1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Li Y, Liu Y, Xie Y, Wang Y, Wang J, Wang H, Xia L, Xie D. Long-read RNA sequencing enables full-length chimeric transcript annotation of transposable elements in lung adenocarcinoma. BMC Cancer 2025; 25:482. [PMID: 40089719 PMCID: PMC11909889 DOI: 10.1186/s12885-025-13888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Transposable elements (TEs), which constitute nearly half of the human genome, have long been regarded as genomic "dark matter". However, their reactivation in tumor cells, resulting in the production of TE-chimeric transcripts (TCTs), has emerged as a potential driver of cancer progression. The complexity and full extent of these transcripts remain elusive, largely due to the limitations of short-read next-generation sequencing technologies. These methods have struggled to comprehensively capture the diversity and structure of TCTs, particularly those involving short interspersed nuclear elements (SINEs) or closely co-transcribed TEs. METHODS Leveraging full-length cDNA sequencing technology based on nanopore sequencing platform, we developed a customized pipeline for identifying and quantifying TCTs in 19 lung adenocarcinoma (LUAD) cell lines. The short-read RNA-seq dataset from a LUAD corhort (~ 200 tumor samples) was employed to validate the identified TCTs and explore their association with tumor progression. To assess the functional roles of a specific TCTs, cell migration and cell proliferation assays were performed. RESULTS We uncovered 208 unique TCT candidates in the LUAD cell lines. Our approach allowed for the identification of cryptic promoters and terminators within non-transposing TEs. Notably, we identified a chimeric transcript involving MIR_HKDC1, which appears to play a significant role in the progression of LUAD. Furthermore, the expression of these TCTs were associated with poor clinical outcomes in a cohort of LUAD patients, suggesting their potential as novel biomarkers for both LUAD progression and prognosis. CONCLUSIONS Our study underscores the application of long-read sequencing to unravel the complex landscape of TCTs in LUAD. We provide a comprehensive characterization of TCTs in LUAD, exploring their potential regulatory roles in cancer progression. These findings contribute to a deeper understanding of the genomic intricacies underlying cancer, and offer new directions for the development of targeted therapies and personalized treatment strategies for LUAD. This research highlights the potential of TCTs as both biomarkers and therapeutic targets in the oncogenesis, offering new insights into the interplay between transposable elements and gene regulation in cancer.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yahui Liu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yingxin Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaxuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huan Wang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xia
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Ding CH, Yan FZ, Xu BN, Qian H, Hong XL, Liu SQ, Luo YY, Wu SH, Cai LY, Zhang X, Xie WF. PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis 2025; 16:158. [PMID: 40050608 PMCID: PMC11885674 DOI: 10.1038/s41419-025-07482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Aberrant expression of programmed death ligand-1 (PD-L1) facilitates tumor immune evasion. Protein arginine methyltransferase 3 (PRMT3), a member of type I PRMT family, mediates asymmetric dimethylarginine (ADMA) modification of various substrate proteins. This study investigates the role of PRMT3 in PD-L1-associated tumor immunosuppression in hepatocellular carcinoma (HCC). Hepatocyte-specific knockout of Prmt3 significantly suppressed HCC progression in DEN-CCL4-treated mice. Knockout of Prmt3 in HCC cells markedly increased CD8+ T cell infiltration, and reduced lactate production in tumors. PRMT3 interacted with pyruvate dehydrogenase kinase 1 (PDHK1), asymmetric dimethylation of PDHK1 at arginine 363 and 368 residues and increased its kinase activity. The R363/368 K mutant or inhibition of PDHK1 by JX06 blocked the effect of PRMT3 on lactate production. JX06 treatment also attenuated the tumor-promoting role of PRMT3 in HCC in vitro and in vivo. Furthermore, RNA-seq analysis revealed that knockout of PRMT3 downregulates the tumor-associated immune checkpoint, PD-L1, in tumor tissues. Chromatin immunoprecipitation (ChIP) assay demonstrated that PRMT3 promotes lactate-induced PD-L1 expression by enhancing the direct binding of histone H3 lysine 18 lactylation (H3K18la) to the PD-L1 promoter. Tissue microarray analysis showed a positive correlation between PRMT3 and PD-L1 expression in HCC patients. Anti-PD-L1 treatment reversed PRMT3-induced tumor growth and restored CD8+ T cell infiltration. Our research links PRMT3-mediated metabolic reprogramming and immune evasion, revealing that the PRMT3-PDHK1-lactate-PD-L1 axis may be a potential target for improving the efficacy of immunotherapy in HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo-Nan Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Wang Z, Wu H, Li Z, Chen Z, Feng A, Chu Y, Fang K, Zhang Z, Zhao Z, Leng Z, Zhang S, Wang X, He L, Chen T, Xu M. PADI4 facilitates stem-like properties and cisplatin resistance through upregulating PRMT2/IDs family in oesophageal squamous cell carcinoma. Clin Transl Med 2025; 15:e70272. [PMID: 40078091 PMCID: PMC11904308 DOI: 10.1002/ctm2.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Oesophageal squamous cell carcinoma (OSCC) is a highly lethal cancer characterized by its aggressive nature and chemotherapy resistance. Peptidylarginine deiminase 4 (PADI4) regulates protein citrullination and is associated with various cancer developments. The role of PADI4 in OSCC progression and chemoresistance remains unexplored. METHODS The protein interactions were conducted by immunoprecipitation assays. Quantitative real-time PCR and western blotting were utilized to quantifyexpression levels in cancer cells. The stem-like properties were assessed through spheroid growth assays and Cancer Stem Cells (CSCs) markers. Additionally, the resistance of cancer cells to cisplatin was evaluated using CCK8 assay. RESULTS This study shows that PADI4 promotes cellular stemness, contributing to the progression and chemoresistance of OSCC. Mechanistically, PADI4 facilitates the citrullination of protein arginine methyltransferase 2 (PRMT2), a process essential for the stabilization of PRMT2 expression and the enhancement of its function in promoting the transcription of IDs family (ID1 and ID2) via histone arginine methylation. This mechanism subsequently increases tumour stemness and contributes to the cisplatin resistance observed in OSCC. Mutations at the R312 site or inhibition by GSK484 can attenuate tumour stemness in OSCC, thereby reducing cisplatin resistance. CONCLUSION PADI4 promotes citrullination and stabilization of PRMT2, enhancing its function in upregulating ID1 and ID2 expression via histone arginine methylation, which increases stemness and contributes to cisplatin resistance in OSCC; this effect can be mitigated by R312 mutations or GSK484 inhibition, reducing stemness and cisplatin resistance. KEY POINTS The role of citrullinization in cisplatin resistance of OSCC. PADI4 citrullinate of PRMT2 and stabilize PRMT2. PADI4 citrullinate of PRMT2 promoting the transcription of IDs family (ID1, ID2 and ID3) via histone arginine methylation. PADI4 citrullinated PRMT2 affected the combination of PRMT2 and USP7. PADI4 citrullinate of PRMT2 at R312 site. PADI4 inhibitor GSK484 can affect the stemness of OSCC and cisplatin resistance.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaoxing Li
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhukai Chen
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anqi Feng
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Chu
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kang Fang
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehua Zhang
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziying Zhao
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuyun Leng
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shihan Zhang
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyuan Wang
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingnan He
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Chen
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meidong Xu
- Department of Gastroenterology, Endoscopy Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Dhang S, Mondal A, Das C, Roy S. Metformin inhibits the histone methyltransferase CARM1 and attenuates H3 histone methylation during gluconeogenesis. J Biol Chem 2025; 301:108271. [PMID: 39922487 PMCID: PMC11910104 DOI: 10.1016/j.jbc.2025.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Hyperglycemia is a hallmark of metabolic disorders, yet the precise mechanisms linking epigenetic regulation to glucose metabolism remain underexplored. Coactivator-associated arginine methyltransferase 1 (CARM1), a type I histone methyltransferase, promotes transcriptional activation through the methylation of histone H3 at arginine residues H3R17 and H3R26. Here, we identify a novel mechanism by which metformin, a widely prescribed antidiabetic drug, inhibits CARM1 activity. Using biochemical and biophysical assays, we show that metformin binds to the substrate-binding site of CARM1, reducing histone H3 methylation levels in CARM1-overexpressing hepatic cells and liver tissues from metformin-fed mice. This epigenetic modulation suppresses the expression of gluconeogenic enzymes (G6Pase, FBPase, and PCK1), thereby reversing CARM1-induced glycolytic suppression and regulating gluconeogenesis. Importantly, metformin does not alter CARM1 protein levels and its recruitment to gluconeogenic gene promoters but diminishes H3R17me2a marks at these loci. Our findings reveal a previously unrecognized epigenetic mechanism of metformin action, offering new therapeutic insights for hyperglycemia management.
Collapse
Affiliation(s)
- Sinjini Dhang
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Jiang Z, Huang H, Guo Y, Wang Z, Huang H, Yin W, Huang H, Wang L, Liu W, Jiang X, Ren C. Unveiling the Role of Protein Posttranslational Modifications in Glioma Prognosis. CNS Neurosci Ther 2025; 31:e70330. [PMID: 40090864 PMCID: PMC11911106 DOI: 10.1111/cns.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Gliomas represent the most aggressive malignancies of the central nervous system, with posttranslational modifications (PTMs) emerging as critical regulators of oncogenic processes through dynamic protein functional modulation. Despite their established role in tumor biology, the systematic characterization of PTM-mediated molecular mechanisms driving glioma progression remains unexplored. This study aims to uncover the molecular mechanisms of glioma, with a focus on the role of PTMs. METHODS We analyzed the PTM pathway to classify glioma patients into distinct clusters. Comprehensive analyses compared intercluster differences in clinical outcomes, mutational landscapes, and immune microenvironment profiles. Differentially expressed genes (DEGs) were identified to construct a robust prognostic prediction model with machine learning approaches. Among the genes included in the model, TOM1L1 (Target of Myb1 Like 1 Membrane Trafficking Protein) was selected for in vitro experimental validation to assess its role in glioma progression. RESULTS PTMs were found to influence glioma prognosis significantly. Dysregulation in specific pathways, such as glutathionylation and citrullination, was correlated with more aggressive clinical features. The prognostic model, comprising DEGs such as TOM1L1, demonstrated high predictive accuracy (c-index = 0.867)-the scores derived from the model strongly correlated with glioma progression indicators. In vitro experiments revealed that TOM1L1 facilitates malignant progression by modulating PTM pathways, confirming its functional role in glioma. CONCLUSION Our study establishes the first comprehensive PTM atlas in gliomas, revealing subtype-specific modification patterns with clinical and therapeutic implications. TOM1L1 emerges as a promising prognostic biomarker and a potential therapeutic intervention target. Targeting PTM pathways may offer novel strategies for glioma treatment, enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaP.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangshaP.R. China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Zihan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hailong Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Wen Yin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Haoxuan Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Lei Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| |
Collapse
|
7
|
Armendáriz-Castillo I, García-Cárdenas J, Espinosa P, Hidalgo-Fernández K, Peña-Zúñiga L, Martínez R, Moromenacho J, Herrera-Yela A, Cruz-Varela J, Saucedo-Sariñana A, Cerdán ME, López-Cortés A, Guerrero S. Metabolic pathways of Alternative Lengthening of Telomeres in pan-carcinoma. PLoS One 2025; 20:e0314012. [PMID: 39982908 PMCID: PMC11845024 DOI: 10.1371/journal.pone.0314012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 02/23/2025] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomerase-independent mechanism deployed by several aggressive cancers to maintain telomere length. This contributes to their malignancy and resistance to conventional therapies. In prior studies, we have identified key proteins linked to the ALT process using multi-omic data integration strategies. In this work, we combined metabolomic datasets with our earlier results to identify targetable metabolic pathways for ALT-positive tumors. 39 ALT-related proteins were found to interact with 42 different metabolites in our analysis. Additional networking analysis revealed a complex interaction between metabolites and ALT-related proteins, suggesting that pan-cancer oncogenes may have an impact on these pathways. Three metabolic pathways have been primarily related with the ALT mechanism: purine metabolism, cysteine and methionine metabolism, and nicotinate and nicotinamide metabolism. Lastly, we prioritized FDA-approved drugs (azathioprine, thioguanine, and mercaptopurine) that could target ALT-positive tumors through purine metabolism. This work provides a wide perspective of the metabolomic pathways associated with ALT and reveals potential therapeutic targets that require further experimental validation.
Collapse
Affiliation(s)
- Isaac Armendáriz-Castillo
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, A Coruña, Spain
| | - Jennyfer García-Cárdenas
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Pamela Espinosa
- Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Katherine Hidalgo-Fernández
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Lizbeth Peña-Zúñiga
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Ronie Martínez
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultad de Ciencias Técnicas, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Juan Moromenacho
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultad de Ciencias Técnicas, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Andrés Herrera-Yela
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito, Ecuador
| | - Jonathan Cruz-Varela
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuqui, Ecuador
| | - Anilú Saucedo-Sariñana
- Departamento Académico de Aparatos y Sistemas I, Universidad Autónoma de Guadalajara, Zapopan, México
| | - María-Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, A Coruña, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Santiago Guerrero
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
8
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 PMCID: PMC11973959 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
9
|
Liu H, Ren Q, Gong M, Zuo F, Li Q, Huo D, Yuan Y, Zhang Y, Kong Y, Liu X, Lu C, Wu X. Enforced activation of the CREB/KDM2B axis prevents alcohol-induced embryonic developmental delay. Cell Rep 2024; 43:115075. [PMID: 39661511 DOI: 10.1016/j.celrep.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Unintentional, early pregnancy alcohol consumption affects embryonic development. During the peri-implantation stage, coinciding with the transition from naive to primed pluripotency, the long isoform of KDM2B (KDM2BLF) underlies the de novo establishment of polycomb repressive complex (PRC) functions at promoters after fertilization. However, it remains unclear whether and how ethanol exposure affects this spatiotemporal chromatin setting. Here, we show that exposing peri-implantation mouse embryos to ethanol leads to impaired post-implantation development, mirrored by the delayed exit of naive pluripotency in acetaldehyde-treated embryonic stem cells. Remarkably, these abnormalities are linked to inadequate KDM2BLF expression and compromised deposition of PRC marks, which arise from cAMP response element-binding protein (CREB) inactivation. Accordingly, pharmacological activation of CREB effectively restores pluripotency transition partly dependent on KDM2BLF in vitro and ameliorates post-implantation embryonic defects in vivo. Therefore, our study highlights the pivotal role of the CREB/KDM2B axis in chromatin configuration and developmental programming, proposing potential preventive strategies against ethanol exposure-induced detrimental effects.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qiyu Ren
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Feifei Zuo
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Dawei Huo
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Institute of Hematology, Zhejiang University, Hangzhou 311113, China
| | - Ye Yuan
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China
| | - Yu Kong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China.
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China.
| |
Collapse
|
10
|
Zhou B, Arthur JG, Guo H, Kim T, Huang Y, Pattni R, Wang T, Kundu S, Luo JXJ, Lee H, Nachun DC, Purmann C, Monte EM, Weimer AK, Qu PP, Shi M, Jiang L, Yang X, Fullard JF, Bendl J, Girdhar K, Kim M, Chen X, Greenleaf WJ, Duncan L, Ji HP, Zhu X, Song G, Montgomery SB, Palejev D, Zu Dohna H, Roussos P, Kundaje A, Hallmayer JF, Snyder MP, Wong WH, Urban AE. Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders. Cell 2024; 187:6687-6706.e25. [PMID: 39353437 DOI: 10.1016/j.cell.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Complex structural variations (cxSVs) are often overlooked in genome analyses due to detection challenges. We developed ARC-SV, a probabilistic and machine-learning-based method that enables accurate detection and reconstruction of cxSVs from standard datasets. By applying ARC-SV across 4,262 genomes representing all continental populations, we identified cxSVs as a significant source of natural human genetic variation. Rare cxSVs have a propensity to occur in neural genes and loci that underwent rapid human-specific evolution, including those regulating corticogenesis. By performing single-nucleus multiomics in postmortem brains, we discovered cxSVs associated with differential gene expression and chromatin accessibility across various brain regions and cell types. Additionally, cxSVs detected in brains of psychiatric cases are enriched for linkage with psychiatric GWAS risk alleles detected in the same brains. Furthermore, our analysis revealed significantly decreased brain-region- and cell-type-specific expression of cxSV genes, specifically for psychiatric cases, implicating cxSVs in the molecular etiology of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joseph G Arthur
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Hanmin Guo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Taeyoung Kim
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tao Wang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Jay X J Luo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma M Monte
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Annika K Weimer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Minyi Shi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lixia Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinqiong Yang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minsu Kim
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Xi Chen
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Laramie Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiang Zhu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Giltae Song
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea; Center for Artificial Intelligence Research, Pusan National University, Busan 46241, South Korea
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Dean Palejev
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Heinrich Zu Dohna
- Department of Biology, American University of Beirut, Beirut 11-0236, Lebanon
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wing H Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Mao L, You J, Xie M, Hu Y, Zhou Q. Arginine Methylation of β-Catenin Induced by PRMT2 Aggravates LPS-Induced Cognitive Dysfunction and Depression-Like Behaviors by Promoting Ferroptosis. Mol Neurobiol 2024; 61:7796-7813. [PMID: 38430350 DOI: 10.1007/s12035-024-04019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Depression is a prevalent and debilitating psychiatric disorder, imposing substantial societal and individual burdens. This study aims to investigate the involvement of ferroptosis and microglial polarization in the pathogenesis of depression, as well as the underlying mechanism. Increased protein arginine methyltransferase 2 (PRMT2) expression was observed in BV2 cells and the hippocampus following lipopolysaccharide (LPS) stimulation. Mechanistically, alkylation repair homolog protein 5 (ALKBH5)-mediated m6A modification enhanced the stability of PRMT2 mRNA. PRMT2 promoted arginine methylation of β-catenin and induced proteasomal degradation of β-catenin proteins, resulting in transcriptional inhibition of glutathione peroxidase 4 (GPX4). The upregulation of PRMT2 further accelerated microglia polarization by activating ferroptosis through the β-catenin-GPX4 axis. Depletion of PRMT2 improved LPS-induced depressive- and anxiety-like behaviors as well as cognitive impairment by inhibiting ferroptosis and M1 polarization of microglia. Our findings underscore the crucial involvement of the ALKBH5-PRMT2-β-catenin-GPX4 axis in ferroptosis and M1 polarization of microglia, thereby offering novel insights into the pathogenesis interventions for depression.
Collapse
Affiliation(s)
- Lei Mao
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Jiyue You
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Min Xie
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Yunxia Hu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Qin Zhou
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
12
|
Lv X, Wang B, Liu K, Li MJ, Yi X, Wu X. Decoding heterogeneous and coordinated tissue architecture in glioblastoma using spatial transcriptomics. iScience 2024; 27:110064. [PMID: 38947514 PMCID: PMC11214485 DOI: 10.1016/j.isci.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal brain tumors, characterized by profound heterogeneity. While single-cell transcriptomic studies have revealed extensive intra-tumor heterogeneity, shed light on intra-tumor diversity, spatial intricacies remain largely unexplored. Leveraging clinical GBM specimens, this study employs spatial transcriptomics technology to delve into gene expression heterogeneity. Our investigation unveils a significant enrichment of tissue stem cell signature in regions bordering necrosis and the peritumoral area, positively correlated with the mesenchymal subtype signature. Moreover, upregulated genes in these regions are linked with extracellular matrix (ECM)-receptor interaction, proteoglycans, as well as vascular endothelial growth factor (VEGF) and angiopoietin-Tie (ANGPT) signaling pathways. In contrast, signatures related to glycogen metabolism and oxidative phosphorylation show no relevance to pathological zoning, whereas creatine metabolism signature is notably exclusive to vascular-enriched areas. These spatial profiles not only offer valuable references but also pave the way for future in-depth functional and mechanistic investigations into GBM progression.
Collapse
Affiliation(s)
- Xuejiao Lv
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Wang
- Department of Neurosurgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin 300350, China
| | - Kunlun Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Sauter C, Morin T, Guidez F, Simonet J, Fournier C, Row C, Masnikov D, Pernon B, Largeot A, Aznague A, Hérault Y, Sauvageau G, Maynadié M, Callanan M, Bastie JN, Aucagne R, Delva L. Protein arginine methyltransferase 2 controls inflammatory signaling in acute myeloid leukemia. Commun Biol 2024; 7:753. [PMID: 38902349 PMCID: PMC11190286 DOI: 10.1038/s42003-024-06453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - Thomas Morin
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Fabien Guidez
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - John Simonet
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Cyril Fournier
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
| | - Céline Row
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Denis Masnikov
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Baptiste Pernon
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Anne Largeot
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Aziza Aznague
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Yann Hérault
- Université de Strasbourg, CNRS UMR7104, Inserm U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Marc Maynadié
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Mary Callanan
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Clinical Hematology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| |
Collapse
|
14
|
Liu S, Zhang B, Guo H, Ding Z, Hou W, Hu X, Wang Y, Tan W, Zhou S. The antidepressant effects of protein arginine methyltransferase 2 involve neuroinflammation. Neurochem Int 2024; 176:105728. [PMID: 38561150 DOI: 10.1016/j.neuint.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical College, Guilin, 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China.
| | - Bei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Haowei Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Zhanghua Ding
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wenhui Hou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Xiaoli Hu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Yuchu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Wupeng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang, 421001, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China; Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| |
Collapse
|
15
|
Dong F, Sun X, Su J, Li Q, He Y, Li W, Wang B, Wang B, Xu G, Wu X. Hypoxia-inducible PRMT2 addiction in glioblastomas. Cell Signal 2024; 117:111094. [PMID: 38341123 DOI: 10.1016/j.cellsig.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Hypoxia-inducible transcription factors (HIFs) are key transcription factors for cellular response to low oxygen levels. However, the specific mediators responsible for activating downstream transcription are not well characterized. We previously identified Protein Arginine methyltransferase 2 (PRMT2), a highly expressed methyltransferase in glioblastoma multiforme, as a transcription co-activator. And we established a connection between PRMT2-mediated histone H3R8 asymmetric methylation (H3R8me2a) and transcription activation. Here we find that PRMT2 is activated by HIF1α under hypoxic conditions. And we demonstrate that PRMT2 and its H3R8me2a activity are required for the transcription activation of a significant subset of hypoxia-induced genes. Consequently, the inactivation of PRMT2 suppresses hypoxia-induced glioblastoma cell migration, attenuates tumor progression, and enhances chemotherapeutic sensitivity in mouse xenograft models. In addition, our analysis of clinical glioma specimens reveals a correlation between PRMT2 protein levels, HIF1α abundance, and an unfavorable prognosis. Our study establishes HIF1α-induced PRMT2 as a critical modulator in the activation of hypoxia-related transcriptional programs, ultimately driving malignant progression.
Collapse
Affiliation(s)
- Feng Dong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin 300070, China; Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaoyu Sun
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Jiacheng Su
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - You He
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Wei Li
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin 300350, China
| | - Guogang Xu
- Health Management Institute, The Second Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin 300070, China; Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China.
| |
Collapse
|
16
|
Cao L, Han R, Zhao Y, Qin X, Li Q, Xiong H, Kong Y, Liu Z, Li Z, Dong F, Li T, Zhao X, Lei L, Zhao Q, Liu D, Wang B, Wu X. A LATS2 and ALKBH5 positive feedback loop supports their oncogenic roles. Cell Rep 2024; 43:114032. [PMID: 38568805 DOI: 10.1016/j.celrep.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Yingying Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Hui Xiong
- Department of Immunology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Yu Kong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ziyi Liu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Zexing Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Feng Dong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiujuan Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Lei Lei
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
17
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
18
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y, Wang J. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal 2024; 22:102. [PMID: 38326807 PMCID: PMC10851560 DOI: 10.1186/s12964-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.
Collapse
Affiliation(s)
- Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zongyu Xiao
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Shaofen Zhan
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
19
|
Stitzlein LM, Adams JT, Stitzlein EN, Dudley RW, Chandra J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J Exp Clin Cancer Res 2024; 43:12. [PMID: 38183103 PMCID: PMC10768151 DOI: 10.1186/s13046-023-02923-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Targeted therapies, including small molecule inhibitors directed against aberrant kinase signaling and chromatin regulators, are emerging treatment options for high-grade gliomas (HGG). However, when translating these inhibitors into the clinic, their efficacy is generally limited to partial and transient responses. Recent studies in models of high-grade gliomas reveal a convergence of epigenetic regulators and kinase signaling networks that often cooperate to promote malignant properties and drug resistance. This review examines the interplay between five well-characterized groups of chromatin regulators, including the histone deacetylase (HDAC) family, bromodomain and extraterminal (BET)-containing proteins, protein arginine methyltransferase (PRMT) family, Enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1), and various signaling pathways essential for cancer cell growth and progression. These specific epigenetic regulators were chosen for review due to their targetability via pharmacological intervention and clinical relevance. Several studies have demonstrated improved efficacy from the dual inhibition of the epigenetic regulators and signaling kinases. Overall, the interactions between epigenetic regulators and kinase signaling pathways are likely influenced by several factors, including individual glioma subtypes, preexisting mutations, and overlapping/interdependent functions of the chromatin regulators. The insights gained by understanding how the genome and epigenome cooperate in high-grade gliomas will guide the design of future therapeutic strategies that utilize dual inhibition with improved efficacy and overall survival.
Collapse
Affiliation(s)
- Lea M Stitzlein
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jack T Adams
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Richard W Dudley
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, USA
| | - Joya Chandra
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Liu T, Li Y, Xu M, Huang H, Luo Y. PRMT2 silencing regulates macrophage polarization through activation of STAT1 or inhibition of STAT6. BMC Immunol 2024; 25:1. [PMID: 38172698 PMCID: PMC10765854 DOI: 10.1186/s12865-023-00593-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Macrophages play significant roles in innate immune responses and are heterogeneous cells that can be polarized into M1 or M2 phenotypes. PRMT2 is one of the type I protein arginine methyltransferases involved in inflammation. However, the role of PRMT2 in M1/M2 macrophage polarization remains unclear. Our study revealed the effect and mechanism of PRMT2 in macrophage polarization. METHODS Bone marrow-derived macrophages (BMDMs) were polarized to M1 or M2 state by LPS plus murine recombinant interferon-γ (IFN-γ) or interleukin-4 (IL-4). Quantitative polymerase chain reaction (qPCR), western blot and flow cytometry (FCM) assay were performed and analyzed markers and signaling pathways of macrophage polarization. RESULTS We found that PRMT2 was obviously upregulated in LPS/IFN-γ-induced M1 macrophages, but it was little changed in IL-4-induced M2 macrophages. Furthermore, PRMT2 konckdown increased the expression of M1 macrophages markers through activation of STAT1 and decreased the expression of M2 macrophages markers through inhibition of STAT6. CONCLUSIONS PRMT2 silencing modulates macrophage polarization by activating STAT1 to promote M1 and inhibiting STAT6 to attenuate the M2 state.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinjiao Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Muqiu Xu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjun Huang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Rowley MJ, Prout-Holm RA, Liu RW, Hendrickson-Rebizant T, Ige OO, Lakowski TM, Frankel A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J Biol Chem 2023; 299:105360. [PMID: 37863263 PMCID: PMC10692916 DOI: 10.1016/j.jbc.2023.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.
Collapse
Affiliation(s)
- Michael J Rowley
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley A Prout-Holm
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Wen Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Olufola O Ige
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
23
|
Jin J, Bai H, Yan H, Deng T, Li T, Xiao R, Fan L, Bai X, Ning H, Liu Z, Zhang K, Wu X, Liang K, Ma P, Gao X, Hu D. PRMT2 promotes HIV-1 latency by preventing nucleolar exit and phase separation of Tat into the Super Elongation Complex. Nat Commun 2023; 14:7274. [PMID: 37949879 PMCID: PMC10638354 DOI: 10.1038/s41467-023-43060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The HIV-1 Tat protein hijacks the Super Elongation Complex (SEC) to stimulate viral transcription and replication. However, the mechanisms underlying Tat activation and inactivation, which mediate HIV-1 productive and latent infection, respectively, remain incompletely understood. Here, through a targeted complementary DNA (cDNA) expression screening, we identify PRMT2 as a key suppressor of Tat activation, thus contributing to proviral latency in multiple cell line latency models and in HIV-1-infected patient CD4+ T cells. Our data reveal that the transcriptional activity of Tat is oppositely regulated by NPM1-mediated nucleolar retention and AFF4-induced phase separation in the nucleoplasm. PRMT2 preferentially methylates Tat arginine 52 (R52) to reinforce its nucleolar sequestration while simultaneously counteracting its incorporation into the SEC droplets, thereby leading to its functional inactivation to promote proviral latency. Thus, our studies unveil a central and unappreciated role for Tat methylation by PRMT2 in connecting its subnuclear distribution, liquid droplet formation, and transactivating function, which could be therapeutically targeted to eradicate latent viral reservoirs.
Collapse
Affiliation(s)
- Jiaxing Jin
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Bai
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Han Yan
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Ting Deng
- Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Tianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Lina Fan
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hanhan Ning
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Zhe Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xudong Wu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China.
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Deqing Hu
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
24
|
Azhar M, Xu C, Jiang X, Li W, Cao Y, Zhu X, Xing X, Wu L, Zou J, Meng L, Cheng Y, Han W, Bao J. The arginine methyltransferase Prmt1 coordinates the germline arginine methylome essential for spermatogonial homeostasis and male fertility. Nucleic Acids Res 2023; 51:10428-10450. [PMID: 37739418 PMCID: PMC10602896 DOI: 10.1093/nar/gkad769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Arginine methylation, catalyzed by the protein arginine methyltransferases (PRMTs), is a common post-translational protein modification (PTM) that is engaged in a plethora of biological events. However, little is known about how the methylarginine-directed signaling functions in germline development. In this study, we discover that Prmt1 is predominantly distributed in the nuclei of spermatogonia but weakly in the spermatocytes throughout mouse spermatogenesis. By exploiting a combination of three Cre-mediated Prmt1 knockout mouse lines, we unravel that Prmt1 is essential for spermatogonial establishment and maintenance, and that Prmt1-catalyzed asymmetric methylarginine coordinates inherent transcriptional homeostasis within spermatogonial cells. In conjunction with high-throughput CUT&Tag profiling and modified mini-bulk Smart-seq2 analyses, we unveil that the Prmt1-deposited H4R3me2a mark is permissively enriched at promoter and exon/intron regions, and sculpts a distinctive transcriptomic landscape as well as the alternative splicing pattern, in the mouse spermatogonia. Collectively, our study provides the genetic and mechanistic evidence that connects the Prmt1-deposited methylarginine signaling to the establishment and maintenance of a high-fidelity transcriptomic identity in orchestrating spermatogonial development in the mammalian germline.
Collapse
Affiliation(s)
- Muhammad Azhar
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Caoling Xu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenqing Li
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xiaoli Zhu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xuemei Xing
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiaqi Zou
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Lan Meng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yu Cheng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenjie Han
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| |
Collapse
|
25
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
26
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
27
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
28
|
Jiang Y, Wei S, Koo JM, Kim HJ, Park W, Zhang Y, Guo H, Ha KT, Oh CM, Kang JS, Jeong JH, Ryu D, Kim KJ, Jo Y. Integrative Evaluation of the Clinical Significance Underlying Protein Arginine Methyltransferases in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4183. [PMID: 37627211 PMCID: PMC10453297 DOI: 10.3390/cancers15164183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
HCC is a major contributor to cancer-related mortality worldwide. Curative treatments are available for a minority of patients diagnosed at early stages; however, only a few multikinase inhibitors are available and are marginally effective in advanced cases, highlighting the need for novel therapeutic targets. One potential target is the protein arginine methyltransferase, which catalyzes various forms of arginine methylation and is often overexpressed in various cancers. However, the diverse expression patterns and clinical values of PRMTs in HCC remain unclear. In the present study, we evaluated the transcriptional expression of PRMTs in HCC cohorts using publicly available datasets. Our results revealed a significant association between PRMTs and prognosis in HCC patients with diverse clinical characteristics and backgrounds. This highlights the promising potential of PRMTs as prognostic biomarkers in patients with HCC. In particular, single-cell RNA (scRNA) sequencing analysis coupled with another human cohort study highlighted the pivotal role of PRMT1 in HCC progression, particularly in the context of Tex. Translating these findings into specific therapeutic decisions may address the unmet therapeutic needs of patients with HCC.
Collapse
Affiliation(s)
- Yikun Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shibo Wei
- Department of Precision Medicine, Sungkyunkwan University (SKKU) School of Medicine, Suwon 16419, Republic of Korea; (S.W.)
| | - Jin-Mo Koo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hea-Ju Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - He Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea (D.R.)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, Sungkyunkwan University (SKKU) School of Medicine, Suwon 16419, Republic of Korea; (S.W.)
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea (D.R.)
| | - Kyeong-Jin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea (D.R.)
| |
Collapse
|
29
|
Bahia RK, Hao X, Hassam R, Cseh O, Bozek DA, Luchman HA, Weiss S. Epigenetic and molecular coordination between HDAC2 and SMAD3-SKI regulates essential brain tumour stem cell characteristics. Nat Commun 2023; 14:5051. [PMID: 37598220 PMCID: PMC10439933 DOI: 10.1038/s41467-023-40776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Histone deacetylases are important epigenetic regulators that have been reported to play essential roles in cancer stem cell functions and are promising therapeutic targets in many cancers including glioblastoma. However, the functionally relevant roles of specific histone deacetylases, in the maintenance of key self-renewal and growth characteristics of brain tumour stem cell (BTSC) sub-populations of glioblastoma, remain to be fully resolved. Here, using pharmacological inhibition and genetic loss and gain of function approaches, we identify HDAC2 as the most relevant histone deacetylase for re-organization of chromatin accessibility resulting in maintenance of BTSC growth and self-renewal properties. Furthermore, its specific interaction with the transforming growth factor-β pathway related proteins, SMAD3 and SKI, is crucial for the maintenance of tumorigenic potential in BTSCs in vitro and in orthotopic xenograft models. Inhibition of HDAC2 activity and disruption of the coordinated mechanisms regulated by the HDAC2-SMAD3-SKI axis are thus promising therapeutic approaches for targeting BTSCs.
Collapse
Affiliation(s)
- Ravinder K Bahia
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Rozina Hassam
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Orsolya Cseh
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Danielle A Bozek
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - H Artee Luchman
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| | - Samuel Weiss
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Qin X, Long Y, Bai X, Cao L, Yan H, Zhang K, Wang B, Wu X. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. J Biol Chem 2023; 299:105071. [PMID: 37474102 PMCID: PMC10457456 DOI: 10.1016/j.jbc.2023.105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.
Collapse
Affiliation(s)
- Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yan Long
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Lei Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Han Yan
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
31
|
Lathoria K, Gowda P, Umdor SB, Patrick S, Suri V, Sen E. PRMT1 driven PTX3 regulates ferritinophagy in glioma. Autophagy 2023; 19:1997-2014. [PMID: 36647288 PMCID: PMC10283415 DOI: 10.1080/15548627.2023.2165757] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Kirti Lathoria
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pruthvi Gowda
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Sonia B Umdor
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Shruti Patrick
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Vaishali Suri
- Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ellora Sen
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
32
|
Li Z, Chen C, Yong H, Jiang L, Wang P, Meng S, Chu S, Li Z, Guo Q, Zheng J, Bai J, Li H. PRMT2 promotes RCC tumorigenesis and metastasis via enhancing WNT5A transcriptional expression. Cell Death Dis 2023; 14:322. [PMID: 37173306 PMCID: PMC10182089 DOI: 10.1038/s41419-023-05837-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Protein arginine methyltransferase 2 (PRMT2) is involved in several biological processes via histone methylation and transcriptional regulation. Although PRMT2 has been reported to affect breast cancer and glioblastoma progression, its role in renal cell cancer (RCC) remains unclear. Here, we found that PRMT2 was upregulated in primary RCC and RCC cell lines. We demonstrated that PRMT2 overexpression promoted RCC cell proliferation and motility both in vitro and in vivo. Moreover, we revealed that PRMT2-mediated H3R8 asymmetric dimethylation (H3R8me2a) was enriched in the WNT5A promoter region and enhanced WNT5A transcriptional expression, leading to activation of Wnt signaling and malignant progression of RCC. Finally, we confirmed that high PRMT2 and WNT5A expression was strongly correlated with poor clinicopathological characteristics and poor overall survival in RCC patient tissues. Our findings indicate that PRMT2 and WNT5A may be promising predictive diagnostic biomarkers for RCC metastasis. Our study also suggests that PRMT2 is a novel therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaozhen Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Lei Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingxiang Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hailong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
33
|
Yu J, Yu C, Bayliss G, Zhuang S. Protein arginine methyltransferases in renal development, injury, repair, and fibrosis. Front Pharmacol 2023; 14:1123415. [PMID: 36817133 PMCID: PMC9935595 DOI: 10.3389/fphar.2023.1123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) methylate a range of histone and non-histone substrates and participate in multiple biological processes by regulating gene transcription and post-translational modifications. To date, most studies on PRMTs have focused on their roles in tumors and in the physiological and pathological conditions of other organs. Emerging evidence indicates that PRMTs are expressed in the kidney and contribute to renal development, injury, repair, and fibrosis. In this review, we summarize the role and the mechanisms of PRMTs in regulating these renal processes and provide a perspective for future clinical applications.
Collapse
Affiliation(s)
- Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
34
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
35
|
Qin J, Xu J. Arginine methylation in the epithelial-to-mesenchymal transition. FEBS J 2022; 289:7292-7303. [PMID: 34358413 PMCID: PMC10181118 DOI: 10.1111/febs.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Epithelial cells acquire mesenchymal characteristics during embryonic development, wound healing, fibrosis, and in cancer in a processed termed epithelial-to-mesenchymal transition (EMT). Regulatory networks of EMT are controlled by post-transcriptional, translational, and post-translational mechanisms, in which arginine methylation is critically involved. Here, we review arginine methylation-dependent mechanisms that regulate EMT in the aspects of signaling, transcriptional, and splicing regulation.
Collapse
Affiliation(s)
- Jian Qin
- Central laboratory, Renmin Hospital of Wuhan University, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Sauter C, Simonet J, Guidez F, Dumétier B, Pernon B, Callanan M, Bastie JN, Aucagne R, Delva L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel) 2022; 14:5443. [PMID: 36358861 PMCID: PMC9657843 DOI: 10.3390/cancers14215443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - John Simonet
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabien Guidez
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Dumétier
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Pernon
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mary Callanan
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Jean-Noël Bastie
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Department of Clinical Hematology, University Hospital François Mitterrand, 21000 Dijon, France
| | - Romain Aucagne
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Laurent Delva
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
37
|
Börzsei R, Bayarsaikhan B, Zsidó BZ, Lontay B, Hetényi C. The Structural Effects of Phosphorylation of Protein Arginine Methyltransferase 5 on Its Binding to Histone H4. Int J Mol Sci 2022; 23:ijms231911316. [PMID: 36232624 PMCID: PMC9569665 DOI: 10.3390/ijms231911316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) enzyme is responsible for arginine methylation on various proteins, including histone H4. PRMT5 is a promising drug target, playing a role in the pathomechanism of several diseases, especially in the progression of certain types of cancer. It was recently proved that the phosphorylation of PRMT5 on T80 residue increases its methyltransferase activity; furthermore, elevated levels of the enzyme were measured in the case of human hepatocellular carcinoma and other types of tumours. In this study, we constructed the complexes of the unmodified human PRMT5-methylosome protein 50 (MEP50) structure and its T80-phosphorylated variant in complex with the full-length histone H4 peptide. The full-length histone H4 was built in situ into the human PRMT5-MEP50 enzyme using experimental H4 fragments. Extensive molecular dynamic simulations and structure and energy analyses were performed for the complexed and apo protein partners, as well. Our results provided an atomic level explanation for two important experimental findings: (1) the increased methyltransferase activity of the phosphorylated PRMT5 when compared to the unmodified type; (2) the PRMT5 methylates only the free form of histone H4 not bound in the nucleosome. The atomic level complex structure H4-PRMT5-MEP50 will help the design of new inhibitors and in uncovering further structure–function relationships of PRMT enzymes.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
38
|
Hu J, Dong F, He Y, Xia X, Cheng F, Chen S, Hou X, Zhang P, Liu G, Li Y, Gao Q, Dong M, Li T, Li W, Xiao Q, Li X, Yu X, Xi G, Guo D, Wu X, Wang B. LRIG2 promotes glioblastoma progression by modulating innate antitumor immunity through macrophage infiltration and polarization. J Immunother Cancer 2022; 10:jitc-2021-004452. [PMID: 36096529 PMCID: PMC9472135 DOI: 10.1136/jitc-2021-004452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor with poor clinical outcomes. Immunotherapy has recently been an attractive and promising treatment of extracranial malignancies, however, most of clinical trials for GBM immunotherapy failed due to predominant accumulation of tumor-associated microglia/macrophages (TAMs). Results High level of LRIG2/soluble LRIG2 (sLRIG2) expression activates immune-related signaling pathways, which are associated with poor prognosis in GBM patients. LRIG2/sLRIGs promotes CD47 expression and facilitates TAM recruitment. Blockade of CD47–SIRPα interactions and inhibition of sLRIG2 secretion synergistically suppress GBM progression in an orthotropic murine GBM model. Conclusions GBM cells with high level LRIG2 escape the phagocytosis by TAM via the CD47-SIRPα axis, highlighting a necessity for an early stage of clinical trial targeting LRIG2 and CD47-SIRPα as a novel treatment for patients with GBM.
Collapse
Affiliation(s)
- Jinyang Hu
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China.,Department of Neurosurgery, The First People's Hospital of Yichang, China Three Gorges University People's Hospital, Yichang, Hubei, China
| | - Feng Dong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Laboratory of Neuro-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - You He
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xianyou Xia
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Fangling Cheng
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Sui Chen
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Po Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Guohao Liu
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Ying Li
- Experimental Medicine Center, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical Colleg, Wuhan, Hubei, China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China.,Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Minhai Dong
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Wei Li
- Tianjin First Central Hospital, Tianjin, China
| | - Qungen Xiao
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xiaopeng Li
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guifa Xi
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Abbott Molecular Inc, Des Plaines, Illinois, USA
| | - Dongsheng Guo
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China .,Department of Neurosurgery, Laboratory of Neuro-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| |
Collapse
|
39
|
Lv X, Li Q, Liu H, Gong M, Zhao Y, Hu J, Wu F, Wu X. JUN
activation modulates chromatin accessibility to drive
TNFα
‐induced mesenchymal transition in glioblastoma. J Cell Mol Med 2022; 26:4602-4612. [PMID: 35851726 PMCID: PMC9357637 DOI: 10.1111/jcmm.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Chromatin dynamics as well as genetic evolution underlies the adaptability of tumour cells to environmental cues. Three subtypes of tumour cells have been identified in glioblastoma, one of the commonest malignant brain tumours in adults. During tumour progression or under therapeutic pressure, the non‐mesenchymal subtypes may progress to the mesenchymal subtype, leading to unfavourable prognosis. However, the molecular mechanisms for this transition remain poorly understood. Here taking a TNFα‐induced cellular model, we profile the chromatin accessibility dynamics during mesenchymal transition. Moreover, we identify the JUN family as one of the key driving transcription factors for the gained chromatin accessibility. Accordingly, inhibition of JUN phosphorylation and therefore its transcription activity successfully impedes TNFα‐induced chromatin remodelling and mesenchymal transition. In line with these findings based on experimental models, JUN activity is positively correlated with mesenchymal features in clinical glioblastoma specimens. Together, this study unveils a deregulated transcription regulatory network in glioblastoma progression and hopefully provides a rationale for anti‐glioblastoma therapy.
Collapse
Affiliation(s)
- Xuejiao Lv
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Hang Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Yingying Zhao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Jinyang Hu
- Department of Neurosurgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fan Wu
- Department of Molecular Neuropathology Beijing Neurosurgical Institute, Capital Medical University Beijing China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
- Department of Neurosurgery Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
40
|
Vurusaner B, Thevkar-Nages P, Kaur R, Giannarelli C, Garabedian MJ, Fisher EA. Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice. Sci Rep 2022; 12:12031. [PMID: 35835907 PMCID: PMC9283439 DOI: 10.1038/s41598-022-15349-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
The regression, or resolution, of inflammation in atherosclerotic plaques is impaired in diabetes. However, the factors mediating this effect remain incomplete. We identified protein arginine methyltransferase 2 (PRMT2) as a protein whose expression in macrophages is reduced in hyperglycemia and diabetes. PRMT2 catalyzes arginine methylation to target proteins to modulate gene expression. Because PRMT2 expression is reduced in cells in hyperglycemia, we wanted to determine whether PRMT2 plays a causal role in the impairment of atherosclerosis regression in diabetes. We, therefore, examined the consequence of deleting PRMT2 in myeloid cells during the regression of atherosclerosis in normal and diabetic mice. Remarkably, we found significant impairment of atherosclerosis regression under normoglycemic conditions in mice lacking PRMT2 (Prmt2-/-) in myeloid cells that mimic the decrease in regression of atherosclerosis in WT mice under diabetic conditions. This was associated with increased plaque macrophage retention, as well as increased apoptosis and necrosis. PRMT2-deficient plaque CD68+ cells under normoglycemic conditions showed increased expression of genes involved in cytokine signaling and inflammation compared to WT cells. Consistently, Prmt2-/- bone marrow-derived macrophages (BMDMs) showed an increased response of proinflammatory genes to LPS and a decreased response of inflammation resolving genes to IL-4. This increased response to LPS in Prmt2-/- BMDMs occurs via enhanced NF-kappa B activity. Thus, the loss of PRMT2 is causally linked to impaired atherosclerosis regression via a heightened inflammatory response in macrophages. That PRMT2 expression was lower in myeloid cells in plaques from human subjects with diabetes supports the relevance of our findings to human atherosclerosis.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Prashanth Thevkar-Nages
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA.,Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA
| | - Ravneet Kaur
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Chiara Giannarelli
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Michael J Garabedian
- Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA.
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA. .,Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA. .,Marc and Ruti Bell Vascular Biology Program, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
41
|
Protein arginine N-methyltransferase activity determination with filter binding and phosphor screening (FBAPS) assay. Anal Biochem 2022; 653:114778. [PMID: 35709928 DOI: 10.1016/j.ab.2022.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022]
Abstract
We developed a cost-effective assay to measure protein arginine N-methyltransferase (PRMT) activity in a medium-throughput manner by combining P81 filter binding and phosphor screening (FBAPS). Recombinantly-expressed PRMT1 and coactivator-associated arginine methyltransferase 1 (CARM1) were used to develop the FBAPS assay using GST fusions of glycine- and arginine-rich (GAR) protein and polyA binding protein 1 (PABP1(437-488)) as substrates, respectively, and radiolabelled S-adenosyl-L-[methyl-14C]-methionine as cofactor. Methylation reactions were spotted onto P81 filter paper in a dot blot apparatus and radioactive signals were measured both by phosphor imaging and liquid scintillation counting. Kinetic parameters (KM, kcat) for enzymes and substrates were determined, and IC50 values were obtained for well-characterized inhibitors. FBAPS yielded kinetic parameters with no statistically significant difference to what was obtained using liquid scintillation counting. The IC50 values obtained by the FBAPS assay for PRMT1 and CARM1 were comparable to values reported in literature. The FBAPS assay is a modification to the P81 filter binding assay with a dot blot apparatus that allows for processing of samples in a multi-well format, moderately increasing throughput. Signal detection by phosphor imaging offers an affordable and quantitative method that can be used to screen several inhibitors simultaneously against PRMT enzymes with high accuracy.
Collapse
|
42
|
Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E 2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 2022; 79:306. [PMID: 35593921 PMCID: PMC9122892 DOI: 10.1007/s00018-022-04333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Although type I interferons (IFNs) play multifaceted roles during tumorigenesis and cancer treatment, the interplay between type I IFNs and estrogen signaling in breast cancer (BC) microenvironment is not well understood. Here, we report a novel function of type I IFNs in inducing aromatase expression in adipose tissues surrounding BC, which potentiates the E2-dependent growth of estrogen receptor (ER)-positive BC. First, we found that expression levels of type I IFNs correlate negatively with clinical outcome but positively with tumor grade in patients with ER-positive BC. Levels of type I IFNs were elevated in cocultured media of immune cells and BC cells, which increased aromatase expression and E2 production in Simpson-Golabi-Behmel syndrome preadipocytes. The type I IFN-induced aromatase expression was dependent on IFN-γ-inducible protein 16 (IFI16), which is encoded by an interferon-stimulated gene. At the molecular level, type I IFNs led to recruitment of HIF1α-IFI16-PRMT2 complex to the hypoxia-response element located in the aromatase PI.3/PII promoter. Next, we generated an adipocyte-specific Ifi204, which is a mouse ortholog of human IFI16, knockout mouse (Ifi204-AKO). IFNβ induced E2 production in the preadipocytes isolated from the control mice, but such E2 production was far lower in the Ifi204-AKO preadipocytes. Importantly, the growth of orthotopically inoculated E0771 ER-positive mammary tumors was reduced significantly in the Ifi204-AKO mice. Taken together, our findings provide novel insights into the crosstalk between type I IFNs and estrogen signaling in the progression of ER-positive BC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
43
|
Wang J, Chen Y, Wang Q, Xu H, Wu C, Jiang Q, Wu G, Zhou H, Xiao Z, Chen Y, Zhang T, Lan Q. MEOX2-mediated regulation of Cathepsin S promotes cell proliferation and motility in glioma. Cell Death Dis 2022; 13:360. [PMID: 35436995 PMCID: PMC9016080 DOI: 10.1038/s41419-022-04845-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Nuclear transcription factor Mesenchyme Homeobox 2 (MEOX2) is a homeobox gene that is originally discovered to suppress the growth of vascular smooth muscle and endothelial cells. However, whether or not it is connected to cancer is yet unknown. Here, we report that MEOX2 functions as a tumor-initiating element in glioma. Bioinformatic analyses of public databases and investigation of MEOX2 expression in patients with glioma demonstrated that MEOX2 was abundant at both mRNA and protein levels in glioma. MEOX2 expression was shown to be inversely linked with the prognosis of glioma patients. MEOX2 inhibition changed the morphology of glioma cells, inhibited cell proliferation and motility, whereas had no effect on cell apoptosis. Besides, silencing MEOX2 also hampered the epithelial-mesenchymal transition (EMT), focal adhesion formation, and F-actin assembly. Overexpression of MEOX2 exhibited opposite effects. Importantly, RNA-sequencing, ChIP-qPCR assay, and luciferase reporter assay revealed Cathepsin S (CTSS) as a novel transcriptional target of MEOX2 in glioma cells. Consistently, MEOX2 causes glioma tumor development in mice and greatly lowers the survival period of tumor-bearing mice. Our findings indicate that MEOX2 promotes tumorigenesis and progression of glioma partially through the regulation of CTSS. Targeting MEOX2-CTSS axis might be a promising alternative for the treatment of glioma.
Collapse
|
44
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
45
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
46
|
Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, Guo D, Cheng F, Fang C, Tan Y, Yan H, He Y, Sun X, Yuan Y, Liu H, Li T, Zhao Y, Kang C, Wu X. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res 2021; 81:5876-5888. [PMID: 34670781 DOI: 10.1158/0008-5472.can-21-1456] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The dynamic changes of RNA N6-methyl-adenosine (m6A) during cancer progression contribute to quick adaption to microenvironmental changes. Here, we profiled the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM). The m6A demethylase ALKBH5 was induced in GBM models under hypoxic conditions and was associated with a hypoxic gene signature in GBM patient samples. Depletion or inactivation of ALKBH5 in GBM cells significantly suppressed hypoxia-induced tumor-associated macrophage (TAM) recruitment and immunosuppression in allograft tumors. Expression and secretion of CXCL8/IL8 were significantly suppressed in ALKBH5-deficient tumors. However, ALKBH5 did not regulate CXCL8 m6A directly. Instead, hypoxia-induced ALKBH5 erased m6A deposition from the lncRNA NEAT1, stabilizing the transcript and facilitating NEAT1-mediated paraspeckle assembly, which led to relocation of the transcriptional repressor SFPQ from the CXCL8 promoter to paraspeckles and, ultimately, upregulation of CXCL8/IL8 expression. Accordingly, ectopic expression of CXCL8 in ALKBH5-deficient GBM cells partially restored TAM recruitment and tumor progression. Together, this study links hypoxia-induced epitranscriptomic changes to the emergence of an immunosuppressive microenvironment facilitating tumor evasion. SIGNIFICANCE: Hypoxia induces tumor immune microenvironment remodeling through an ALKBH5-mediated epigenetic and epitranscriptomic mechanism, providing potential immunotherapeutic strategies for treating glioblastoma.
Collapse
Affiliation(s)
- Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyang Qin
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, China
| | - Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Han Yan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - You He
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyu Sun
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ye Yuan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hang Liu
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ting Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yingying Zhao
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xudong Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
47
|
Cura V, Cavarelli J. Structure, Activity and Function of the PRMT2 Protein Arginine Methyltransferase. Life (Basel) 2021; 11:1263. [PMID: 34833139 PMCID: PMC8623767 DOI: 10.3390/life11111263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
PRMT2 belongs to the protein arginine methyltransferase (PRMT) family, which catalyzes the arginine methylation of target proteins. As a type I enzyme, PRMT2 produces asymmetric dimethyl arginine and has been shown to have weak methyltransferase activity on histone substrates in vitro, suggesting that its authentic substrates have not yet been found. PRMT2 contains the canonical PRMT methylation core and a unique Src homology 3 domain. Studies have demonstrated its clear implication in many different cellular processes. PRMT2 acts as a coactivator of several nuclear hormone receptors and is known to interact with a multitude of splicing-related proteins. Furthermore, PRMT2 is aberrantly expressed in several cancer types, including breast cancer and glioblastoma. These reports highlight the crucial role played by PRMT2 and the need for a better characterization of its activity and cellular functions.
Collapse
Affiliation(s)
- Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
48
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
49
|
Li J, Pan X, Ren Z, Li B, Liu H, Wu C, Dong X, de Vos P, Pan LL, Sun J. Protein arginine methyltransferase 2 (PRMT2) promotes dextran sulfate sodium-induced colitis by inhibiting the SOCS3 promoter via histone H3R8 asymmetric dimethylation. Br J Pharmacol 2021; 179:141-158. [PMID: 34599829 DOI: 10.1111/bph.15695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE There is emerging evidence for a critical role for epigenetic modifiers in the development of inflammatory bowel disease (IBD). Protein arginine methyltransferase 2 (PRMT2) is responsible for the methylation of arginine residues on histones and targets transcription factors involved in many cellular processes, including gene transcription, mRNA splicing, cell proliferation, and cell differentiation. In this study, the role and underlying mechanisms of PRMT2 in colitis were studied. EXPERIMENTAL APPROACH A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study PRMT2 in colitis. Lentivirus-induced PRMT2 silencing or overexpression in vivo was applied to address the role of PRMT2 in colitis. Detailed western blot and expression analysis were done to understand epigenetic changes induced by PRMT2 in colitis. KEY RESULTS PRMT2 is highly expressed in inflammatory bowel disease patients, in inflamed murine colon and in TNF-α stimulated murine gut epithelial cells. PRMT2 overexpression aggravates, while knockdown alleviates DSS-induced colitis, suggesting that PRMT2 is a pivotal mediator of colitis in mice. Mechanistically, PRMT2 mediates colitis by increasing repressive histone mark H3R8 asymmetric methylation (H3R8me2a) at the promoter region of the suppressor of cytokine signalling 3 promoter (SOCS3). Resultant inhibition of SOCS3 expression and inhibition of SOCS3-mediated degradation of TNF receptor associated factor 5 (TRAF5) via ubiquitination led to elevated TRAF5 expression and TRAF5-mediated downstream NF-κB/MAPK activation. CONCLUSION AND IMPLICATIONS Our study demonstrates that PRMT2 acts as a transcriptional co-activator for proinflammatory genes during colitis. Hence, targeting PRMT2 may provide a novel therapeutic approach for colitis.
Collapse
Affiliation(s)
- Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
50
|
Fulton MD, Cao M, Ho MC, Zhao X, Zheng YG. The macromolecular complexes of histones affect protein arginine methyltransferase activities. J Biol Chem 2021; 297:101123. [PMID: 34492270 PMCID: PMC8511957 DOI: 10.1016/j.jbc.2021.101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Histone arginine methylation is a key post-translational modification that mediates epigenetic events that activate or repress gene transcription. Protein arginine methyltransferases (PRMTs) are the driving force for the process of arginine methylation, and the core histone proteins have been shown to be substrates for most PRMT family members. However, previous reports of the enzymatic activities of PRMTs on histones in the context of nucleosomes seem contradictory. Moreover, what governs nucleosomal substrate recognition of different PRMT members is not understood. We sought to address this key biological question by examining how different macromolecular contexts where the core histones reside may regulate arginine methylation catalyzed by individual PRMT members (i.e., PRMT1, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and PRMT8). Our results demonstrated that the substrate context exhibits a huge impact on the histone arginine methylation activity of PRMTs. Although all the tested PRMTs methylate multiple free histones individually, they show a preference for one particular histone substrate in the context of the histone octamer. We found that PRMT1, PRMT3, PRMT5, PRMT6, PRMT7, and PRMT8 preferentially methylate histone H4, whereas PRMT4/coactivator-associated arginine methyltransferase 1 prefers histone H3. Importantly, neither reconstituted nor cell-extracted mononucleosomes could be methylated by any PRMTs tested. Structural analysis suggested that the electrostatic interaction may play a mechanistic role in priming the substrates for methylation by PRMT enzymes. Taken together, this work expands our knowledge on the molecular mechanisms of PRMT substrate recognition and has important implications for understanding cellular dynamics and kinetics of histone arginine methylation in regulating gene transcription and other chromatin-templated processes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|