17
|
Xu L, Xuan H, He W, Zhang L, Huang M, Li K, Wen H, Xu H, Shi X. TAZ2 truncation confers overactivation of p300 and cellular vulnerability to HDAC inhibition. Nat Commun 2023; 14:5362. [PMID: 37660055 PMCID: PMC10475075 DOI: 10.1038/s41467-023-41245-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Atypical histone targets of PHD fingers. J Biol Chem 2023; 299:104601. [PMID: 36907441 PMCID: PMC10124903 DOI: 10.1016/j.jbc.2023.104601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Plant homeodomain (PHD) fingers are structurally conserved zinc fingers that selectively bind unmodified or methylated at lysine 4 histone H3 tails. This binding stabilizes transcription factors and chromatin-modifying proteins at specific genomic sites, which is required for vital cellular processes, including gene expression and DNA repair. Several PHD fingers have recently been shown to recognize other regions of H3 or histone H4. In this review, we detail molecular mechanisms and structural features of the non-canonical histone recognition, discuss biological implications of the atypical interactions, highlight therapeutic potential of PHD fingers, and compare inhibition strategies.
Collapse
|
19
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
20
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
21
|
Zhang J, Wang YY, Pan ZQ, Li Y, Sui J, Du LL, Ye K. Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1. Nat Commun 2022; 13:3650. [PMID: 35752625 PMCID: PMC9233695 DOI: 10.1038/s41467-022-31439-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
Neighbor of BRCA1 (Nbr1) is a conserved autophagy receptor that provides cargo selectivity to autophagy. The four-tryptophan (FW) domain is a signature domain of Nbr1, but its exact function remains unclear. Here, we show that Nbr1 from the filamentous fungus Chaetomium thermophilum uses its FW domain to bind the α-mannosidase Ams1, a cargo of selective autophagy in both budding yeast and fission yeast, and delivers Ams1 to the vacuole by conventional autophagy in heterologous fission yeast. The structure of the Ams1-FW complex was determined at 2.2 Å resolution by cryo-electron microscopy. The FW domain adopts an immunoglobulin-like β-sandwich structure and recognizes the quaternary structure of the Ams1 tetramer. Notably, the N-terminal di-glycine of Ams1 is specifically recognized by a conserved pocket of the FW domain. The FW domain becomes degenerated in fission yeast Nbr1, which binds Ams1 with a ZZ domain instead. Our findings illustrate the protein binding mode of the FW domain and reveal the versatility of Nbr1-mediated cargo recognition. Nbr1 recognizes cargos in selective autophagy. Here, authors show filamentous yeast Nbr1 binds Ams1 via an FW domain, and the cryo-EM structure reveals that Nbr1 recognizes the N-terminal di-glycine and tetrameric assembly of Ams1.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China.,National Institute of Biological Sciences, 102206, Beijing, China.,School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 102206, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Franklin KA, Shields CE, Haynes KA. Beyond the marks: reader-effectors as drivers of epigenetics and chromatin engineering. Trends Biochem Sci 2022; 47:417-432. [PMID: 35427480 PMCID: PMC9074927 DOI: 10.1016/j.tibs.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Chromatin is a system of proteins and DNA that regulates chromosome organization and gene expression in eukaryotes. Essential features that support these processes include biochemical marks on histones and DNA, 'writer' enzymes that generate or remove these marks and proteins that translate the marks into transcriptional regulation: reader-effectors. Here, we review recent studies that reveal how reader-effectors drive chromatin-mediated processes. Advances in proteomics and epigenomics have accelerated the discovery of chromatin marks and their correlation with gene states, outpacing our understanding of the corresponding reader-effectors. Therefore, we summarize the current state of knowledge and open questions about how reader-effectors impact cellular function and human disease and discuss how synthetic biology can deepen our knowledge of reader-effector activity.
Collapse
Affiliation(s)
- Kierra A Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
The ZZ domain of HERC2 is a receptor of arginylated substrates. Sci Rep 2022; 12:6063. [PMID: 35411094 PMCID: PMC9001736 DOI: 10.1038/s41598-022-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/01/2022] [Indexed: 01/18/2023] Open
Abstract
AbstractThe E3 ubiquitin ligase HERC2 has been linked to neurological diseases and cancer, however it remains a poorly characterized human protein. Here, we show that the ZZ domain of HERC2 (HERC2ZZ) recognizes a mimetic of the Nt-R cargo degradation signal. NMR titration experiments and mutagenesis results reveal that the Nt-R mimetic peptide occupies a well-defined binding site of HERC2ZZ comprising of the negatively charged aspartic acids. We report the crystal structure of the DOC domain of HERC2 (HERC2DOC) that is adjacent to HERC2ZZ and show that a conformational rearrangement in the protein may occur when the two domains are linked. Immunofluorescence microscopy data suggest that the stimulation of autophagy promotes targeting of HERC2 to the proteasome. Our findings suggest a role of cytosolic HERC2 in the ubiquitin-dependent degradation pathways.
Collapse
|
24
|
Chen YJC, Koutelou E, Dent SY. Now open: Evolving insights to the roles of lysine acetylation in chromatin organization and function. Mol Cell 2022; 82:716-727. [PMID: 35016034 PMCID: PMC8857060 DOI: 10.1016/j.molcel.2021.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Protein acetylation is conserved across phylogeny and has been recognized as one of the most prominent post-translational modifications since its discovery nearly 60 years ago. Histone acetylation is an active mark characteristic of open chromatin, but acetylation on specific lysine residues and histone variants occurs in different biological contexts and can confer various outcomes. The significance of acetylation events is indicated by the associations of lysine acetyltransferases, deacetylases, and acetyl-lysine readers with developmental disorders and pathologies. Recent advances have uncovered new roles of acetylation regulators in chromatin-centric events, which emphasize the complexity of these functional networks. In this review, we discuss mechanisms and dynamics of acetylation in chromatin organization and DNA-templated processes, including gene transcription and DNA repair and replication.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharon Y.R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Correspondence:
| |
Collapse
|
25
|
Li X, Liu S, Li X, Li XD. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chem Biol 2022; 18:994-1013. [PMID: 35041380 DOI: 10.1021/acschembio.1c00945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interpretation of the histone posttranslational modifications (PTMs) by effector proteins, or readers, is an important epigenetic mechanism to regulate gene function. YEATS domains have been recently identified as novel readers of histone lysine acetylation and a variety of nonacetyl acylation marks. Accumulating evidence has revealed the association of dysregulated interactions between YEATS domains and histone PTMs with human diseases, suggesting the therapeutic potential of YEATS domain inhibition. Here, we discuss the molecular mechanisms adopted by YEATS domains in recognizing their preferred histone marks and the biological significance of such recognitions in normal cell physiology and pathogenesis of human diseases. Recent progress in the development of YEATS domain inhibitors is also discussed.
Collapse
Affiliation(s)
- Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| |
Collapse
|
26
|
Arede L, Foerner E, Wind S, Kulkarni R, Domingues AF, Giotopoulos G, Kleinwaechter S, Mollenhauer-Starkl M, Davison H, Chandru A, Asby R, Samarista R, Gupta S, Forte D, Curti A, Scheer E, Huntly BJP, Tora L, Pina C. KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia. Blood Adv 2022; 6:165-180. [PMID: 34654054 PMCID: PMC8753207 DOI: 10.1182/bloodadvances.2020002842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised and specifically how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences. We focus on KAT2A, a lysine acetyltransferase responsible for histone H3 lysine 9 acetylation, which we recently identified as a dependence in acute myeloid leukemia stem cells and that participates in 2 distinct macromolecular complexes: Ada two-A-containing (ATAC) and Spt-Ada-Gcn5-Acetyltransferase (SAGA). Through analysis of human cord blood hematopoietic stem cells and progenitors, and of myeloid leukemia cells, we identify unique respective contributions of the ATAC complex to regulation of biosynthetic activity in undifferentiated self-renewing cells and of the SAGA complex to stabilization or correct progression of cell type-specific programs with putative preservation of cell identity. Cell type and stage-specific dependencies on ATAC and SAGA-regulated programs explain multilevel KAT2A requirements in leukemia and in erythroid lineage specification and development. Importantly, they set a paradigm against which lineage specification and identity can be explored across developmental stem cell systems.
Collapse
Affiliation(s)
- Liliana Arede
- Department of Haematology
- Department of Genetics, and
| | | | | | | | | | - George Giotopoulos
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | - Holly Davison
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | | | - Ryan Asby
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ralph Samarista
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Shikha Gupta
- Department of Haematology
- Department of Genetics, and
| | - Dorian Forte
- Department of Haematology
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Institute of Hematology “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda ospedaliero-universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; and
| | - Brian J. P. Huntly
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; and
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UK
| |
Collapse
|
27
|
Fischer V, Plassard D, Ye T, Reina-San-Martin B, Stierle M, Tora L, Devys D. The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. Cell Rep 2021; 36:109598. [PMID: 34433046 PMCID: PMC8430043 DOI: 10.1016/j.celrep.2021.109598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) and ATAC (Ada-two-A-containing) are two related coactivator complexes, sharing the same histone acetyltransferase (HAT) subunit. The HAT activities of SAGA and ATAC are required for metazoan development, but the role of these complexes in RNA polymerase II transcription is less understood. To determine whether SAGA and ATAC have redundant or specific functions, we compare the effects of HAT inactivation in each complex with that of inactivation of either SAGA or ATAC core subunits in mouse embryonic stem cells (ESCs). We show that core subunits of SAGA or ATAC are required for complex assembly and mouse ESC growth and self-renewal. Surprisingly, depletion of HAT module subunits causes a global decrease in histone H3K9 acetylation, but does not result in significant phenotypic or transcriptional defects. Thus, our results indicate that SAGA and ATAC are differentially required for self-renewal of mouse ESCs by regulating transcription through different pathways in a HAT-independent manner.
Collapse
Affiliation(s)
- Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France; Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France; Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
28
|
Sahm A, Koch P, Horvath S, Hoffmann S. An analysis of methylome evolution in primates. Mol Biol Evol 2021; 38:4700-4714. [PMID: 34175932 PMCID: PMC8557466 DOI: 10.1093/molbev/msab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor 2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites enriched in enhancers controlling immune-related genes.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
29
|
Wang YY, Zhang J, Liu XM, Li Y, Sui J, Dong MQ, Ye K, Du LL. Molecular and structural mechanisms of ZZ domain-mediated cargo selection by Nbr1. EMBO J 2021; 40:e107497. [PMID: 34169534 DOI: 10.15252/embj.2020107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Feng S, Heath E, Jefferson B, Joslyn C, Kvinge H, Mitchell HD, Praggastis B, Eisfeld AJ, Sims AC, Thackray LB, Fan S, Walters KB, Halfmann PJ, Westhoff-Smith D, Tan Q, Menachery VD, Sheahan TP, Cockrell AS, Kocher JF, Stratton KG, Heller NC, Bramer LM, Diamond MS, Baric RS, Waters KM, Kawaoka Y, McDermott JE, Purvine E. Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics 2021; 22:287. [PMID: 34051754 PMCID: PMC8164482 DOI: 10.1186/s12859-021-04197-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04197-2.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily Heath
- Department of Mathematics, University of Illinois, Urbana-Champaign, IL, USA
| | - Brett Jefferson
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA
| | - Cliff Joslyn
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA.,Systems Science Program, Portland State University, Portland, OR, USA
| | - Henry Kvinge
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brenda Praggastis
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA
| | - Amy C Sims
- Signature Science and Technology Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, 63110, Saint Louis, MO, USA
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA
| | - Kevin B Walters
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA
| | - Danielle Westhoff-Smith
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA
| | - Qing Tan
- Department of Medicine, Washington University School of Medicine, 63110, Saint Louis, MO, USA
| | - Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jacob F Kocher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Natalie C Heller
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, 63110, Saint Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, 575 Science Drive, 53711, Madison, WI, USA.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,ERATO Infection-Induced Host Responses Project, Saitama, 332-0012, Japan.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Emilie Purvine
- Computing and Analytics Division, Pacific Northwest National Laboratory, Seattle, WA, USA.
| |
Collapse
|
31
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
32
|
Ren X, Zhou Y, Xue Z, Hao N, Li Y, Guo X, Wang D, Shi X, Li H. Histone benzoylation serves as an epigenetic mark for DPF and YEATS family proteins. Nucleic Acids Res 2021; 49:114-126. [PMID: 33290558 PMCID: PMC7797077 DOI: 10.1093/nar/gkaa1130] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 11/07/2020] [Indexed: 02/01/2023] Open
Abstract
Histone modifications and their functional readout serve as an important mechanism for gene regulation. Lysine benzoylation (Kbz) on histones is a recently identified acylation mark associated with active transcription. However, it remains to be explored whether putative readers exist to recognize this epigenetic mark. Here, our systematic binding studies demonstrated that the DPF and YEATS, but not the Bromodomain family members, are readers for histone Kbz. Co-crystal structural analyses revealed a 'hydrophobic encapsulation' and a 'tip-sensor' mechanism for Kbz readout by DPF and YEATS, respectively. Moreover, the DPF and YEATS family members display subtle yet unique features to create somewhat flexible engagements of different acylation marks. For instance, YEATS2 but not the other YEATS proteins exhibits best preference for Kbz than lysine acetylation and crotonylation due to its wider 'tip-sensor' pocket. The levels of histone benzoylation in cultured cells or in mice are upregulated upon sodium benzoate treatment, highlighting its dynamic regulation. In summary, our work identifies the first readers for histone Kbz and reveals the molecular basis underlying Kbz recognition, thus paving the way for further functional dissections of histone benzoylation.
Collapse
Affiliation(s)
- Xiangle Ren
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Zhou
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhaoyu Xue
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ning Hao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Daliang Wang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
33
|
Kidd M, Kitz A, Drozdov I, Modlin I. Neuroendocrine Tumor Omic Gene Cluster Analysis Amplifies the Prognostic Accuracy of the NETest. Neuroendocrinology 2021; 111:490-504. [PMID: 32392558 DOI: 10.1159/000508573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The NETest is a multigene assay comprising 51 circulating neuroendocrine tumor (NET)-specific transcripts. The quotient of the 51-gene assay is based upon an ensemble of machine learning algorithms. Eight cancer hallmarks or "omes" (apoptome, epigenome, growth factor signalome, metabolome, proliferome, plurome, secretome, SSTRome) represent 29 genes. The NETest is an accurate diagnostic (>90%) test, but its prognostic utility has not been assessed. In this study, we describe the expansion of the NETest omic cluster components and demonstrate that integration amplifies NETest prognostic accuracy. METHODS Group 1: n = 222; including stable disease (SD, n = 146), progressive disease (PD, n = 76), and controls (n = 139). Group 2: NET Registry NCT02270567; n = 88; prospective samples (SD, n = 54; PD, n = 34) with up to 24 months follow-up. We used PubMed literature review, interactomic analysis, nonparametric testing, Kaplan-Meier survival curves, and χ2 analyses to inform and define the prognostic significance of NET genomic "hallmarks." RESULTS 2020 analyses: In-depth analyses of 47 -NETest genes identified a further six omes: fibrosome, inflammasome, metastasome, NEDome, neurome, and TFome. Group 1 analysis: Twelve omes, excluding the inflammasome and apoptome, were significantly (p < 0.05, 2.1- to 8.2-fold) elevated compared to controls. In the PD group, seven omes (proliferome, NEDome, epigenome, SSTRome, neurome, metastasome, and fibrosome) were elevated (both expression levels and fold change >2) versus SD. Group 2 analysis: All these seven omes were upregulated. In PD, they were significantly more elevated (p < 0.02) than in SD. The septet omic expression exhibited a 69% prognostic accuracy. The NETest alone was 70.5% accurate. A low NETest (≤40) integrated with epigenome/metastasome levels was an accurate prognostic for PD (90%). A high NETest (>40) including the fibrosome/NEDome predicted PD development within 3 months (100%). Using decision tree analysis to integrate the four omes (epigenome, metastasome, fibrosome, and NEDome) with the NETest score generated an overall prognostic accuracy of 93%. CONCLUSIONS Examination of NETest omic gene cluster analysis identified five additional clinically relevant cancer hallmarks. Identification of seven omic clusters (septet) provides a molecular pathological signature of disease progression. The integration of the quartet (epigenome, fibrosome, metastasome, NEDome) and the NETest score yielded a 93% accuracy in the prediction of future disease status.
Collapse
Affiliation(s)
- Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | | | | | - Irvin Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
34
|
Liu J, Xue Z, Vann KR, Shi X, Kutateladze TG. Protocol for Biochemical Analysis and Structure Determination of the ZZ Domain of the E3 Ubiquitin Ligase HERC2. STAR Protoc 2020; 1:100155. [PMID: 33377049 PMCID: PMC7757301 DOI: 10.1016/j.xpro.2020.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Since its discovery, several ligands of the ZZ domain have been identified; however, molecular and structural information underlying binding of these ligands remains limited. Here, we describe a protocol for biochemical and structural analysis of the ZZ domain of human E3 ubiquitin ligase HERC2 (HERC2ZZ) and its interaction with its ligands: the N-terminal tails of histone H3 and SUMO1. This methodology could be applied for characterization of binding activities of other histone readers. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020). Optimized protocol to purify HERC2ZZ from bacteria and mammalian cells Strategy to characterize binding of HERC2ZZ to histone tails in vitro and in cells Biochemical analysis and structure determination of histone reader
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhaoyu Xue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Zhao F, Liu Y, Su X, Lee JE, Song Y, Wang D, Ge K, Gao J, Zhang MQ, Li H. Molecular basis for histone H3 "K4me3-K9me3/2" methylation pattern readout by Spindlin1. J Biol Chem 2020; 295:16877-16887. [PMID: 32994220 PMCID: PMC7864079 DOI: 10.1074/jbc.ra120.013649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Histone recognition by "reader" modules serves as a fundamental mechanism in epigenetic regulation. Previous studies have shown that Spindlin1 is a reader of histone H3K4me3 as well as "K4me3-R8me2a" and promotes transcription of rDNA or Wnt/TCF4 target genes. Here we show that Spindlin1 also acts as a potent reader of histone H3 "K4me3-K9me3/2" bivalent methylation pattern. Calorimetric titration revealed a binding affinity of 16 nm between Spindlin1 and H3 "K4me3-K9me3" peptide, which is one to three orders of magnitude stronger than most other histone readout events at peptide level. Structural studies revealed concurrent recognition of H3K4me3 and H3K9me3/2 by aromatic pockets 2 and 1 of Spindlin1, respectively. Epigenomic profiling studies showed that Spindlin1 colocalizes with both H3K4me3 and H3K9me3 peaks in a subset of genes enriched in biological processes of transcription and its regulation. Moreover, the distribution of Spindlin1 peaks is primarily associated with H3K4me3 but not H3K9me3, which suggests that Spindlin1 is a downstream effector of H3K4me3 generated in heterochromatic regions. Collectively, our work calls attention to an intriguing function of Spindlin1 as a potent H3 "K4me3-K9me3/2" bivalent mark reader, thereby balancing gene expression and silencing in H3K9me3/2-enriched regions.
Collapse
Affiliation(s)
- Fan Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yunan Liu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Xiaonan Su
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Yutong Song
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Daliang Wang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China; Department of Biological Sciences Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
36
|
Yu Y, Tencer A, Xuan H, Kutateladze TG, Shi X. ZZEF1 is a Histone Reader and Transcriptional Coregulator of Krüppel-Like Factors. J Mol Biol 2020; 433:166722. [PMID: 33227311 DOI: 10.1016/j.jmb.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
The ZZ-type zinc finger and EF-hand domain protein 1 (ZZEF1) is a multidomain-containing protein. Mutations of ZZEF1 has been implicated in several kinds of human diseases such as diabetes and cancers. However, the function of the ZZEF protein remains largely unknown. Here we show that ZZEF1 functions as a histone H3 reader. The second ZZ domain of ZZEF1 (ZZEF1ZZ2) binds to the N-terminus of histone H3 and is capable of accommodating common epigenetic marks on the H3 tail. The N-terminal amino acids, especially Ala1, of H3 and an acidic cavity of ZZEF1ZZ2 are critical for the ZZ-H3 interaction. RNA-seq analysis in human lung cancer cell line H1299 reveals that downregulated genes upon ZZEF1 depletion are specifically enriched in genes regulated by Krüppel-like factors. Indeed, ZZEF1 physically interacts with KLF9 and KLF6, and regulates a common set of target genes of these transcription factors. Together, our findings suggest a model in which ZZEF1 binds to histone H3 tail and promotes KLF9/6-mediated gene regulation.
Collapse
Affiliation(s)
- Yucong Yu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Adam Tencer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hongwen Xuan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
37
|
Liu J, Xue Z, Zhang Y, Vann KR, Shi X, Kutateladze TG. Structural Insight into Binding of the ZZ Domain of HERC2 to Histone H3 and SUMO1. Structure 2020; 28:1225-1230.e3. [PMID: 32726574 PMCID: PMC11537069 DOI: 10.1016/j.str.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Human ubiquitin ligase HERC2, a component of the DNA repair machinery, has been linked to neurological diseases and cancer. Here, we show that the ZZ domain of HERC2 (HERC2ZZ) binds to histone H3 tail and tolerates posttranslational modifications commonly present in H3. The crystal structure of the HERC2ZZ:H3 complex provides the molecular basis for this interaction and highlights a critical role of the negatively charged site of HERC2ZZ in capturing of A1 of H3. NMR, mutagenesis, and fluorescence data reveal that HERC2ZZ binds to H3 and the N-terminal tail of SUMO1, a previously reported ligand of HERC2ZZ, with comparable affinities. Like H3, the N-terminal tail of SUMO1 occupies the same negatively charged site of HERC2ZZ in the crystal structure of the complex, although in contrast to H3 it adopts an α-helical conformation. Our data suggest that HERC2ZZ may play a role in mediating the association of HERC2 with chromatin.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhaoyu Xue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Arede L, Pina C. Buffering noise: KAT2A modular contributions to stabilization of transcription and cell identity in cancer and development. Exp Hematol 2020; 93:25-37. [PMID: 33223444 DOI: 10.1016/j.exphem.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
KAT2A is a histone acetyltransferase recently identified as a vulnerability in at least some forms of Acute Myeloid Leukemia (AML). Its loss or inhibition prompts leukemia stem cells out of self-renewal and into differentiation with ultimate exhaustion of the leukemia pool. We have recently linked the Kat2a requirement in AML to control of transcriptional noise, reflecting an evolutionary-conserved role of Kat2a in promoting burst-like promoter activity and stabilizing gene expression. We suggest that through this role, Kat2a contributes to preservation of cell identity. KAT2A exerts its acetyltransferase activity in the context of two macromolecular complexes, Spt-Ada-Gcn5-Acetyltransferase (SAGA) and Ada-Two-A-Containing (ATAC), but the specific contribution of each complex to stabilization of gene expression is currently unknown. By reviewing specific gene targets and requirements of the two complexes in cancer and development, we suggest that SAGA regulates lineage-specific programs, and ATAC maintains biosynthetic activity through control of ribosomal protein and translation-associated genes, on which cells may be differentially dependent. While our data suggest that KAT2A-mediated regulation of transcriptional noise in AML may be exerted through ATAC, we discuss potential caveats and probe general vs. complex-specific contributions of KAT2A to transcriptional stability, with implications for control and perturbation of cell identity.
Collapse
Affiliation(s)
- Liliana Arede
- Departments of Haematology; Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Pina
- College of Health, Medicine and Life Sciences - Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
39
|
Longbotham JE, Zhang MY, Fujimori DG. Domain cross-talk in regulation of histone modifications: Molecular mechanisms and targeting opportunities. Curr Opin Chem Biol 2020; 57:105-113. [PMID: 32758979 DOI: 10.1016/j.cbpa.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Functional cross-talk between the catalytic and reader domains in chromatin-modifying enzymes and protein complexes enable coordinated regulation of chromatin modification status, and consequently impacts chromatin-associated processes. ZZ domains are a recently identified class of chromatin readers that recognize the N-terminal region of histone H3 to direct and regulate acetylation activity of several histone acetylation complexes. Cross-talk between chromatin readers sensitive to methylation, and catalytic domains of methyltransferases and demethylases impacts substrate specificity, catalytic activity, and propagation of chromatin marks. Recently described allosteric ligands that target domain communication highlight the potential of domain cross-talk in the development of the next-generation of chromatin-directed therapeutics.
Collapse
Affiliation(s)
- James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA
| | - Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
What do the structures of GCN5-containing complexes teach us about their function? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194614. [PMID: 32739556 DOI: 10.1016/j.bbagrm.2020.194614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. It involves the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. The degree of chromatin compaction controls the accessibility of the transcription machinery to template DNA. Co-activators have critical roles in this process by actively regulating chromatin accessibility. Many transcriptional coactivators are multisubunit complexes, organized into distinct structural and functional modules and carrying multiple regulatory activities. The first nuclear histone acetyltransferase (HAT) characterized was General Control Non-derepressible 5 (Gcn5). Gcn5 was subsequently identified as a subunit of the HAT module of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which is an experimental paradigm for multifunctional co-activators. We know today that Gcn5 is the catalytic subunit of multiple distinct co-activator complexes with specific functions. In this review, we summarize recent advances in the structure of Gcn5-containing co-activator complexes, most notably SAGA, and discuss how these new structural insights contribute to better understand their functions.
Collapse
|
41
|
Zhang Y, Guo Y, Gough SM, Zhang J, Vann KR, Li K, Cai L, Shi X, Aplan PD, Wang GG, Kutateladze TG. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat Commun 2020; 11:3339. [PMID: 32620764 PMCID: PMC7335091 DOI: 10.1038/s41467-020-17098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yiran Guo
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jinyong Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kuai Li
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ling Cai
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
42
|
Cheon Y, Kim H, Park K, Kim M, Lee D. Dynamic modules of the coactivator SAGA in eukaryotic transcription. Exp Mol Med 2020; 52:991-1003. [PMID: 32616828 PMCID: PMC8080568 DOI: 10.1038/s12276-020-0463-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) is a highly conserved transcriptional coactivator that consists of four functionally independent modules. Its two distinct enzymatic activities, histone acetylation and deubiquitylation, establish specific epigenetic patterns on chromatin and thereby regulate gene expression. Whereas earlier studies emphasized the importance of SAGA in regulating global transcription, more recent reports have indicated that SAGA is involved in other aspects of gene expression and thus plays a more comprehensive role in regulating the overall process. Here, we discuss recent structural and functional studies of each SAGA module and compare the subunit compositions of SAGA with related complexes in yeast and metazoans. We discuss the regulatory role of the SAGA deubiquitylating module (DUBm) in mRNA surveillance and export, and in transcription initiation and elongation. The findings suggest that SAGA plays numerous roles in multiple stages of transcription. Further, we describe how SAGA is related to human disease. Overall, in this report, we illustrate the newly revealed understanding of SAGA in transcription regulation and disease implications for fine-tuning gene expression. A protein that helps add epigenetic information to genome, SAGA, controls many aspects of gene activation, potentially making it a target for cancer therapies. To fit inside the tiny cell nucleus, the genome is tightly packaged, and genes must be unpacked before they can be activated. Known to be important in genome opening, SAGA has now been shown to also play many roles in gene activation. Daeyoup Lee at the KAIST, Daejeon, South Korea, and co-workers have reviewed recent discoveries about SAGA’s structure, function, and roles in disease. They report that SAGA’s complex (19 subunits organized into four modules) allows it to play so many roles, genome opening, initiating transcription, and efficiently exporting mRNAs. Its master role means that malfunction of SAGA may be linked to many diseases.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Harim Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Kyubin Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
43
|
Enikanolaiye A, Ruston J, Zeng R, Taylor C, Schrock M, Buchovecky CM, Shendure J, Acar E, Justice MJ. Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology. Genome Res 2020; 30:540-552. [PMID: 32317254 PMCID: PMC7197480 DOI: 10.1101/gr.258400.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.
Collapse
Affiliation(s)
- Adebola Enikanolaiye
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Julie Ruston
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Rong Zeng
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Christine Taylor
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Marijke Schrock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christie M Buchovecky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - Elif Acar
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
44
|
Liu XL, Liu HQ, Li J, Mao CY, He JT, Zhao X. Role of epigenetic in leukemia: From mechanism to therapy. Chem Biol Interact 2020; 317:108963. [PMID: 31978391 DOI: 10.1016/j.cbi.2020.108963] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for the involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is anaggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. In this review, we will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that this novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China.
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
45
|
Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, Zhao G. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 2019; 18:142. [PMID: 31607270 PMCID: PMC6790244 DOI: 10.1186/s12943-019-1065-4] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. METHODS qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. RESULTS Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the "reader" protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. CONCLUSIONS Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.
Collapse
Affiliation(s)
- Ben Yue
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080 China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ran Cui
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Xingwang Cheng
- Department of General Surgery, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508 China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
46
|
Fernandes J, Chandler JD, Lili LN, Uppal K, Hu X, Hao L, Go YM, Jones DP. Transcriptome Analysis Reveals Distinct Responses to Physiologic versus Toxic Manganese Exposure in Human Neuroblastoma Cells. Front Genet 2019; 10:676. [PMID: 31396262 PMCID: PMC6668488 DOI: 10.3389/fgene.2019.00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Manganese (Mn) is an essential trace element, which also causes neurotoxicity in exposed occupational workers. Mn causes mitochondrial toxicity; however, little is known about transcriptional responses discriminated by physiological and toxicological levels of Mn. Identification of such mechanisms could provide means to evaluate risk of Mn toxicity and also potential avenues to protect against adverse effects. To study the Mn dose-response effects on transcription, analyzed by RNA-Seq, we used human SH-SY5Y neuroblastoma cells exposed for 5 h to Mn (0 to 100 μM), a time point where no immediate cell death occurred at any of the doses. Results showed widespread effects on abundance of protein-coding genes for metabolism of reactive oxygen species, energy sensing, glycolysis, and protein homeostasis including the unfolded protein response and transcriptional regulation. Exposure to a concentration (10 μM Mn for 5 h) that did not result in cell death after 24-h increased abundance of differentially expressed genes (DEGs) in the protein secretion pathway that function in protein trafficking and cellular homeostasis. These include BET1 (Golgi vesicular membrane-trafficking protein), ADAM10 (ADAM metallopeptidase domain 10), and ARFGAP3 (ADP-ribosylation factor GTPase-activating protein 3). In contrast, 5-h exposure to 100 μM Mn, a concentration that caused cell death after 24 h, increased abundance of DEGs for components of the mitochondrial oxidative phosphorylation pathway. Integrated pathway analysis results showed that protein secretion gene set was associated with amino acid metabolites in response to 10 μM Mn, while oxidative phosphorylation gene set was associated with energy, lipid, and neurotransmitter metabolites at 100 μM Mn. These results show that differential effects of Mn occur at a concentration which does not cause subsequent cell death compared to a concentration that causes subsequent cell death. If these responses translate to effects on the secretory pathway and mitochondrial functions in vivo, differential activities of these systems could provide a sensitive basis to discriminate sub-toxic and toxic environmental and occupational Mn exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
47
|
Zhang Y, Jang Y, Lee JE, Ahn J, Xu L, Holden MR, Cornett EM, Krajewski K, Klein BJ, Wang SP, Dou Y, Roeder RG, Strahl BD, Rothbart SB, Shi X, Ge K, Kutateladze TG. Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nat Commun 2019; 10:2314. [PMID: 31127101 PMCID: PMC6534582 DOI: 10.1038/s41467-019-10324-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
Histone methyltransferase MLL4 is centrally involved in transcriptional regulation and is often mutated in human diseases, including cancer and developmental disorders. MLL4 contains a catalytic SET domain that mono-methylates histone H3K4 and seven PHD fingers of unclear function. Here, we identify the PHD6 finger of MLL4 (MLL4-PHD6) as a selective reader of the epigenetic modification H4K16ac. The solution NMR structure of MLL4-PHD6 in complex with a H4K16ac peptide along with binding and mutational analyses reveal unique mechanistic features underlying recognition of H4K16ac. Genomic studies show that one third of MLL4 chromatin binding sites overlap with H4K16ac-enriched regions in vivo and that MLL4 occupancy in a set of genomic targets depends on the acetyltransferase activity of MOF, a H4K16ac-specific acetyltransferase. The recognition of H4K16ac is conserved in the PHD7 finger of paralogous MLL3. Together, our findings reveal a previously uncharacterized acetyllysine reader and suggest that selective targeting of H4K16ac by MLL4 provides a direct functional link between MLL4, MOF and H4K16 acetylation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Younghoon Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - JaeWoo Ahn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Longxia Xu
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Michael R Holden
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Evan M Cornett
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Krzysztof Krajewski
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
48
|
Zhao S, Yue Y, Li Y, Li H. Identification and characterization of 'readers' for novel histone modifications. Curr Opin Chem Biol 2019; 51:57-65. [PMID: 31082667 DOI: 10.1016/j.cbpa.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/26/2022]
Abstract
Histone readers recognize histone modifications and mediate downstream biological events. A series of strategies to identify new histone readers have been developed and improved recently. Asides from the traditional pull-down methods and protein structure/function based educated guess, crosslinking and high-throughput screening based strategies led to the discovery of many new histone readers. In this review, we reviewed the rationale and applications of photo-affinity lysine based crosslinking strategies and array/designer nucleosome libraries based high-throughput screening strategies. Epigenome editing technologies to incorporate histone modifications in cells were also discussed. Finally, we summarized the newly identified histone readers (e.g. ZZ domain and Agenet domain) and histone modifications (e.g. serotonylation and benzoylation).
Collapse
Affiliation(s)
- Shuai Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Yue
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Zhang Y, Mi W, Xue Y, Shi X, Kutateladze TG. The ZZ domain as a new epigenetic reader and a degradation signal sensor. Crit Rev Biochem Mol Biol 2019; 54:1-10. [PMID: 30691308 DOI: 10.1080/10409238.2018.1564730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although relatively small in size, the ZZ-type zinc finger (ZZ) domain is a versatile signaling module that is implicated in a diverse set of cell signaling events. Here, we highlight the most recent studies focused on the ZZ domain function as a histone reader and a sensor of protein degradation signals. We review and compare the molecular and structural mechanisms underlying targeting the amino-terminal sequences of histone H3 and arginylated substrates by the ZZ domain. We also discuss the ZZ domain sensitivity to histone PTMs and summarize biological outcomes associated with the recognition of histone and non-histone ligands by the ZZ domain-containing proteins and complexes.
Collapse
Affiliation(s)
- Yi Zhang
- a Department of Pharmacology , University of Colorado School of Medicine , Aurora , CO , USA
| | - Wenyi Mi
- b Center for Epigenetics Van Andel Research Institute , Grand Rapids , MI , USA
| | - Yongming Xue
- c Genetics and Epigenetics Graduate Program , The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Xiaobing Shi
- b Center for Epigenetics Van Andel Research Institute , Grand Rapids , MI , USA
| | - Tatiana G Kutateladze
- a Department of Pharmacology , University of Colorado School of Medicine , Aurora , CO , USA
| |
Collapse
|
50
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|