1
|
Chen D, Chen Y, Liu J, Liu X, Liu P, Zhan J, Chen Z, Gan Y, Huang M, Chen Z. In situ protein corona-camouflaged supramolecular assemblies remodel thrombotic microenvironment for improved arterial homeostasis. SCIENCE ADVANCES 2025; 11:eadu6676. [PMID: 40315315 PMCID: PMC12047436 DOI: 10.1126/sciadv.adu6676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Arterial thrombosis is commonly accompanied by poor recanalization and high recurrence, typically caused by a fibrinolysis-resistant microenvironment. We identify elevated levels of plasminogen activator inhibitor-1 (PAI-1) and, notably, its strong correlation with inflammation in arterial thrombosis. To address this, small molecular inhibitors of PAI-1 and inflammation are used as bioregulators to restore vascular homeostasis. We design a carrier-free supramolecular system based on the bioregulators-tuned self-assembly of a near-infrared thrombus probe, which preferentially forms protein corona in situ to enhance plasma stability. Under acidic conditions and increased shear stress, the supramolecular assemblies disintegrate, enabling site-specific cargo release. In vivo, the probe accumulates 22.8-fold more in the thrombotic than contralateral artery. Functionally, this nanomedicine improves outcomes in mice with carotid artery thrombosis and chronic cerebral ischemia. Mechanistically, it down-regulates NF-κB signaling, inhibits NETosis and glycolysis, and up-regulates cGMP-mediated signaling, thereby alleviating inflammation and promoting fibrinolysis. This study offers an innovative codelivery strategy using supramolecular assemblies to advance therapies for arterial thrombosis.
Collapse
Affiliation(s)
- Dan Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yifan Chen
- Department of Cardiology, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian 361004, China
| | - Jianwen Liu
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Xinyue Liu
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Peiwen Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jiabing Zhan
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Lehners M, Schmidt H, Zaldivia MTK, Stehle D, Krämer M, Peter A, Adler J, Lukowski R, Feil S, Feil R. Single-cell analysis identifies the CNP/GC-B/cGMP axis as marker and regulator of modulated VSMCs in atherosclerosis. Nat Commun 2025; 16:429. [PMID: 39814746 PMCID: PMC11735800 DOI: 10.1038/s41467-024-55687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions. Correlative profiling of pathway activity and VSMC phenotype at the single-cell level shows that phenotypic modulation of contractile VSMCs to chondrocyte-like plaque cells during atherogenesis is associated with a switch from ANP/GC‑A to CNP/GC‑B signaling. Silencing of the CNP/GC-B axis in VSMCs results in an increase of chondrocyte-like plaque cells. These findings indicate that the CNP/GC-B/cGMP pathway is a marker and atheroprotective regulator of modulated VSMCs, limiting their transition to chondrocyte-like cells. Overall, this study highlights the plasticity of cGMP signaling in VSMCs and suggests analogies between CNP-dependent remodeling of bone and blood vessels.
Collapse
MESH Headings
- Animals
- Cyclic GMP/metabolism
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Signal Transduction
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Single-Cell Analysis
- Male
- Mice, Inbred C57BL
- Biomarkers/metabolism
Collapse
Affiliation(s)
- Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Maria T K Zaldivia
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Zhang T, Liu L, Huang X, Gao X, Huan X, He C, Li Y. The rapid change of shear rate gradient is beneficial to platelet activation. Platelets 2024; 35:2288679. [PMID: 38099316 DOI: 10.1080/09537104.2023.2288679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Fluid shear plays a key role in hemostasis and thrombosis, and the purpose of this study was to investigate the effect of shear gradient change rate (SGCR) on platelet reactivity and von Willebrand factor (vWF) activity and its mechanism. In this study, we developed a set of microfluidic chips capable of generating different shear gradients and simulated the shear rate distribution in the flow field by COMSOL Multiphysics software. Molecular markers of platelet activation (P-selectin, activated GPIIb/IIIa, phosphatidylserine exposure, and monocyte-platelet aggregate formation) were analyzed by flow cytometry. Platelet aggregation induced by shear gradient was studied by a microfluidic experimental platform, and plasma vWF ristocetin cofactor (vWF: RCO) activity was investigated by flow cytometry. The expression of p-Akt was studied by Western blotting. The results showed that the faster the SGCR, the higher the expression of platelet p-Akt, and the stronger the platelet reactivity and vWF activity. This indicates that fluid shear stress can activate platelets and vWF in a shear gradient-dependent manner through the PI3K/AKT signal pathway, and the faster the SGCR, the more significant the activation effect.
Collapse
Affiliation(s)
- Tiancong Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Huang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Gao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanrong Huan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Cui He
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Rohlfing AK, Kremser M, Schaale D, Dicenta-Baunach V, Laspa Z, Fu X, Zizmare L, Sigle M, Harm T, Münzer P, Pelzer A, Borst O, Trautwein C, Feil R, Müller K, Castor T, Lämmerhofer M, Gawaz MP. cGMP modulates hemin-mediated platelet death. Thromb Res 2024; 234:63-74. [PMID: 38171216 DOI: 10.1016/j.thromres.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND AIMS Hemolysis is a known risk factor for thrombosis resulting in critical limb ischemia and microcirculatory disturbance and organ failure. Intravasal hemolysis may lead to life-threatening complications due to uncontrolled thrombo-inflammation. Until now, conventional antithrombotic therapies failed to control development and progression of these thrombotic events. Thus, the pathophysiology of these thrombotic events needs to be investigated to unravel underlying pathways and thereby identify targets for novel treatment strategies. METHODS Here we used classical experimental set-ups as well as high-end flow cytometry, metabolomics and lipidomic analysis to in-depth analyze the effects of hemin on platelet physiology and morphology. RESULTS Hemin does strongly and swiftly induce platelet activation and this process is modulated by the sGC-cGMP-cGKI signaling axis. cGMP modulation also reduced the pro-aggregatory potential of plasma derived from patients with hemolysis. Furthermore, hemin-induced platelet death evokes distinct platelet subpopulations. Typical cell death markers, such as ROS, were induced by hemin-stimulation and the platelet lipidome was specifically altered by high hemin concentration. Specifically, arachidonic acid derivates, such as PGE2, TXB2 or 12-HHT, were significantly increased. Balancing the cGMP levels by modulation of the sGC-cGMP-cGKI axis diminished the ferroptotic effect of hemin. CONCLUSION We found that cGMP modulates hemin-induced platelet activation and thrombus formation in vitro and cGMP effects hemin-mediated platelet death and changes in the platelet lipidome. Thus, it is tempting to speculate that modulating platelet cGMP levels may be a novel strategy to control thrombosis and critical limb ischemia in patients with hemolytic crisis.
Collapse
Affiliation(s)
- Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Marcel Kremser
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Valerie Dicenta-Baunach
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Patrick Münzer
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany; DFG Heisenberg Group Cardiovascular Thrombo-inflammation and Translational Thrombocardiology, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Andreas Pelzer
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany; DFG Heisenberg Group Cardiovascular Thrombo-inflammation and Translational Thrombocardiology, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University Tübingen, Auf der Morgenstelle 34, 72076 Tübingen, Germany.
| | - Karin Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Fu M, He R, Zhang Z, Ma F, Shen L, Zhang Y, Duan M, Zhang Y, Wang Y, Zhu L, He J. Multinomial machine learning identifies independent biomarkers by integrated metabolic analysis of acute coronary syndrome. Sci Rep 2023; 13:20535. [PMID: 37996510 PMCID: PMC10667512 DOI: 10.1038/s41598-023-47783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
A multi-class classification model for acute coronary syndrome (ACS) remains to be constructed based on multi-fluid metabolomics. Major confounders may exert spurious effects on the relationship between metabolism and ACS. The study aims to identify an independent biomarker panel for the multiclassification of HC, UA, and AMI by integrating serum and urinary metabolomics. We performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics study on 300 serum and urine samples from 44 patients with unstable angina (UA), 77 with acute myocardial infarction (AMI), and 29 healthy controls (HC). Multinomial machine learning approaches, including multinomial adaptive least absolute shrinkage and selection operator (LASSO) regression and random forest (RF), and assessment of the confounders were applied to integrate a multi-class classification biomarker panel for HC, UA and AMI. Different metabolic landscapes were portrayed during the transition from HC to UA and then to AMI. Glycerophospholipid metabolism and arginine biosynthesis were predominant during the progression from HC to UA and then to AMI. The multiclass metabolic diagnostic model (MDM) dependent on ACS, including 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic GMP, demarcated HC, UA, and AMI, providing a C-index of 0.84 (HC vs. UA), 0.98 (HC vs. AMI), and 0.89 (UA vs. AMI). The diagnostic value of MDM largely derives from the contribution of 2-ketobutyric acid, and LysoPC(18:2(9Z,12Z)) in serum. Higher 2-ketobutyric acid and cyclic GMP levels were positively correlated with ACS risk and atherosclerosis plaque burden, while LysoPC(18:2(9Z,12Z)) and argininosuccinic acid showed the reverse relationship. An independent multiclass biomarker panel for HC, UA, and AMI was constructed using the multinomial machine learning methods based on serum and urinary metabolite signatures.
Collapse
Affiliation(s)
- Meijiao Fu
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ruhua He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhihan Zhang
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, 723200, Shanxi, China
| | - Fuqing Ma
- Department of Cardiology, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, Ningxia, China
| | - Libo Shen
- Center for Cardiovascular Diseases, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Yu Zhang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mingyu Duan
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yameng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yifan Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Jun He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
7
|
Rao J, Mou X, Mo Y, Bei HP, Wang L, Tang CY, Yiu KH, Yang Z, Zhao X. Gas station in blood vessels: An endothelium mimicking, self-sustainable nitric oxide fueling stent coating for prevention of thrombosis and restenosis. Biomaterials 2023; 302:122311. [PMID: 37677916 DOI: 10.1016/j.biomaterials.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Stenting is the primary treatment for vascular obstruction-related cardiovascular diseases, but it inevitably causes endothelial injury which may lead to severe thrombosis and restenosis. Maintaining nitric oxide (NO, a vasoactive mediator) production and grafting endothelial glycocalyx such as heparin (Hep) onto the surface of cardiovascular stents could effectively reconstruct the damaged endothelium. However, insufficient endogenous NO donors may impede NO catalytic generation and fail to sustain cardiovascular homeostasis. Here, a dopamine-copper (DA-Cu) network-based coating armed with NO precursor L-arginine (Arg) and Hep (DA-Cu-Arg-Hep) is prepared using an organic solvent-free dipping technique to form a nanometer-thin coating onto the cardiovascular stents. The DA-Cu network adheres tightly to the surface of stents and confers excellent NO catalytic activity in the presence of endogenous NO donors. The immobilized Arg functions as a NO fuel to generate NO via endothelial nitric oxide synthase (eNOS), while Hep works as eNOS booster to increase the level of eNOS to decompose Arg into NO, ensuring a sufficient supply of NO even when endogenous donors are insufficient. The synergistic interaction between Cu and Arg is analogous to a gas station to fuel NO production to compensate for the insufficient endogenous NO donor in vivo. Consequently, it promotes the reconstruction of natural endothelium, inhibits smooth muscle cell (SMC) migration, and suppresses cascading platelet adhesion, preventing stent thrombosis and restenosis. We anticipate that our DA-Cu-Arg-Hep coating will improve the quality of life of cardiovascular patients through improved surgical follow-up, increased safety, and decreased medication, as well as revitalize the stenting industry through durable designs.
Collapse
Affiliation(s)
- Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaohui Mou
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523000, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong, China
| | - Yongyi Mo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Kai-Hang Yiu
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523000, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Zoltan Nagy
- Institute of Experimental Biomedicine, University of Würzburg, University Hospital, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University of Würzburg, University Hospital, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Mauersberger C, Sager HB, Wobst J, Dang TA, Lambrecht L, Koplev S, Stroth M, Bettaga N, Schlossmann J, Wunder F, Friebe A, Björkegren JLM, Dietz L, Maas SL, van der Vorst EPC, Sandner P, Soehnlein O, Schunkert H, Kessler T. Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1174-1186. [PMID: 37484062 PMCID: PMC10361702 DOI: 10.1038/s44161-022-00175-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/27/2022] [Indexed: 07/25/2023]
Abstract
Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.
Collapse
Affiliation(s)
- Carina Mauersberger
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Hendrik B. Sager
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Jana Wobst
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Tan An Dang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Laura Lambrecht
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Marlène Stroth
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Noomen Bettaga
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Frank Wunder
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Andreas Friebe
- Institute of Physiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Neo, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Lisa Dietz
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Oliver Soehnlein
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
- Institute for Experimental Pathology, University of Münster, Münster, Germany
- Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| |
Collapse
|
11
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
12
|
Degjoni A, Campolo F, Stefanini L, Venneri MA. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders. J Thromb Haemost 2022; 20:2465-2474. [PMID: 35950928 PMCID: PMC9805178 DOI: 10.1111/jth.15844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Platelets are the "guardians" of the blood circulatory system. At sites of vessel injury, they ensure hemostasis and promote immunity and vessel repair. However, their uncontrolled activation is one of the main drivers of thrombosis. To keep circulating platelets in a quiescent state, the endothelium releases platelet antagonists including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl cyclase (GC). The latter produces the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 5 (PDE5) is a cGMP-specific PDE, broadly expressed in most tissues in humans and rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first-line therapy for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract symptoms. However, several studies have shown that PDE5i may ameliorate the outcome of various other conditions, like heart failure and stroke. Interestingly, NO donors and cGMP analogs increase the capacity of anti-platelet drugs targeting the purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, and preclinical studies have shown that PDE5i inhibits platelet functions. This review summarizes the molecular mechanisms underlying the effect of PDE5i on platelet activation and aggregation focusing on the therapeutic potential of PDE5i in platelet disorders, and the outcomes of a combined therapy with PDE5i and NO donors to inhibit platelet activation.
Collapse
Affiliation(s)
- Anisa Degjoni
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Federica Campolo
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Lucia Stefanini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mary Anna Venneri
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
13
|
Wang X, Li J, Liu L, Kan JM, Niu P, Yu ZQ, Ma C, Dong F, Han MX, Li J, Zhao DX. Pharmacological mechanism and therapeutic efficacy of Icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis. BMC Complement Med Ther 2022; 22:253. [PMID: 36180911 PMCID: PMC9526298 DOI: 10.1186/s12906-022-03732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/19/2022] [Indexed: 03/17/2025] Open
Abstract
Background and objective Epimedii has long been used as a traditional medicine in Asia for the treatment of various common diseases, including Alzheimer's disease, cancer, erectile dysfunction, and stroke. Studies have reported the ameliorative effects of Icariside II (ICS II), a major metabolite of Epimedii, on acute ischemic stroke (AIS) in animal models. Based on network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we conducted a systematic review to evaluate the effects and neuroprotective mechanisms of ICS II on AIS. Methods First, we have searched 6 databases using studies with ICS II treatment on AIS animal models to explore the efficacy of ICS II on AIS in preclinical studies. The literature retrieval time ended on March 8, 2022 (Systematic Review Registration ID: CRD42022306291). There were no restrictions on the language of the search strategy. Systematic review follows the Patient, Intervention, Comparison and Outcome (PICO) methodology and framework. SYCLE's RoB tool was used to evaluate the the risk of bias. In network pharmacology, AIS-related genes were identified and the target-pathway network was constructed. Then, these targets were used in the enrichments of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO). Molecular docking and MD simulation were finally employed between ICS II and the potential target genes. Results Twelve publications were included describing outcomes of 1993 animals. The literature details, animal strains, induction models, doses administered, duration of administration, and outcome measures were extracted from the 12 included studies. ICS II has a good protective effect against AIS. Most of the studies in this systematic review had the appropriate methodological quality, but some did not clearly state the controlling for bias of potential study. Network pharmacology identified 246 targets with SRC, CTNNB1, HSP90AA1, MAPK1, and RELA as the core target proteins. Besides, 215 potential pathways of ICS II were identified, such as PI3K-Akt, MAPK, and cGMP-PKG signaling pathway. GO enrichment analysis showed that ICS II was significantly enriched in subsequent regulation such as MAPK cascade. Molecular docking and MD simulations showed that ICS II can closely bind with important targets. Conclusions ICS II is a promising drug in the treatment of AIS. However, this systematic review reveals key knowledge gaps (i.e., the protective role of ICS II in women) that ICS II must address before it can be used for the treatment of human AIS. Our study shows that ICS II plays a protective role in AIS through multi-target and multi-pathway characteristics, providing ideas for the development of drugs for the treatment of AIS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03732-9.
Collapse
|
14
|
Zhang Y, Benz P, Stehle D, Yang S, Kurz H, Feil S, Nagel G, Feil R, Gao S, Bender M. Optogenetic manipulation of cyclic guanosine monophosphate to probe phosphodiesterase activities in megakaryocytes. Open Biol 2022; 12:220058. [PMID: 35975649 PMCID: PMC9382455 DOI: 10.1098/rsob.220058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.
Collapse
Affiliation(s)
- Yujing Zhang
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, 97080 Würzburg, Germany
| | - Pascal Benz
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, 97080 Würzburg, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Shang Yang
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, 97070 Würzburg, Germany
| | - Hendrikje Kurz
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, 97080 Würzburg, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, 97070 Würzburg, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, 97080 Würzburg, Germany
| |
Collapse
|
15
|
Wen L, Marki A, Wang Z, Orecchioni M, Makings J, Billitti M, Wang E, Suthahar SSA, Kim K, Kiosses WB, Mikulski Z, Ley K. A humanized β 2 integrin knockin mouse reveals localized intra- and extravascular neutrophil integrin activation in vivo. Cell Rep 2022; 39:110876. [PMID: 35649374 PMCID: PMC10375464 DOI: 10.1016/j.celrep.2022.110876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
β2 integrins are leukocyte-specific adhesion molecules that are essential for leukocyte recruitment. The lack of tools for reporting β2 integrin activation in mice hindered the study of β2 integrin-related immune responses in vivo. Here, we generated a humanized β2 integrin knockin mouse strain by targeting the human β2 integrin coding sequence into the mouse Itgb2 locus to enable imaging of β2 integrin activation using the KIM127 (extension) and mAb24 (high-affinity) reporter antibodies. Using a CXCL1-induced acute inflammation model, we show the local dynamics of β2 integrin activation in arresting neutrophils in vivo in venules of the mouse cremaster muscle. Activated integrins are highly concentrated in a small area at the rear of arresting neutrophils in vivo. In a high-dose lipopolysaccharide model, we find that β2 integrins are activated in association with elevated neutrophil adhesion in lung and liver. Thus, these mice enable studies of β2 integrin activation in vivo.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Alex Marki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zhihao Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Marco Orecchioni
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jeffrey Makings
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Monica Billitti
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Erpei Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sujit S A Suthahar
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - William B Kiosses
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Kasatkina LA, Verkhusha VV. Transgenic mice encoding modern imaging probes: Properties and applications. Cell Rep 2022; 39:110845. [PMID: 35613592 PMCID: PMC9183799 DOI: 10.1016/j.celrep.2022.110845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Modern biology is increasingly reliant on optical technologies, including visualization and longitudinal monitoring of cellular processes. The major limitation here is the availability of animal models to track the molecules and cells in their natural environment in vivo. Owing to the integrity of the studied tissue and the high stability of transgene expression throughout life, transgenic mice encoding fluorescent proteins and biosensors represent unique tools for in vivo studies in norm and pathology. We review the strategies for targeting probe expression in specific tissues, cell subtypes, or cellular compartments. We describe the application of transgenic mice expressing fluorescent proteins for tracking protein expression patterns, apoptotic events, tissue differentiation and regeneration, neurogenesis, tumorigenesis, and cell fate mapping. We overview the possibilities of functional imaging of secondary messengers, neurotransmitters, and ion fluxes. Finally, we provide the rationale and perspectives for the use of transgenic imaging probes in translational research and drug discovery.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
17
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
19
|
Kieronska-Rudek A, Kij A, Kaczara P, Tworzydlo A, Napiorkowski M, Sidoryk K, Chlopicki S. Exogenous Vitamins K Exert Anti-Inflammatory Effects Dissociated from Their Role as Substrates for Synthesis of Endogenous MK-4 in Murine Macrophages Cell Line. Cells 2021; 10:1571. [PMID: 34206530 PMCID: PMC8303864 DOI: 10.3390/cells10071571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Marek Napiorkowski
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Katarzyna Sidoryk
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| |
Collapse
|
20
|
Platelets as drivers of ischemia/reperfusion injury after stroke. Blood Adv 2021; 5:1576-1584. [PMID: 33687431 DOI: 10.1182/bloodadvances.2020002888] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide and, despite reperfusion either via thrombolysis or thrombectomy, stroke patients often suffer from lifelong disabilities. These persistent neurological deficits may be improved by treating the ischemia/reperfusion (I/R) injury that occurs following ischemic stroke. There are currently no approved therapies to treat I/R injury, and thus it is imperative to find new targets to decrease the burden of ischemic stroke and related diseases. Platelets, cell fragments from megakaryocytes, are primarily known for their role in hemostasis. More recently, investigators have studied the nonhemostatic role of platelets in inflammatory pathologies, such as I/R injury after ischemic stroke. In this review, we seek to provide an overview of how I/R can lead to platelet activation and how activated platelets, in turn, can exacerbate I/R injury after stroke. We will also discuss potential mechanisms by which platelets may ameliorate I/R injury.
Collapse
|
21
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Wen L, Marki A, Roy P, McArdle S, Sun H, Fan Z, Gingras AR, Ginsberg MH, Ley K. Kindlin-3 recruitment to the plasma membrane precedes high-affinity β2-integrin and neutrophil arrest from rolling. Blood 2021; 137:29-38. [PMID: 32777822 PMCID: PMC7808012 DOI: 10.1182/blood.2019003446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Integrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive, bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is necessary for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type 3. Kindlin-3 binds the β2-integrin cytoplasmic tail at a site distinct from talin-1, but the molecular mechanism by which kindlin-3 activates β2-integrins is unknown. In this study, we measured the spatiotemporal dynamics of kindlin-3 and β2-integrin conformation changes during neutrophil and HL-60 cell rolling and arrest under flow. Using high-resolution quantitative dynamic footprinting microscopy and kindlin-3-fluorescent protein (FP) fusion proteins, we found that kindlin-3 was recruited to the plasma membrane in response to interleukin-8 (IL-8) before induction of the H+ β2-integrin conformation. Intravital imaging revealed that EGFP-kindlin-3-reconstituted, kindlin-3-knockout neutrophils arrest in vivo in response to CXCL1. EGFP-kindlin-3 in primary mouse neutrophils was also recruited to the plasma membrane before arrest. Upon arrest, we found small clusters of high-affinity β2-integrin molecules within large areas of membrane-proximal kindlin-3 FP. Deletion of kindlin-3 or its pleckstrin homology (PH) domain in neutrophil-like HL-60 cells completely abolished H+ β2-integrin induction. IL-8 also triggered recruitment of the isolated kindlin-3 PH domain to the plasma membrane before arrest. In summary, we showed that the kindlin-3 PH domain is necessary for recruitment to the plasma membrane, where full-length kindlin-3 is indispensable for the induction of high-affinity β2-integrin.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology and
| | | | - Payel Roy
- Laboratory of Inflammation Biology and
| | - Sara McArdle
- Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Laboratory of Inflammation Biology and
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT; and
| | | | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Klaus Ley
- Laboratory of Inflammation Biology and
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
23
|
Tian Y, Yang S, Gao S. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications. Int J Mol Sci 2020; 21:E7544. [PMID: 33066112 PMCID: PMC7590022 DOI: 10.3390/ijms21207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
The second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation.
Collapse
Affiliation(s)
| | | | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.T.); (S.Y.)
| |
Collapse
|
24
|
Jiang D, Cheng L, Xue Y, Chen C, Wang C, Yang G, Xu A, Yang Y, Gao Y, Zhang W. Modulation of the lifespan of C. elegans by the controlled release of nitric oxide. Chem Sci 2020; 11:8785-8792. [PMID: 34123131 PMCID: PMC8163451 DOI: 10.1039/c9sc06072c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The frontier of nitric oxide biology has gradually shifted from mechanism elucidation to biomanipulation, e.g. cell-proliferation promotion, cell-apoptosis induction, and lifespan modulation. This warrants biocompatible nitric oxide (NO) donating materials, whose NO release is not only controlled by a bioorthogonal trigger, but also self-calibrated allowing real-time monitoring and hence an onset/offset of the NO release. Additionally, the dose of NO release should be facilely adjusted in a large dynamic range; flux and the dose are critical to the biological outcome of NO treatment. Via self-assembly of a PEGylated small-molecule NO donor, we developed novel NO-donating nanoparticles (PEG-NORM), which meet all the aforementioned criteria. We showcased that a low flux of NO induced cell proliferation, while a high flux induced cell oxidative stress and, ultimately, death. Notably, PEG-NORM was capable of efficiently modulating the lifespan of C. elegans. The average lifespan of C. elegans could be fine-tuned to be as short as 15.87 ± 0.29 days with a high dose of NO, or as long as 21.13 ± 0.41 days with a low dose of NO, compared to an average life-span of 18.87 ± 0.46 days. Thus, PEG-NORM has broad potential in cell manipulation and life-span modulation and could drive the advancement of NO biology and medicine.
Collapse
Affiliation(s)
- Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Chao Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Youjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| |
Collapse
|
25
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Extracellular RNA released due to shear stress controls natural bypass growth by mediating mechanotransduction in mice. Blood 2020; 134:1469-1479. [PMID: 31501155 DOI: 10.1182/blood.2019001392] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Fluid shear stress in the vasculature is the driving force for natural bypass growth, a fundamental endogenous mechanism to counteract the detrimental consequences of vascular occlusive disease, such as stroke or myocardial infarction. This process, referred to as "arteriogenesis," relies on local recruitment of leukocytes, which supply growth factors to preexisting collateral arterioles enabling them to grow. Although several mechanosensing proteins have been identified, the series of mechanotransduction events resulting in local leukocyte recruitment is not understood. In a mouse model of arteriogenesis (femoral artery ligation), we found that endothelial cells release RNA in response to increased fluid shear stress and that administration of RNase inhibitor blocking plasma RNases improved perfusion recovery. In contrast, treatment with bovine pancreatic RNase A or human recombinant RNase1 interfered with leukocyte recruitment and collateral artery growth. Our results indicated that extracellular RNA (eRNA) regulated leukocyte recruitment by engaging vascular endothelial growth factor receptor 2 (VEGFR2), which was confirmed by intravital microscopic studies in a murine cremaster model of inflammation. Moreover, we found that release of von Willebrand factor (VWF) as a result of shear stress is dependent on VEGFR2. Blocking VEGFR2, RNase application, or VWF deficiency interfered with platelet-neutrophil aggregate formation, which is essential for initiating the inflammatory process in arteriogenesis. Taken together, the results show that eRNA is released from endothelial cells in response to shear stress. We demonstrate this extracellular nucleic acid as a critical mediator of mechanotransduction by inducing the liberation of VWF, thereby initiating the multistep inflammatory process responsible for arteriogenesis.
Collapse
|
27
|
Inhaled nitric oxide to control platelet hyper-reactivity in patients with acute submassive pulmonary embolism. Nitric Oxide 2020; 96:20-28. [PMID: 31940502 DOI: 10.1016/j.niox.2020.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND We test if inhaled nitric oxide (NO) attenuates platelet functional and metabolic hyper-reactivity in subjects with submassive pulmonary embolism (PE). METHODS Participants with PE were randomized to either 50 ppm NO + O2 or O2 only for 24 h with blood sampling at enrollment and after treatment; results were compared with healthy controls. Platelet metabolic activity was assessed by oxygen consumption (basal and uncoupled) and reactivity was assessed with agonist-stimulated thromboelastography (TEG) and fluorometric measurement of agonist-stimulated cytosolic [Ca++] without and with pharmacological soluble guanylate (sGC) modulation. RESULTS Participants (N = 38 per group) were well-matched at enrollment for PE severity, comorbidities as well as TEG parameters and platelet O2 consumption. NO treatment doubled the mean plasma [NO3-] (P < 0.001) indicating successful delivery, but placebo treatment produced no change. After 24 h, neither TEG nor O2 consumption parameters differed significantly between treatment groups. Platelet cytosolic [Ca++] was elevated with PE versus controls, and was decreased by treatment with cinaciguat (an sGC activator), but not riociguat (an sGC stimulator). Stimulated platelet lysate sGC activity was increased with PE compared with controls. CONCLUSIONS In patients with acute submassive PE, despite evidence of adequate drug delivery, inhaled NO had no major effect on platelet O2 consumption or agonist-stimulated parameters on TEG. Pharmacological activation, but not stimulation, of sGC effectively decreased platelet cytosolic [Ca++], and platelet sGC activity was increased with PE, confirming the viability of sGC as a therapeutic target.
Collapse
|
28
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
29
|
Quach ME, Syed AK, Li R. A Uniform Shear Assay for Human Platelet and Cell Surface Receptors via Cone-plate Viscometry. J Vis Exp 2019. [PMID: 31233025 DOI: 10.3791/59704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many biological cells/tissues sense the mechanical properties of their local environments via mechanoreceptors, proteins that can respond to forces like pressure or mechanical perturbations. Mechanoreceptors detect their stimuli and transmit signals via a great diversity of mechanisms. Some of the most common roles for mechanoreceptors are in neuronal responses, like touch and pain, or hair cells which function in balance and hearing. Mechanosensation is also important for cell types which are regularly exposed to shear stress such as endothelial cells, which line blood vessels, or blood cells which experience shear in normal circulation. Viscometers are devices that detect the viscosity of fluids. Rotational viscometers may also be used to apply a known shear force to fluids. The ability of these instruments to introduce uniform shear to fluids has been exploited to study many biological fluids including blood and plasma. Viscometry may also be used to apply shear to the cells in a solution, and to test the effects of shear on specific ligand-receptor pairs. Here, we utilize cone-plate viscometry to test the effects of endogenous levels of shear stress on platelets treated with antibodies against the platelet mechanosensory receptor complex GPIb-IX.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Department of Pediatrics, Emory University School of Medicine
| | - Anum K Syed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Department of Pediatrics, Emory University School of Medicine
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Department of Pediatrics, Emory University School of Medicine;
| |
Collapse
|