1
|
Abbate MF, Dupic T, Vigne E, Shahsavarian MA, Walczak AM, Mora T. Computational detection of antigen-specific B cell receptors following immunization. Proc Natl Acad Sci U S A 2024; 121:e2401058121. [PMID: 39163333 PMCID: PMC11363332 DOI: 10.1073/pnas.2401058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.
Collapse
Affiliation(s)
- Maria Francesca Abbate
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
- Large Molecule Research, Sanofi, Vitry-sur-Seine94 400, France
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | | | | | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| |
Collapse
|
2
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Olsen TH, Abanades B, Moal IH, Deane CM. KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies. Sci Rep 2023; 13:11612. [PMID: 37463925 DOI: 10.1038/s41598-023-38108-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the [Formula: see text]2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch .
Collapse
Affiliation(s)
- Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Brennan Abanades
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Iain H Moal
- GSK Medicines Research Centre, GlaxoSmithKline plc, Stevenage, SG1 2NY, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
- Exscientia plc, Oxford, OX4 4GE, UK.
| |
Collapse
|
4
|
Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinstein SH. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 2021; 10:e70873. [PMID: 34787567 PMCID: PMC8741214 DOI: 10.7554/elife.70873] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | | | - Ruoyi Jiang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Oliver G Pybus
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt LouisUnited States
| | - Steven H Kleinstein
- Department of Pathology, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale UniversityNew HavenUnited States
| |
Collapse
|
5
|
Burman L, Chong YE, Duncan S, Klaus A, Rauch K, Hamel K, Hervé K, Pfaffen S, Collins DW, Heyries K, Nangle L, Hansen C, King DJ. Isolation of monoclonal antibodies from anti-synthetase syndrome patients and affinity maturation by recombination of independent somatic variants. MAbs 2021; 12:1836718. [PMID: 33131414 PMCID: PMC7646482 DOI: 10.1080/19420862.2020.1836718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The autoimmune disease known as Jo-1 positive anti-synthetase syndrome (ASS) is characterized by circulating antibody titers to histidyl-tRNA synthetase (HARS), which may play a role in modulating the non-canonical functions of HARS. Monoclonal antibodies to HARS were isolated by single-cell screening and sequencing from three Jo-1 positive ASS patients and shown to be of high affinity, covering diverse epitope space. The immune response was further characterized by repertoire sequencing from the most productive of the donor samples. In line with previous studies of autoimmune repertoires, these antibodies tended to have long complementarity-determining region H3 sequences with more positive-charged residues than average. Clones of interest were clustered into groups with related sequences, allowing us to observe different somatic mutations in related clones. We postulated that these had found alternate structural solutions for high affinity binding, but that mutations might be transferable between clones to further enhance binding affinity. Transfer of somatic mutations between antibodies within the same clonal group was able to enhance binding affinity in a number of cases, including beneficial transfer of a mutation from a lower affinity clone into one of higher affinity. Affinity enhancement was seen with mutation transfer both between related single-cell clones, and directly from related repertoire sequences. To our knowledge, this is the first demonstration of somatic hypermutation transfer from repertoire sequences to further mature in vivo derived antibodies, and represents an additional tool to aid in affinity maturation for the development of antibodies.
Collapse
Affiliation(s)
- Luke Burman
- Discovery Biology, aTyr Pharma , San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Carl Hansen
- AbCellera Biologics Inc ., Vancouver, BC, USA
| | - David J King
- Discovery Biology, aTyr Pharma , San Diego, CA, USA
| |
Collapse
|
6
|
Kelow SP, Adolf-Bryfogle J, Dunbrack RL. Hiding in plain sight: structure and sequence analysis reveals the importance of the antibody DE loop for antibody-antigen binding. MAbs 2021; 12:1840005. [PMID: 33180672 PMCID: PMC7671036 DOI: 10.1080/19420862.2020.1840005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody variable domains contain “complementarity-determining regions” (CDRs), the loops that form the antigen binding site. CDRs1-3 are recognized as the canonical CDRs. However, a fourth loop sits adjacent to CDR1 and CDR2 and joins the D and E strands on the antibody v-type fold. This “DE loop” is usually treated as a framework region, even though mutations in the loop affect the conformation of the CDRs and residues in the DE loop occasionally contact antigen. We analyzed the length, structure, and sequence features of all DE loops in the Protein Data Bank (PDB), as well as millions of sequences from HIV-1 infected and naïve patients. We refer to the DE loop as H4 and L4 in the heavy and light chains, respectively. Clustering the backbone conformations of the most common length of L4 (6 residues) reveals four conformations: two κ-only clusters, one λ-only cluster, and one mixed κ/λ cluster. Most H4 loops are length-8 and exist primarily in one conformation; a secondary conformation represents a small fraction of H4-8 structures. H4 sequence variability exceeds that of the antibody framework in naïve human high-throughput sequences, and both L4 and H4 sequence variability from λ and heavy germline sequences exceed that of germline framework regions. Finally, we identified dozens of structures in the PDB with insertions in the DE loop, all related to broadly neutralizing HIV-1 antibodies (bNabs), as well as antibody sequences from high-throughput sequencing studies of HIV-infected individuals, illuminating a possible role in humoral immunity to HIV-1.
Collapse
Affiliation(s)
- Simon P Kelow
- Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania , Philadelphia, PA, USA
| | - Jared Adolf-Bryfogle
- Protein Design Lab, Institute for Protein Innovation , Boston, MA, USA.,Division of Hematology/Oncology, Boston Children's Hospital , Boston, MA, USA.,Department of Pediatrics, Harvard Medical School , Boston, MA, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia, PA, USA
| |
Collapse
|
7
|
Shen CH, DeKosky BJ, Guo Y, Xu K, Gu Y, Kilam D, Ko SH, Kong R, Liu K, Louder MK, Ou L, Zhang B, Chao CW, Corcoran MM, Feng E, Huang J, Normandin E, O'Dell S, Ransier A, Rawi R, Sastry M, Schmidt SD, Wang S, Wang Y, Chuang GY, Doria-Rose NA, Lin B, Zhou T, Boritz EA, Connors M, Douek DC, Karlsson Hedestam GB, Sheng Z, Shapiro L, Mascola JR, Kwong PD. VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host Microbe 2020; 27:531-543.e6. [PMID: 32130953 PMCID: PMC7467872 DOI: 10.1016/j.chom.2020.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
Rare mutations have been proposed to restrict the development of broadly neutralizing antibodies against HIV-1, but this has not been explicitly demonstrated. We hypothesized that such rare mutations might be identified by comparing broadly neutralizing and non-broadly neutralizing branches of an antibody-developmental tree. Because sequences of antibodies isolated from the fusion peptide (FP)-targeting VRC34-antibody lineage suggested it might be suitable for such rare mutation analysis, we carried out next-generation sequencing (NGS) on B cell transcripts from donor N123, the source of the VRC34 lineage, and functionally and structurally characterized inferred intermediates along broadly neutralizing and poorly neutralizing developmental branches. The broadly neutralizing VRC34.01 branch required the rare heavy-chain mutation Y33P to bind FP, whereas the early bifurcated VRC34.05 branch did not require this rare mutation and evolved less breadth. Our results demonstrate how a required rare mutation can restrict development and shape the maturation of a broad HIV-1-neutralizing antibody lineage.
Collapse
Affiliation(s)
- Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon J DeKosky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Chemical & Petroleum Engineering and Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Divya Kilam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eric Feng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse Huang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
8
|
Sacks D, Bhiman JN, Wiehe K, Gorman J, Kwong PD, Morris L, Moore PL. Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathog 2019; 15:e1008005. [PMID: 31479499 PMCID: PMC6743783 DOI: 10.1371/journal.ppat.1008005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/13/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Previously we have described the V2-directed CAP256-VRC26 lineage that includes broadly neutralizing antibodies (bNAbs) that neutralize globally diverse strains of HIV. We also identified highly mutated "off-track" lineage members that share high sequence identity to broad members but lack breadth. Here, we defined the mutations that limit the breadth of these antibodies and the probability of their emergence. Mutants and chimeras between two pairs of closely related antibodies were generated: CAP256.04 and CAP256.25 (30% and 63% breadth, respectively) and CAP256.20 and CAP256.27 (2% and 59% breadth). Antibodies were tested against 14 heterologous HIV-1 viruses and select mutants to assess breadth and epitope specificity. A single R100rA mutation in the third heavy chain complementarity-determining region (CDRH3) introduced breadth into CAP256.04, but all three CAP256.25 heavy chain CDRs were required for potency. In contrast, in the CAP256.20/27 chimeras, replacing only the CDRH3 of CAP256.20 with that of CAP256.27 completely recapitulated breadth and potency, likely through the introduction of three charge-reducing mutations. In this individual, the mutations that limited the breadth of the off-track antibodies were predicted to occur with a higher probability than those in the naturally paired bNAbs, suggesting a low barrier to the evolution of the off-track phenotype. Mapping studies to determine the viral immunotypes (or epitope variants) that selected off-track antibodies indicated that unlike broader lineage members, CAP256.20 preferentially neutralized viruses containing 169Q. This suggests that this globally rare immunotype, which was common in donor CAP256, drove the off-track phenotype. These data show that affinity maturation to counter globally rare viral immunotypes can drive antibodies within a broad lineage along multiple pathways towards strain-specificity. Defining developmental pathways towards and away from breadth may facilitate the selection of immunogens that elicit bNAbs and minimize off-track antibodies.
Collapse
Affiliation(s)
- David Sacks
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|