1
|
Fujii W, Yamazaki O, Hirohama D, Kaseda K, Kuribayashi-Okuma E, Tsuji M, Hosoyamada M, Kochi Y, Shibata S. Gene-environment interaction modifies the association between hyperinsulinemia and serum urate levels through SLC22A12. J Clin Invest 2025; 135:e186633. [PMID: 40100301 PMCID: PMC12077893 DOI: 10.1172/jci186633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUNDHyperinsulinemia and insulin resistance often accompany elevated serum urate levels (hyperuricemia), a highly heritable condition that triggers gout; however, the underlying mechanisms are unclear.METHODSWe evaluated the association between the index of hyperinsulinemia and the fractional excretion of urate (FEUA) in 162 outpatients. The underlying mechanisms were investigated through single-cell data analysis and kinase screening combined with cell culture experiments. In 377,358 participants of the UK Biobank (UKBB), we analyzed serum urate, hyperinsulinemia, and salt intake. We also examined gene-environment interactions using single nucleotide variants in SLC22A12, which encodes urate transporter 1 (URAT1).RESULTSThe index of hyperinsulinemia was inversely associated with FEUA independently of other covariates. Mechanistically, URAT1 cell-surface abundance and urate transport activity were regulated by URAT1-Thr408 phosphorylation, which was stimulated by hyperinsulinemia via AKT. Kinase screening and single-cell data analysis revealed that serum and glucocorticoid-regulated kinase 1 (SGK1), induced by high salt, activated the same pathway, increasing URAT1. Arg405 was essential for these kinases to phosphorylate URAT1-Thr408. In UKBB participants, hyperinsulinemia and high salt intake were independently associated with increased serum urate levels. We found that SLC22A12 expression quantitative trait locus (eQTL) rs475688 synergistically enhanced the positive association between serum urate and hyperinsulinemia.CONCLUSIONURAT1 mediates the association between hyperinsulinemia and hyperuricemia. Our data provide evidence for the role of gene-environment interactions in determining serum urate levels, paving the way for personalized management of hyperuricemia.FUNDINGACRO Research Grants of Teikyo University; Japan Society for the Promotion of Science; the Japanese Society of Gout and Uric & Nucleic Acids; Fuji Yakuhin; Nanken-Kyoten; Medical Research Center Initiative for High Depth Omics.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Department of Genomic Function and Diversity, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Osamu Yamazaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ken Kaseda
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Emiko Kuribayashi-Okuma
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Makoto Hosoyamada
- Laboratory of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Abdel Mageed SS, Elimam H, Elesawy AE, Abulsoud AI, Raouf AA, Tabaa MME, Mohammed OA, Zaki MB, Abd-Elmawla MA, El-Dakroury WA, Mangoura SA, Elrebehy MA, Elballal MS, Mohamed AA, Ashraf A, Abdel-Reheim MA, Eleragi AMS, Abdellatif H, Doghish AS. Unraveling the impact of miRNAs on gouty arthritis: diagnostic significance and therapeutic opportunities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3433-3450. [PMID: 39560752 PMCID: PMC11978694 DOI: 10.1007/s00210-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Gouty arthritis is a prevalent inflammatory illness. Gout attacks begin when there is an imbalance in the body's uric acid metabolism, which leads to urate buildup and the development of the ailment. A family of conserved, short non-coding RNAs known as microRNAs (miRNAs) can regulate post-transcriptional protein synthesis by attaching to the 3' untranslated region (UTR) of messenger RNA (mRNA). An increasing amount of research is pointing to miRNAs as potential players in several inflammatory diseases, including gouty arthritis. miRNAs may influence the progression of the disease by regulating immune function and inflammatory responses. This review mainly focused on miRNAs and how they contribute to gouty arthritis. It also looked at how miRNAs could be used as diagnostic, prognostic, and potential therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hanan Elimam
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez,, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Aya A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Anatomy and Embryology, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
3
|
Ji A, Sui Y, Xue X, Ji X, Shi W, Shi Y, Terkeltaub R, Dalbeth N, Takei R, Yan F, Sun M, Li M, Lu J, Cui L, Liu Z, Wang C, Li X, Han L, Fang Z, Sun W, Liang Y, He Y, Zheng G, Wang X, Wang J, Zhang H, Pang L, Qi H, Li Y, Cheng Z, Li Z, Xiao J, Zeng C, Merriman TR, Qu H, Fang X, Li C. Novel Genetic Loci in Early-Onset Gout Derived From Whole-Genome Sequencing of an Adolescent Gout Cohort. Arthritis Rheumatol 2025; 77:107-115. [PMID: 39118347 DOI: 10.1002/art.42969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Mechanisms underlying the adolescent-onset and early-onset gout are unclear. This study aimed to discover variants associated with early-onset gout. METHODS We conducted whole-genome sequencing in a discovery adolescent-onset gout cohort of 905 individuals (gout onset 12 to 19 years) to discover common and low-frequency single-nucleotide variants (SNVs) associated with gout. Candidate common SNVs were genotyped in an early-onset gout cohort of 2,834 individuals (gout onset ≤30 years old), and meta-analysis was performed with the discovery and replication cohorts to identify loci associated with early-onset gout. Transcriptome and epigenomic analyses, quantitative real-time polymerase chain reaction and RNA sequencing in human peripheral blood leukocytes, and knock-down experiments in human THP-1 macrophage cells investigated the regulation and function of candidate gene RCOR1. RESULTS In addition to ABCG2, a urate transporter previously linked to pediatric-onset and early-onset gout, we identified two novel loci (Pmeta < 5.0 × 10-8): rs12887440 (RCOR1) and rs35213808 (FSTL5-MIR4454). Additionally, we found associations at ABCG2 and SLC22A12 that were driven by low-frequency SNVs. SNVs in RCOR1 were linked to elevated blood leukocyte messenger RNA levels. THP-1 macrophage culture studies revealed the potential of decreased RCOR1 to suppress gouty inflammation. CONCLUSION This is the first comprehensive genetic characterization of adolescent-onset gout. The identified risk loci of early-onset gout mediate inflammatory responsiveness to crystals that could mediate gouty arthritis. This study will contribute to risk prediction and therapeutic interventions to prevent adolescent-onset gout.
Collapse
Affiliation(s)
- Aichang Ji
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Sui
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Xue
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiapeng Ji
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenrui Shi
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Riku Takei
- Asia Pacific Gout Consortium and University of Alabama at Birmingham
| | - Fei Yan
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingshu Sun
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maichao Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Lu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingling Cui
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Can Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinde Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Han
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhanjie Fang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Sun
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Liang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei He
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangmin Zheng
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiayi Wang
- Development Center for Medical Science & Technology, National Health Commission of the People's Republic of China, Beijing, China
| | - Hui Zhang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Lei Pang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Qi
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yushuang Li
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zan Cheng
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiqiang Li
- The Biomedical Sciences Institute and The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Jingfa Xiao
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
| | - Tony R Merriman
- Asia Pacific Gout Consortium, University of Alabama at Birmingham, Institute of Metabolic Diseases, Qingdao University, Qingdao, China, and University of Otago, Dunedin, New Zealand
| | - Hongzhu Qu
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Changgui Li
- The Affiliated Hospital of Qingdao University, Qingdao, China, Asia Pacific Gout Consortium, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Pommereau A, Sassone F, Poli A, De Silvestris M, Scarabottolo L, Zuschlag Y, Licher T, Bärenz F. The development of a novel high-throughput membrane potential assay and a solid-supported membrane (SSM)-based electrophysiological assay to study the pharmacological inhibition of GLUT9/SLC2A9 isoforms in a drug discovery program. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100193. [PMID: 39522878 DOI: 10.1016/j.slasd.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
GLUT9/SLC2A9 is a urate transporter and takes a fundamental role in the maintenance of normal serum urate levels. GLUT9 is the sole transporter of reabsorbed urate from renal epithelial cells to blood, thus making it an ideal pharmacological target for the development of urate-lowering drugs. None of the three currently available assays for studying GLUT9 pharmacological inhibition can support a high throughput drug discovery screening campaign. In this manuscript we present two novel assay technologies which can be used in a drug discovery screening cascade for GLUT9: a GLUT9 membrane potential assay for primary screening; and a solid-supported membrane (SSM)-based supported electrophysiological assay for secondary screening.
Collapse
Affiliation(s)
- Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | | | | | | | - Yasmin Zuschlag
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Tseng YP, Chang YS, Mekala VR, Liu TY, Chang JG, Shieh GS. Whole-genome sequencing reveals rare variants associated with gout in Taiwanese males. Front Genet 2024; 15:1423714. [PMID: 39385933 PMCID: PMC11462091 DOI: 10.3389/fgene.2024.1423714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
To identify rare variants (RVs) of gout, we sequenced the whole genomes of 321 male gout patients and combined these with those of 64 male gout patients and 682 normal controls at Taiwan Biobank. We performed ACAT-O to identify 682 significant RVs (p < 3.8 × 10-8) clustered on chromosomes 1, 7, 10, 16, and 18. To prioritize causal variants effectively, we sifted them by Combined Annotation-Dependent Depletion score >10 or |effect size| ≥ 1.5 for those without CADD scores. In particular, to the best of our knowledge, we identified the rare variants rs559954634, rs186763678, and 13-85340782-G-A for the first time to be associated with gout in Taiwanese males. Importantly, the RV rs559954634 positively affects gout, and its neighboring gene NPHS2 is involved in serum urate and expressed in kidney tissues. The kidneys play a major role in regulating uric acid levels. This suggests that rs559954634 may be involved in gout. Furthermore, rs186763678 is in the intron of NFIA that interacts with SLC2A9, which has the most significant effect on serum urate. Note that gene-gene interaction NFIA-SLC2A9 is significantly associated with serum urate in the Italian MICROS population and a Croatian population. Moreover, 13-85340782-G-A significantly affects gout susceptibility (odds ratio 6.0; P = 0.038). The >1% carrier frequencies of these potentially pathogenic (protective) RVs in cases (controls) suggest the revealed associations may be true; these RVs deserve further studies for the mechanism. Finally, multivariate logistic regression analysis shows that the rare variants rs559954634 and 13-85340782-G-A jointly are significantly associated with gout susceptibility.
Collapse
Affiliation(s)
- Yu-Ping Tseng
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ya-Sian Chang
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Grace S. Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Data Science Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
He J, Liu G, Kong F, Tan Q, Wang Z, Yang M, He Y, Jia X, Yan C, Wang C, Qian H. Structural basis for the transport and substrate selection of human urate transporter 1. Cell Rep 2024; 43:114628. [PMID: 39146184 DOI: 10.1016/j.celrep.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
High serum urate levels are the major risk factor for gout. URAT1, the primary transporter for urate absorption in the kidneys, is well known as an anti-hyperuricemia drug target. However, the clinical application of URAT1-targeted drugs is limited because of their low specificity and severe side effects. The lack of structural information impedes elucidation of the transport mechanism and the development of new drugs. Here, we present the cryoelectron microscopy (cryo-EM) structures of human URAT1(R477S), its complex with urate, and its closely related homolog OAT4. URAT1(R477S) and OAT4 exhibit major facilitator superfamily (MFS) folds with outward- and inward-open conformations, respectively. Structural comparison reveals a 30° rotation between the N-terminal and C-terminal domains, supporting an alternating access mechanism. A conserved arginine (OAT4-Arg473/URAT1-Arg477) is found to be essential for chloride-mediated inhibition. The URAT1(R477S)-urate complex reveals the specificity of urate recognition. Taken together, our study promotes our understanding of the transport mechanism and substrate selection of URAT1.
Collapse
Affiliation(s)
- Jingjing He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Guoyun Liu
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fang Kong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiulong Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zhenzhou Wang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Meng Yang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yonglin He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxiao Jia
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hongwu Qian
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
7
|
Gao H, Liu Z, Song F, Xing J, Zheng Z, Hou Z, Liu S. Establishment of Polydopamine-Modified HK-2 Cell Membrane Chromatography and Screening of Active Components from Plantago asiatica L. Int J Mol Sci 2024; 25:1153. [PMID: 38256226 PMCID: PMC10816010 DOI: 10.3390/ijms25021153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.
Collapse
Affiliation(s)
- Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zong Hou
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
8
|
Tao H, Mo Y, Liu W, Wang H. A review on gout: Looking back and looking ahead. Int Immunopharmacol 2023; 117:109977. [PMID: 37012869 DOI: 10.1016/j.intimp.2023.109977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Gout is a metabolic disease caused by the deposition of monosodium urate (MSU) crystals inside joints, which leads to inflammation and tissue damage. Increased concentration of serum urate is an essential step in the development of gout. Serum urate is regulated by urate transporters in the kidney and intestine, especially GLUT9 (SLC2A9), URAT1 (SLC22A12) and ABCG. Activation of NLRP3 inflammasome bodies and subsequent release of IL-1β by monosodium urate crystals induce the crescendo of acute gouty arthritis, while neutrophil extracellular traps (NETs) are considered to drive the self-resolving of gout within a few days. If untreated, acute gout may eventually develop into chronic tophaceous gout characterized by tophi, chronic gouty synovitis, and structural joint damage, leading the crushing burden of treatment. Although the research on the pathological mechanism of gout has been gradually deepened in recent years, many clinical manifestations of gout are still unable to be fully elucidated. Here, we reviewed the molecular pathological mechanism behind various clinical manifestations of gout, with a view to making contributions to further understanding and treatment.
Collapse
|
9
|
Wuttke M, König E, Katsara MA, Kirsten H, Farahani SK, Teumer A, Li Y, Lang M, Göcmen B, Pattaro C, Günzel D, Köttgen A, Fuchsberger C. Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank. Nat Commun 2023; 14:1287. [PMID: 36890159 PMCID: PMC9995463 DOI: 10.1038/s41467-023-36864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.
Collapse
Affiliation(s)
- Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Eva König
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Maria-Alexandra Katsara
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | | | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Lang
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Burulca Göcmen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy.
| |
Collapse
|
10
|
Zhang X, Mass BB, Talevi V, Hou R, North KE, Voruganti VS. Novel Insights into the Effects of Genetic Variants on Serum Urate Response to an Acute Fructose Challenge: A Pilot Study. Nutrients 2022; 14:4030. [PMID: 36235682 PMCID: PMC9570712 DOI: 10.3390/nu14194030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Studies have shown that genetic variations can influence metabolic response to nutrient intake, and that diets rich in fructose contribute to hyperuricemia. In this pilot study, our aim was to determine the variability of serum urate in response to an acute fructose challenge and to investigate if genetic variants would affect this response in young to middle-aged adults who self-reported as Black or White. Fifty-seven participants consumed a fructose-rich beverage after an overnight fast. Blood was drawn at five time points (baseline, 30, 60, 120, and 180 min after consumption). Thirty urate-related single nucleotide polymorphisms (SNPs) were analyzed for their associations with baseline serum urate and its percent changes, using a two-step modeling approach followed by meta-analysis. At baseline, serum urate (mg/dL, mean ± SD) was higher in Whites (5.60 ± 1.01 vs. 5.37 ± 0.96), men (6.17 ± 1.14 vs. 5.24 ± 0.79), and those with obesity (5.69 ± 1.08 vs. 5.42 ± 1.06 vs. 5.34 ± 0.80). Three SNPs were significantly associated with baseline serum urate or its percent changes, and six SNPs were nominally associated with percent changes in serum urate. In summary, our results showed that genetic variants could play a role in short-term urate metabolism.
Collapse
Affiliation(s)
- Xinruo Zhang
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Baba B Mass
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Valentina Talevi
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Ruixue Hou
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Venkata Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
11
|
Misawa K. Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100066. [PMID: 36620199 PMCID: PMC9744480 DOI: 10.1002/ggn2.202100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Recent advances in sequencing technologies enable genome-wide analyses for thousands of individuals. The sequential kernel association test (SKAT) is a widely used method to test for associations between a phenotype and a set of rare variants. As the sample size of human genetics studies increases, the computational time required to calculate a kernel is becoming more and more problematic. In this study, a new method to obtain kernel statistics without calculating a kernel matrix is proposed. A simple method for the computation of two kernel statistics, namely, a kernel statistic based on a genetic relationship matrix (GRM) and one based on an identity by state (IBS) matrix, are proposed. By using this method, calculation of the kernel statistics can be conducted using vector calculation without matrix calculation. The proposed method enables one to conduct SKAT for large samples of human genetics.
Collapse
Affiliation(s)
- Kazuharu Misawa
- Department of Human GeneticsYokohama City University Graduate School of Medicine3‐9 Fukuura, Kanazawa‐kuYokohama236‐0004Japan
| |
Collapse
|
12
|
Zhao J, Guo S, Schrodi SJ, He D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front Cell Dev Biol 2022; 10:937855. [PMID: 35813212 PMCID: PMC9259951 DOI: 10.3389/fcell.2022.937855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Teixeira da Silva R, Machado IF, Teodoro JS, Panisello-Roselló A, Roselló-Catafau J, Rolo AP, Palmeira CM. PEG35 as a Preconditioning Agent against Hypoxia/Reoxygenation Injury. Int J Mol Sci 2022; 23:1156. [PMID: 35163080 PMCID: PMC8834864 DOI: 10.3390/ijms23031156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Pharmacological conditioning is a protective strategy against ischemia/reperfusion injury, which occurs during liver resection and transplantation. Polyethylene glycols have shown multiple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in decreased hepatic injury and protected the mitochondria in a rat model of cold ischemia. Thus, the study aimed to decipher the mechanisms underlying PEG35 preconditioning-induced protection against ischemia/reperfusion injury. A hypoxia/reoxygenation model using HepG2 cells was established to evaluate the effects of PEG35 preconditioning. Several parameters were assessed, including cell viability, mitochondrial membrane potential, ROS production, ATP levels, protein content and gene expression to investigate autophagy, mitochondrial biogenesis and dynamics. PEG35 preconditioning preserved the mitochondrial function by decreasing the excessive production of ROS and subsequent ATP depletion, as well as by recovering the membrane potential. Furthermore, PEG35 increased levels of autophagy-related proteins and the expression of genes involved in mitochondrial biogenesis and fusion. In conclusion, PEG35 preconditioning effectively ameliorates hepatic hypoxia/reoxygenation injury through the enhancement of autophagy and mitochondrial quality control. Therefore, PEG35 could be useful as a potential pharmacological tool for attenuating hepatic ischemia/reperfusion injury in clinical practice.
Collapse
Affiliation(s)
- Rui Teixeira da Silva
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Ivo F. Machado
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João S. Teodoro
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Anabela P. Rolo
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Carlos M. Palmeira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| |
Collapse
|
14
|
Luo Z, Yang F, Hong S, Wang J, Chen B, Li L, Yang J, Yao Y, Yang C, Hu Y, Wang S, Xu T, Wu J. Role of microRNA alternation in the pathogenesis of gouty arthritis. Front Endocrinol (Lausanne) 2022; 13:967769. [PMID: 36034424 PMCID: PMC9402903 DOI: 10.3389/fendo.2022.967769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Gouty arthritis is a common inflammatory disease. The condition is triggered by a disorder of uric acid metabolism, which causes urate deposition and gout flares. MicroRNAs are a class of conserved small non-coding RNAs that bind to the 3' untranslated region (UTR) of mRNA and regulate the expression of a variety of proteins at the post-transcriptional level. In recent years, attention has been focused on the role of miRNAs in various inflammatory diseases, including gouty arthritis. It is thought that miRNAs may regulate immune function and inflammatory responses, thereby influencing the onset and progression of the disease. This article mainly reviewed the roles of miRNAs in the pathogenesis of gouty arthritis and prospected their potential as diagnostic and prognostic relevant biomarkers and as possible therapeutic targets.
Collapse
Affiliation(s)
- Zhipan Luo
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Shaocheng Hong
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Junfa Yang
- Institute of clinical pharmacology, Anhui Medical University, Hefei, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenchen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| | - Jun Wu
- Geriatric Department, The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| |
Collapse
|
15
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
16
|
DiBlasi E, Shabalin AA, Monson ET, Keeshin BR, Bakian AV, Kirby AV, Ferris E, Chen D, William N, Gaj E, Klein M, Jerominski L, Callor WB, Christensen E, Smith KR, Fraser A, Yu Z, Gray D, PsychChip Investigators of the Psychiatric Genomics Consortium, Camp NJ, Stahl EA, Li QS, Docherty AR, Coon H. Rare protein-coding variants implicate genes involved in risk of suicide death. Am J Med Genet B Neuropsychiatr Genet 2021; 186:508-520. [PMID: 34042246 PMCID: PMC9292859 DOI: 10.1002/ajmg.b.32861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Andrey A. Shabalin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eric T. Monson
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Brooks R. Keeshin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Safe and Healthy Families, Primary Children's HospitalIntermountain HealthcareSalt Lake CityUtahUSA
| | - Amanda V. Bakian
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Anne V. Kirby
- Department of Occupational & Recreational TherapiesUniversity of UtahSalt Lake CityUtahUSA
| | - Elliott Ferris
- Department of Neurobiology & AnatomyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Danli Chen
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Nancy William
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eoin Gaj
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Michael Klein
- Health Sciences Center Core Research FacilityUniversity of UtahSalt Lake CityUtahUSA
| | - Leslie Jerominski
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - W. Brandon Callor
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Erik Christensen
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Ken R. Smith
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Douglas Gray
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | | | - Nicola J. Camp
- Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Eli A. Stahl
- Pamela Sklar Division of Psychiatric GenomicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Medical and Population Genetics, Broad InstituteCambridgeMassachusettsUSA
| | - Qingqin S. Li
- Neuroscience Data Science, Janssen Research & Development LLCTitusvilleNew JerseyUSA
| | - Anna R. Docherty
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Virginia Institute for Psychiatric & Behavioral GeneticsVirginia Commonwealth School of MedicineRichmondVirginiaUSA
| | - Hilary Coon
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| |
Collapse
|
17
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol 2021; 35:101721. [PMID: 34732286 DOI: 10.1016/j.berh.2021.101721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the post-genome-wide association study (GWAS) era in gout, i.e., the translation of GWAS genetic association signals into biologically informative knowledge. Analytical and experimental follow-up of individual loci, based on the identification of causal genetic variants, reveals molecular pathogenic pathways. We summarize in detail the largest GWAS in urate to date, then we review follow-up studies and molecular insights from ABCG2, HNF4A, PDZK1, MAF, GCKR, ALDH2, ALDH16A1, SLC22A12, SLC2A9, ABCC4, and SLC22A13, including the role of insulin signaling. One common factor in these pathways is the importance of transcriptional control, including the HNF4α transcription factor. The new molecular knowledge reveals new targets for intervention to manage urate levels and prevent gout.
Collapse
|
19
|
Chenodeoxycholic Acid Has Non-Thermogenic, Mitodynamic Anti-Obesity Effects in an In Vitro CRISPR/Cas9 Model of Bile Acid Receptor TGR5 Knockdown. Int J Mol Sci 2021; 22:ijms222111738. [PMID: 34769169 PMCID: PMC8584144 DOI: 10.3390/ijms222111738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models. Thus, the aim of this study was to understand if this obesity reduction is indeed thermogenically-dependent. A CRISPR/Cas9 model of TGR5 (BA receptor) knockdown in 3T3-L1 adipocytes was developed to diminish thermogenic effects. Various parameters were assessed, including mitochondrial bioenergetics by Seahorse flux analysis, oxidative stress and membrane potential by fluorometry, intermediary metabolism by NMR, protein content assessment by Western Blot, gene expression by qPCR, and confocal microscopy evaluation of mitophagy. CDCA was still capable, for the most part, of reversing the harmful effects of cellular obesity, elevating mitophagy and leading to the reduction of harmed mitochondria within the cells, boosting mitochondrial activity, and thus energy consumption. In summary, CDCA has a non-thermogenic, obesity reducing capacity that hinges on a healthy mitochondrial population, explaining at least some of these effects and opening avenues of human treatment for metabolic diseases.
Collapse
|
20
|
Yoon J, Cachau R, David VA, Thompson M, Jung W, Jee SH, Daar IO, Winkler CA, Cho SK. Characterization of a Compound Heterozygous SLC2A9 Mutation That Causes Hypouricemia. Biomedicines 2021; 9:1172. [PMID: 34572357 PMCID: PMC8471325 DOI: 10.3390/biomedicines9091172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Renal hypouricemia is a rare genetic disorder. Hypouricemia can present as renal stones or exercise-induced acute renal failure, but most cases are asymptomatic. Our previous study showed that two recessive variants of SLC22A12 (p.Trp258*, pArg90His) were identified in 90% of the hypouricemia patients from two independent cohorts: the Korean genome and epidemiology study (KoGES) and the Korean Cancer Prevention Study (KCPS-II). In this work, we investigate the genetic causes of hypouricemia in the rest of the 10% of unsolved cases. We found a novel non-synonymous mutation of SLC2A9 (voltage-sensitive uric acid transporter) in the whole-exome sequencing (WES) results. Molecular dynamics prediction suggests that the novel mutation p.Met126Val in SLCA9b (p.Met155Val in SLC2A9a) hinders uric acid transport through a defect of the outward open geometry. Molecular analysis using Xenopus oocytes confirmed that the p.Met126Val mutation significantly reduced uric acid transport but does not affect the SLC2A9 protein expression level. Our results will shed light on a better understanding of SLC2A9-mediated uric acid transport and the development of a uric acid-lowering agent.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA; (J.Y.); (I.O.D.)
| | - Raul Cachau
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Victor A. David
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
| | - Mary Thompson
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Wooram Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sun-Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ira O. Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA; (J.Y.); (I.O.D.)
| | - Cheryl A. Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
| | - Sung-Kweon Cho
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
21
|
Zhu C, Sun B, Zhang B, Zhou Z. An update of genetics, co-morbidities and management of hyperuricaemia. Clin Exp Pharmacol Physiol 2021; 48:1305-1316. [PMID: 34133780 DOI: 10.1111/1440-1681.13539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Hyperuricaemia (HU) caused by disorders of purine metabolism is a metabolic disease. A number of epidemiological reports have confirmed that HU is correlated with multiple disorders, such as chronic kidney diseases, cardiovascular disease and gout. Recent studies showed that the expression and functional changes of uric acid transporters, including URAT1, GLUT9 and ABCG2, were associated with HU. Moreover, a large number of genome-wide association studies have shown that these transporters' dysfunction leads to HU. In this review, we describe the recent progress of aetiology and related transporters of HU, and we also summarise the common co-morbidities possible mechanisms, as well as the potential pharmacological and non-pharmacological treatment methods for HU, aiming to provide new ideas for the treatment of HU.
Collapse
Affiliation(s)
- Chunsheng Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
23
|
Dufour I, Werion A, Belkhir L, Wisniewska A, Perrot M, De Greef J, Schmit G, Yombi JC, Wittebole X, Laterre PF, Jadoul M, Gérard L, Morelle J. Serum uric acid, disease severity and outcomes in COVID-19. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:212. [PMID: 34127048 PMCID: PMC8201458 DOI: 10.1186/s13054-021-03616-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Background The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. Methods In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. Results The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50–168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6–7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4–41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. Conclusions Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03616-3.
Collapse
Affiliation(s)
- Inès Dufour
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Alexis Werion
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Leila Belkhir
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Anastazja Wisniewska
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Marie Perrot
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Julien De Greef
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Gregory Schmit
- Department of Pathology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Jean Cyr Yombi
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Xavier Wittebole
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Ludovic Gérard
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium. .,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, 1200, Brussels, Belgium. .,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | | |
Collapse
|
24
|
Toyoda Y, Kawamura Y, Nakayama A, Nakaoka H, Higashino T, Shimizu S, Ooyama H, Morimoto K, Uchida N, Shigesawa R, Takeuchi K, Inoue I, Ichida K, Suzuki H, Shinomiya N, Takada T, Matsuo H. Substantial anti-gout effect conferred by common and rare dysfunctional variants of URAT1/SLC22A12. Rheumatology (Oxford) 2021; 60:5224-5232. [PMID: 33821957 PMCID: PMC8566256 DOI: 10.1093/rheumatology/keab327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/28/2021] [Indexed: 01/17/2023] Open
Abstract
Objectives Gout, caused by chronic elevation of serum uric acid levels, is the commonest form of inflammatory arthritis. The causative effect of common and rare variants of ATP-binding cassette transporter G2 (ABCG2/BCRP) on gout risk has been studied, but little attention has been paid to the effect of common (rs121907892, p.W258X) and rare variants of urate transporter 1 (URAT1/SLC22A12) on gout, despite dysfunctional variants of URAT1 having been identified as pathophysiological causes of renal hypouricaemia. Methods To address this important but overlooked issue, we investigated the effects of these URAT1 variants on gout susceptibility, using targeted exon sequencing on 480 clinically defined gout cases and 480 controls of Japanese males in combination with a series of functional analyses of newly identified URAT1 variants. Results Our results show that both common and rare dysfunctional variants of URAT1 markedly decrease the risk of gout (OR 0.0338, reciprocal OR 29.6, P = 7.66 × 10−8). Interestingly, we also found that the URAT1-related protective effect on gout eclipsed the ABCG2-related causative effect (OR 2.30–3.32). Our findings reveal only one dysfunctional variant of URAT1 to have a substantial anti-gout effect, even in the presence of causative variants of ABCG2, a ‘gout gene’. Conclusion Our findings provide a better understanding of gout/hyperuricaemia and its aetiology that is highly relevant to personalized health care. The substantial anti-gout effect of common and rare variants of URAT1 identified in the present study support the genetic concept of a ‘Common Disease, Multiple Common and Rare Variant’ model.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan.,Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Naohiro Uchida
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Division of Kidney and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
25
|
Zhao Z, Jiang Y, Li L, Chen Y, Li Y, Lan Q, Wu T, Lin C, Cao Y, Nandakumar KS, Zhou P, Tian Y, Pang J. Structural Insights into the Atomistic Mechanisms of Uric Acid Recognition and Translocation of Human Urate Anion Transporter 1. ACS OMEGA 2020; 5:33421-33432. [PMID: 33403304 PMCID: PMC7774290 DOI: 10.1021/acsomega.0c05360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Background: Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for treating hyperuricemia. However, the molecular interactions between uric acid and URAT1 are still unknown due to lack of structural details. Methods: In the present study, several methods (homology modeling, sequence alignment, docking, and mutagenesis) were used to explain the atomistic mechanisms of uric acid transport of hURAT1. Results: Residues W357-F365 in the TMD7 and P484-R487 in the TMD11 present in the hURAT1 have unique roles in both binding to the uric acid and causing subsequent structural changes. These residues, located in the transport tunnel, were found to be related to the structural changes, as demonstrated by the reduced V max values and an unaltered expression of protein level. In addition, W357, G361, T363, F365, and R487 residues may confer high affinity for binding to uric acid. An outward-open homology model of hURAT1 revealed a crucial role for these two domains in the conformational changes of hURAT1. F241 and H245 in TMD5, and R477 and R487 in TMD11 may confer high affinity for uric acid, and as the docking analysis suggests, they may also enhance the affinity for the inhibitors. R477 relation to the structural changes was demonstrated by the V max values of the mutants and the contribution of positive charge to the uric acid selectivity. Conclusions: W357-F365 in TMD7, P484-R487 in TMD11, and residues F241, H245, and R477 were found to be critical for the translocation and recognition of uric acid.
Collapse
|
26
|
Chen Y, Zhao Z, Li Y, Li L, Jiang Y, Cao Y, Zhou P, Wu T, Pang J. Characterizations of the Urate Transporter, GLUT9, and Its Potent Inhibitors by Patch-Clamp Technique. SLAS DISCOVERY 2020; 26:450-459. [PMID: 32844721 DOI: 10.1177/2472555220949501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose transporter 9 (GLUT9), which transports urate in an electrogenic and voltage-dependent manner, plays an important role in the maintenance of normal blood uric acid/urate levels. In the present study, we established a cell model based on the single-electrode patch-clamp technique for characterization of GLUT9 and explored the inhibitory effects of benzobromarone (BM) and probenecid (PB) on urate-induced currents in mouse GLUT9a (mGLUT9a)-expressing HEK-293T cells. The results showed that uric acid, rather than glucose perfusion, led to a rapid and large outward current by mGLUT9a in dose-, voltage-, and pH-dependent manners. BM prominently and irreversibly inhibited the uric acid-induced currents through mGLUT9a, and PB weakly and reversibly inhibited mGLUT9a. We found that depletion of K+ in the external solution significantly strengthened the blockade of BM on mGLUT9a. In addition, an enhanced inhibitory rate of BM was detected when the pH of the external solution was changed from 7.4 to 5.5, indicating that BM functions optimally in an acidic environment. In conclusion, the combination of the established cell model with patch-clamp techniques first revealed the function properties of GLUT9 inhibitors and may provide potential benefits to the study of GLUT9 inhibitors as antihyperuricemic or antigout agents.
Collapse
Affiliation(s)
- Yanyu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yongmei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Takei R, Cadzow M, Markie D, Bixley M, Phipps-Green A, Major TJ, Li C, Choi HK, Li Z, Hu H, Guo H, He M, Shi Y, Stamp LK, Dalbeth N, Merriman TR, Wei WH. Trans-ancestral dissection of urate- and gout-associated major loci SLC2A9 and ABCG2 reveals primate-specific regulatory effects. J Hum Genet 2020; 66:161-169. [PMID: 32778763 DOI: 10.1038/s10038-020-0821-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Gout is a complex inflammatory arthritis affecting ~20% of people with an elevated serum urate level (hyperuricemia). Gout and hyperuricemia are essentially specific to humans and other higher primates, with varied prevalence across ancestral groups. SLC2A9 and ABCG2 are major loci associated with both urate and gout in multiple ancestral groups. However, fine mapping has been challenging due to extensive linkage disequilibrium underlying the associated regions. We used trans-ancestral fine mapping integrated with primate-specific genomic information to address this challenge. Trans-ancestral meta-analyses of GWAS cohorts of either European (EUR) or East Asian (EAS) ancestry resulted in single-variant resolution mappings for SLC2A9 (rs3775948 for urate and rs4697701 for gout) and ABCG2 (rs2622621 for gout). Tests of colocalization of variants in both urate and gout suggested existence of a shared candidate causal variant for SLC2A9 only in EUR and for ABCG2 only in EAS. The fine-mapped gout variant rs4697701 was within an ancient enhancer, whereas rs2622621 was within a primate-specific transposable element, both supported by functional evidence from the Roadmap Epigenomics project in human primary tissues relevant to urate and gout. Additional primate-specific elements were found near both loci and those adjacent to SLC2A9 overlapped with known statistical epistatic interactions associated with urate as well as multiple super-enhancers identified in urate-relevant tissues. We conclude that by leveraging ancestral differences trans-ancestral fine mapping has identified ancestral and functional variants for SLC2A9 or ABCG2 with primate-specific regulatory effects on urate and gout.
Collapse
Affiliation(s)
- Riku Takei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Changgui Li
- Shandong Gout Clinical Medical Center, Qingdao, 266003, China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hyon K Choi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Hu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | | | - Hui Guo
- Center for Biostatistics, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Meian He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Yongyong Shi
- Shandong Gout Clinical Medical Center, Qingdao, 266003, China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
28
|
Sex Differences in Urate Handling. Int J Mol Sci 2020; 21:ijms21124269. [PMID: 32560040 PMCID: PMC7349092 DOI: 10.3390/ijms21124269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.
Collapse
|
29
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Cho SK, Kim B, Myung W, Chang Y, Ryu S, Kim HN, Kim HL, Kuo PH, Winkler CA, Won HH. Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals. Sci Rep 2020; 10:9179. [PMID: 32514006 PMCID: PMC7280503 DOI: 10.1038/s41598-020-66064-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/05/2020] [Indexed: 01/28/2023] Open
Abstract
Increased serum uric acid (SUA) levels cause gout and are associated with multiple diseases, including chronic kidney disease. Previous genome-wide association studies (GWAS) have identified more than 180 loci that contribute to SUA levels. Here, we investigated genetic determinants of SUA level in the Korean population. We conducted a GWAS for SUA in 6,881 Korean individuals, calculated polygenic risk scores (PRSs) for common variants, and validated the association of low-frequency variants and PRS with SUA levels in 3,194 individuals. We identified two low-frequency and six common independent variants associated with SUA. Despite the overall similar effect sizes of variants in Korean and European populations, the proportion of variance for SUA levels explained by the variants was greater in the Korean population. A rare, nonsense variant SLC22A12 p.W258X showed the most significant association with reduced SUA levels, and PRSs of common variants associated with SUA levels were significant in multiple Korean cohorts. Interestingly, an East Asian-specific missense variant (rs671) in ALDH2 displayed a significant association on chromosome 12 with the SUA level. Further genetic epidemiological studies on SUA are needed in ethnically diverse cohorts to investigate rare or low-frequency variants and determine the influence of genetic and environmental factors on SUA.
Collapse
Affiliation(s)
- Sung Kweon Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.,Molecular Genetic Epidemiology Section, Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han-Na Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University, Seoul, Republic of Korea
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Hoque KM, Dixon EE, Lewis RM, Allan J, Gamble GD, Phipps-Green AJ, Halperin Kuhns VL, Horne AM, Stamp LK, Merriman TR, Dalbeth N, Woodward OM. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat Commun 2020; 11:2767. [PMID: 32488095 PMCID: PMC7265540 DOI: 10.1038/s41467-020-16525-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiological nature of the common ABCG2 gout and hyperuricemia associated variant Q141K (rs2231142) remains undefined. Here, we use a human interventional cohort study (ACTRN12615001302549) to understand the physiological role of ABCG2 and find that participants with the Q141K ABCG2 variant display elevated serum urate, unaltered FEUA, and significant evidence of reduced extra-renal urate excretion. We explore mechanisms by generating a mouse model of the orthologous Q140K Abcg2 variant and find male mice have significant hyperuricemia and metabolic alterations, but only subtle alterations of renal urate excretion and ABCG2 abundance. By contrast, these mice display a severe defect in ABCG2 abundance and function in the intestinal tract. These results suggest a tissue specific pathobiology of the Q141K variant, support an important role for ABCG2 in urate excretion in both the human kidney and intestinal tract, and provide insight into the importance of intestinal urate excretion for serum urate homeostasis. The common ABCG2 variant Q141K contributes to hyperuricemia and gout risk. Here, using a human interventional study and a new orthologous mouse model, the authors report a tissue specific pathobiology of the Q141K variant, and support a significant role for ABCG2 in urate excretion in both the kidney and intestine.
Collapse
Affiliation(s)
- Kazi Mirajul Hoque
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raychel M Lewis
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jordyn Allan
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | - Anne M Horne
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, Stamp LK, Hindmarsh JH, Jansen TLTA, Janssen M, Steehouwer M, Lelieveld S, van de Vorst M, Gilissen C, Dagna L, Van de Veerdonk FL, Eisenmesser EZ, Kim S, Merriman TR, Hoischen A, Netea MG, Dinarello CA, Joosten LA. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis 2020; 79:536-544. [PMID: 32114511 DOI: 10.1136/annrheumdis-2019-216233] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout. METHODS Variant identification was performed by DNA sequencing of all coding bases of IL37 using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout. RESULTS We identified four rare variants in IL37 in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10-5). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry. CONCLUSION Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne C van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Cavalli
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Amara Shaukat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Maartje C Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Anne-Kathrin Tausche
- Department of Internal Medicine, Section of Rheumatology, University Clinic Carl Gustav Carus, Dresden, Saxonia, Germany
| | - Philip Riches
- Rheumatology and Bone Disease, University of Edinburgh, Edinburgh, UK
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, Otago University, Christchurch, Canterbury, New Zealand
| | - Jennie Harré Hindmarsh
- Te Rangawairua o Paratene Ngata Research Centre, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti, New Zealand
| | - Tim L Th A Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Marloes Steehouwer
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Lelieveld
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | - Frank L Van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, USA
| | - SooHyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea (the Republic of)
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Dissanayake LV, Spires DR, Palygin O, Staruschenko A. Effects of uric acid dysregulation on the kidney. Am J Physiol Renal Physiol 2020; 318:F1252-F1257. [PMID: 32223309 DOI: 10.1152/ajprenal.00066.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, research has redirected its interests in uric acid (UA) from gout, an inflammatory disease in joints, to groups of closely interrelated pathologies associated with cardiovascular and kidney dysfunction. Many epidemiological, clinical, and experimental studies have shown that UA may play a role in the pathophysiology of the cardiorenal syndrome continuum; however, it is still unclear if it is a risk factor or a causal role. Hyperuricemia has been well studied in the past two decades, revealing mechanistic insights into UA homeostasis. Likewise, some epidemiological and experimental evidence suggests that hypouricemia can lead to cardiorenal pathologies. The goal of this review is to highlight why studying both hyperuricemia and hypouricemia is warranted as well as to summarize the relevance of UA to kidney function.
Collapse
Affiliation(s)
| | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Many novel genetic associations in the field of hyperuricaemia and gout have been described recently. This review discusses advances in gout genetics and their potential clinical applications. RECENT FINDINGS Genome-wide association studies have identified approximately 30 serum urate-associated loci, some of which represent targets for drug development in gout. Some genes implicated in initiating the inflammatory response to deposited crystals in gout flares have also been described. In addition, genetic studies have been used to understand the link between hyperuricaemia and other comorbidities, particularly cardiometabolic diseases. ABCG2 has been established as a key genetic determinant in the onset of gout, and plays a role in the progression and severity of disease. Recent pharmacogenetic studies have also demonstrated the association between ABCG2 and poor response to allopurinol, and the link between HLA-B58:01 genotype and adverse drug reactions to allopurinol. SUMMARY Advances in gout genetics have provided important molecular insights into disease pathogenesis, better characterized the pharmacogenetics of allopurinol, and raised the possibility of using genetic testing to provide personalized treatment for patients. Prospective studies are now needed to clarify whether genetic testing in gout provides further benefit when added to established clinical management.
Collapse
|
35
|
Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol 2020; 16:75-86. [PMID: 31822862 PMCID: PMC7075706 DOI: 10.1038/s41584-019-0334-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Asymptomatic hyperuricaemia affects ~20% of the general population in the USA, with variable rates in other countries. Historically, asymptomatic hyperuricaemia was considered a benign laboratory finding with little clinical importance in the absence of gout or kidney stones. Yet, increasing evidence suggests that asymptomatic hyperuricaemia can predict the development of hypertension, obesity, diabetes mellitus and chronic kidney disease and might contribute to disease by stimulating inflammation. Although urate has been classically viewed as an antioxidant with beneficial effects, new data suggest that both crystalline and soluble urate activate various pro-inflammatory pathways. This Review summarizes what is known about the role of urate in the inflammatory response. Further research is needed to define the role of asymptomatic hyperuricaemia in these pro-inflammatory pathways.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petter Bjornstad
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA.
| |
Collapse
|
36
|
Contribution of Rare Variants of the SLC22A12 Gene to the Missing Heritability of Serum Urate Levels. Genetics 2020; 214:1079-1090. [PMID: 32005656 PMCID: PMC7153932 DOI: 10.1534/genetics.119.303006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Gout is a common arthritis caused by monosodium urate crystals. The heritability of serum urate levels is estimated to be 30-70%; however, common genetic variants account for only 7.9% of the variance in serum urate levels. This discrepancy is an example of "missing heritability." The "missing heritability" suggests that variants associated with uric acid levels are yet to be found. By using genomic sequences of the ToMMo cohort, we identified rare variants of the SLC22A12 gene that affect the urate transport activity of URAT1. URAT1 is a transporter protein encoded by the SLC22A12 gene. We grouped the participants with variants affecting urate uptake by URAT1 and analyzed the variance of serum urate levels. The results showed that the heritability explained by the SLC22A12 variants of men and women exceeds 10%, suggesting that rare variants underlie a substantial portion of the "missing heritability" of serum urate levels.
Collapse
|
37
|
Wang YN, Ma SX, Chen YY, Chen L, Liu BL, Liu QQ, Zhao YY. Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019; 499:54-63. [PMID: 31476302 DOI: 10.1016/j.cca.2019.08.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), characterized as renal dysfunction, is recognized as a major public health problem with high morbidity and mortality worldwide. Unfortunately, there are no obvious clinical symptoms in early stage disease until severe damage has occurred. Further complicating early diagnosis and treatment is the lack of sensitive and specific biomarkers. As such, novel biomarkers are urgently needed. Metabolomics has shown an increasing potential for identifying underlying disease mechanisms, facilitating clinical diagnosis and developing pharmaceutical treatments for CKD. Recent advances in metabolomics revealed that CKD was closely associated with the dysregulation of numerous metabolites, such as amino acids, lipids, nucleotides and glycoses, that might be exploited as potential biomarkers. In this review, we summarize recent metabolomic applications based on animal model studies and in patients with CKD and highlight several biomarkers that may play important roles in diagnosis, intervention and development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Bao-Li Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
38
|
Narang RK, Vincent Z, Phipps-Green A, Stamp LK, Merriman TR, Dalbeth N. Population-specific factors associated with fractional excretion of uric acid. Arthritis Res Ther 2019; 21:234. [PMID: 31718705 PMCID: PMC6852918 DOI: 10.1186/s13075-019-2016-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reduced renal clearance of uric acid is a major contributor to hyperuricemia. The aim of this study was to examine clinical and genetic variables associated with fractional excretion of uric acid (FEUA). METHODS Participants (with and without gout) in the Genetics of Gout in Aotearoa study with available genotyping and FEUA data were included (n = 1713). Ten FEUA-associated loci detected within a genome-wide association study for serum urate in a European population were analysed. A polygenic score for FEUA was calculated in each ancestry group to model the cumulative effects of the genetic variants on FEUA. Associations between FEUA and both clinical variables and polygenic score were tested using linear regression models. RESULTS The mean (SD) FEUA was 5.13 (2.70) % in Eastern Polynesian participants, 4.70 (5.89) % in Western Polynesian participants, and 5.89 (2.73) % in New Zealand European participants. Although association with FEUA was observed for SLC2A9 rs11942223 in New Zealand European participants (P = 2.39 × 10- 8), this association was not observed in Eastern or Western Polynesian participants. The polygenic score was positively associated with FEUA in all ancestry groups. In New Zealand European participants, body mass index, diuretic use, polygenic score, and male sex were associated with FEUA and explained 22% of FEUA variance in the regression model. In Eastern and Western Polynesian participants, the tested variables explained 10% and 4% of FEUA variance respectively. CONCLUSIONS Both clinical and genetic variables contribute to renal clearance of uric acid. SLC2A9 exerts effects on FEUA variance in people of European ancestry, but not in those of Polynesian ancestry. There is a large unexplained variance in FEUA, particularly in people of Polynesian ancestry.
Collapse
Affiliation(s)
- Ravi K Narang
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Zoe Vincent
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Amanda Phipps-Green
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9012, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, 2 Riccarton Avenue, Christchurch, 8140, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9012, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
39
|
Bai WY, Zhu XW, Cong PK, Zhang XJ, Richards JB, Zheng HF. Genotype imputation and reference panel: a systematic evaluation on haplotype size and diversity. Brief Bioinform 2019; 21:bbz108. [PMID: 32002535 DOI: 10.1093/bib/bbz108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Here, 622 imputations were conducted with 394 customized reference panels for Han Chinese and European populations. Besides validating the fact that imputation accuracy could always benefit from the increased panel size when the reference panel was population specific, the results brought two new thoughts. First, when the haplotype size of the reference panel was fixed, the imputation accuracy of common and low-frequency variants (Minor Allele Frequency (MAF) > 0.5%) decreased while the population diversity of the reference panel increased, but for rare variants (MAF < 0.5%), a small fraction of diversity in panel could improve imputation accuracy. Second, when the haplotype size of the reference panel was increased with extra population-diverse samples, the imputation accuracy of common variants (MAF > 5%) for the European population could always benefit from the expanding sample size. However, for the Han Chinese population, the accuracy of all imputed variants reached the highest when reference panel contained a fraction of an extra diverse sample (8-21%). In addition, we evaluated the imputation performances in the existing reference panels, such as the Haplotype Reference Consortium (HRC), 1000 Genomes Project Phase 3 and the China, Oxford and Virginia Commonwealth University Experimental Research on Genetic Epidemiology (CONVERGE). For the European population, the HRC panel showed the best performance in our analysis. For the Han Chinese population, we proposed an optimum imputation reference panel constituent ratio if researchers would like to customize their own sequenced reference panel, but a high-quality and large-scale Chinese reference panel was still needed. Our findings could be generalized to the other populations with conservative genome; a tool was provided to investigate other populations of interest (https://github.com/Abyss-bai/reference-panel-reconstruction).
Collapse
Affiliation(s)
- Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
40
|
Li G, Han L, Ma R, Saeed K, Xiong H, Klaassen CD, Lu Y, Zhang Y. Glucocorticoids Increase Renal Excretion of Urate in Mice by Downregulating Urate Transporter 1. Drug Metab Dispos 2019; 47:1343-1351. [PMID: 31519697 DOI: 10.1124/dmd.119.087700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
Both nonsteroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids have been widely used for the treatment of gout, a disease promoted by an excess body burden of uric acid (UA); however, their effects on the homeostasis of UA remain poorly understood. The present study showed that 1-week treatments with three NSAIDs (ibuprofen, diclofenac, and indomethacin) had little effect on UA homeostasis in mice, whereas 1-week low doses (1 and 5 mg/kg) of dexamethasone (DEX) significantly decreased serum UA by about 15%. Additionally, low doses of DEX also resulted in increases in hepatic UA concentration and urinary UA excretion, which were associated with an induction of xanthine oxidoreductase (XOR) in the liver and a downregulation of urate transporter 1 (URAT1) in the kidney, respectively. Neither 75 mg/kg DEX nor 100 mg/kg pregnenolone-16α-carbonitrile altered UA concentrations in serum and livers of mice, suggesting that the effect of DEX on UA homeostasis was not due to the pregnane X receptor pathway. Further in vitro studies demonstrated that glucocorticoid receptor (GR) was involved in DEX-mediated downregulation of URAT1. Knockdown of both p65 and c-Jun completely blocked the effect of DEX on URAT1, suggesting that GR regulates URAT1 via its interaction with both nuclear factor κB and activator protein 1 signaling pathways. To conclude, the present study identifies, for the first time, a critical role of glucocorticoids in regulating UA homeostasis and elucidates the mechanism for GR-mediated regulation of URAT1 in mice. SIGNIFICANCE STATEMENT: This study demonstrates, for the first time, a critical role of glucocorticoid receptor in regulating urate transporter 1 in mouse kidney.
Collapse
Affiliation(s)
- Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Lifeng Han
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Ruicong Ma
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Khawar Saeed
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Hui Xiong
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Curtis D Klaassen
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Yuanfu Lu
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University (G.L., R.M., K.S., H.X., Y.Z.), and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Nankai District (L.H.), Tianjin, China; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.D.K.); and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China (Y.L.)
| |
Collapse
|
41
|
Cha DH, Gee HY, Cachau R, Choi JM, Park D, Jee SH, Ryu S, Kim KK, Won HH, Limou S, Myung W, Winkler CA, Cho SK. Contribution of SLC22A12 on hypouricemia and its clinical significance for screening purposes. Sci Rep 2019; 9:14360. [PMID: 31591475 PMCID: PMC6779878 DOI: 10.1038/s41598-019-50798-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Differentiating between inherited renal hypouricemia and transient hypouricemic status is challenging. Here, we aimed to describe the genetic background of hypouricemia patients using whole-exome sequencing (WES) and assess the feasibility for genetic diagnosis using two founder variants in primary screening. We selected all cases (N = 31) with extreme hypouricemia (<1.3 mg/dl) from a Korean urban cohort of 179,381 subjects without underlying conditions. WES and corresponding downstream analyses were performed for the discovery of rare causal variants for hypouricemia. Two known recessive variants within SLC22A12 (p.Trp258*, pArg90His) were identified in 24 out of 31 subjects (77.4%). In an independent cohort, we identified 50 individuals with hypouricemia and genotyped the p.Trp258* and p.Arg90His variants; 47 of the 50 (94%) hypouricemia cases were explained by only two mutations. Four novel coding variants in SLC22A12, p.Asn136Lys, p.Thr225Lys, p.Arg284Gln, and p.Glu429Lys, were additionally identified. In silico studies predict these as pathogenic variants. This is the first study to show the value of genetic diagnostic screening for hypouricemia in the clinical setting. Screening of just two ethnic-specific variants (p.Trp258* and p.Arg90His) identified 87.7% (71/81) of Korean patients with monogenic hypouricemia. Early genetic identification of constitutive hypouricemia may prevent acute kidney injury by avoidance of dehydration and excessive exercise.
Collapse
Affiliation(s)
- Do Hyeon Cha
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Raul Cachau
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jong Mun Choi
- Department of Laboratory Medicine, Green Cross, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion and Institute for Health Promotion, Graduate School of Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hong-Hee Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064 Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation en Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France.,Ecole Centrale de Nantes, Nantes, France.,Molecular Genetic Epidemiology Section, Basic Science Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Woojae Myung
- Department of Psychiatry, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Science Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sung Kweon Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Molecular Genetic Epidemiology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA.
| |
Collapse
|
42
|
Zhou Z, Wang K, Zhou J, Wang C, Li X, Cui L, Han L, Liu Z, Ren W, Wang X, Zhang K, Li Z, Pan D, Li C, Shi Y. Amplicon targeted resequencing for SLC2A9 and SLC22A12 identified novel mutations in hypouricemia subjects. Mol Genet Genomic Med 2019; 7:e00722. [PMID: 31131560 PMCID: PMC6625124 DOI: 10.1002/mgg3.722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background To identify potential causative mutations in SLC2A9 and SLC22A12 that lead to hypouricemia or hyperuricemia (HUA). Methods Targeted resequencing of whole exon regions of SLC2A9 and SLC22A12 was performed in three cohorts of 31 hypouricemia, 288 HUA and 280 normal controls. Results A total of 84 high‐quality variants were identified in these three cohorts. Eighteen variants were nonsynonymous or in splicing region, and then included in the following association analysis. For common variants, no significant effects on hypouricemia or HUA were identified. For rare variants, six single nucleotide variations (SNVs) p.T21I and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and p.E458K in SLC22A12, occurred in totally six hypouricemia subjects and were absent in HUA and normal controls. Allelic and genotypic frequency distributions of the six SNVs differed significantly between the hypouricemia and normal controls even after multiple testing correction, and p.G13D in SLC2A9 and p.V547L in SLC22A12 were newly reported. All these mutations had no significant effects on HUA susceptibility, while the gene‐based analyses substantiated the significant results on hypouricemia. Conclusion Our study first presents a comprehensive mutation spectrum of hypouricemia in a large Chinese cohort.
Collapse
Affiliation(s)
- Zhaowei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Can Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xinde Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lingling Cui
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lin Han
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Zhen Liu
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Wei Ren
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xuefeng Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Keke Zhang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhiqiang Li
- Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Changgui Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China.,Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| |
Collapse
|