1
|
Celaya-Azcoaga L, Crespi A, Shepard W, Quezada R, Peralta Ramos ML, Cavallo M, Irastorza Epelde I, Garcia Garcia H, Barandika G, Bonino F, Bazán B, García A, Copello GJ, Castillo O, Silván U, Fernández de Luis R. Metal-organic chelator frameworks for arsenic-based cancer treatment. J Colloid Interface Sci 2025; 691:137335. [PMID: 40154166 DOI: 10.1016/j.jcis.2025.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The off-target toxicity of arsenic trioxide chemotherapy is a common Achilleś heel of metallodrugs. This limitation is usually mitigated by employing various cargo agents capable of transporting arsenic species to specific sites. More specifically, two of the most explored strategies to address arsenic trioxide's off-target toxicity include: (i) the complexation of As(III) species with chelating agents and (ii) their immobilization, either on the surface or, within non-porous and porous nanomaterials. In this work, we have explored the combination of mercaptosuccinic acid, an arsenic chelator, with zirconium oxo-clusters to assemble two new microporous Metal-Organic Frameworks (MOFs), denoted as BCM-1 and BCM-2 (BCM referring to Basque Center for Materials, Applications & Nanostructures). The specific chemical and structural features of these news frameworks have enabled controlling the arsenic loading and release in different scenarios. Specifically, arsenic release accelerates under oxidative conditions due to the rupture of thiol-arsenic bonds, caused by the oxidation of -SH groups to -SO3 within the MOF. Additionally, in acidic conditions typical of cancer microenvironments, the framework itself disassembles, further facilitating arsenic release. The particle size and arsenic loading capacity of BCM-1 can be easily modulated by controlling the synthesis conditions. This strategy has led to the development of micrometric, nanometric and gel-like materials, whose chemical stability in acidic and biological relevant media has been duly assessed. Notably, arsenic release from nano-BCM-1 is able to reverse the growth curve of HeLa cancer cells in approximately 50 h. This discovery paves the way towards the use of metal-chelator organic molecules in assembling new MOF materials capable of controlling the cargo and release of metallodrugs under in-vivo conditions.
Collapse
Affiliation(s)
- Leire Celaya-Azcoaga
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ayelen Crespi
- Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD Buenos Aires, Argentina; Fac. de Farmacia y Bioquímica, (IQUIMEFA-UBA-CONICET), Instituto de Química y Metabolismo del Fármaco, Junín 956, C1113AAD Buenos Aires, Argentina
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Av. Tupper 2007, 8370451 Santiago, Chile; Mining Engineering Department, FCFM, Universidad de Chile, Av. Tupper 2069, 8370451 Santiago, Chile
| | - María Luz Peralta Ramos
- Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD Buenos Aires, Argentina; Fac. de Farmacia y Bioquímica, (IQUIMEFA-UBA-CONICET), Instituto de Química y Metabolismo del Fármaco, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Margherita Cavallo
- Department of Chemistry IFM & NIS Centre of Excellence, University of Torino, Via Quarello 11, I-10125 Torino, Italy
| | - Igor Irastorza Epelde
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Helena Garcia Garcia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gotzone Barandika
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Francesca Bonino
- Department of Chemistry IFM & NIS Centre of Excellence, University of Torino, Via Quarello 11, I-10125 Torino, Italy
| | - Begoña Bazán
- Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n 48940 Leioa, Spain
| | - Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Av. Tupper 2007, 8370451 Santiago, Chile; Mining Engineering Department, FCFM, Universidad de Chile, Av. Tupper 2069, 8370451 Santiago, Chile
| | - Guillermo J Copello
- Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD Buenos Aires, Argentina; Fac. de Farmacia y Bioquímica, (IQUIMEFA-UBA-CONICET), Instituto de Química y Metabolismo del Fármaco, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Oscar Castillo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Unai Silván
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Roberto Fernández de Luis
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
2
|
Maireles-Porcar M, Esteve F, Martín N, Sanchez-Velandia J, Altava B, Cirujano FG, García-Verdugo E. Pseudopeptidic Coordination Polymers Based on Zirconium-Carboxylate Supramolecular Assemblies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28555-28567. [PMID: 40320902 DOI: 10.1021/acsami.5c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Mimicking enzymes with new materials is a promising approach to improve efficiency and sustainability in heterogeneous catalysis. In this contribution, a family of coordination polymers based on N, N'-bis(amino acid)pyromellitic diimide linkers and Zr-oxo clusters has been assembled under solvothermal conditions in the presence of different acids (acetic, hydrochloric, and formic acid). The linker has been prepared from widely available amino acids and pyromellitic anhydride under microwave conditions. Different characterization techniques, such as NMR, Fourier transform infrared spectroscopy (FTIR), TGA, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM)/EDX, confirmed the formation of the pseudopeptidic (PSP) linkers and the subsequent formation of Zr-carboxylate bonds in the Zr-PSP coordination polymer, forming regular homogeneous nanoparticles with hybrid inorganic-organic composition. The PSPs have also been incorporated into defective UiO-67 crystals and employed as catalysts in the hydrolysis of p-nitrophenylacetate under mild conditions, exhibiting a correlation between porosity, residue volume, and activity.
Collapse
Affiliation(s)
- Miguel Maireles-Porcar
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| | - Ferran Esteve
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 6700 Strasbourg, France
| | - Nuria Martín
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| | - Julián Sanchez-Velandia
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| | - Francisco G Cirujano
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| | - Eduardo García-Verdugo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Castelló, España
| |
Collapse
|
3
|
O’Shaughnessy M, Lim J, Glover J, Neale AR, Day GM, Hardwick LJ, Cooper AI. Nonmetal Organic Frameworks Exhibit High Proton Conductivity. J Am Chem Soc 2025; 147:15429-15434. [PMID: 40271994 PMCID: PMC12063171 DOI: 10.1021/jacs.5c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
Porous materials, such as metal-organic frameworks (MOFs) and porous organic salts, are promising materials for proton conduction. Recently, we developed a new subclass of porous materials, isoreticular nonmetal organic frameworks (N-MOFs), which can be designed using crystal structure prediction (CSP). Here, two porous, isostructural, and water-stable halide N-MOFs were prepared and found to show good proton conductivity of up to 1.1 × 10-1 S cm-1 at 70 °C and 90% relative humidity. Changing the halides in these N-MOF materials affects the resulting proton conductivity, as observed in previous studies involving MOFs and lead halides. Although this is the first study of proton conductivity in N-MOFs, the bromide salt, TTBT.Br, shows a higher conductivity than most polycrystalline MOFs and porous organic salts, approaching that of Nafion.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Jungwoo Lim
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Joseph Glover
- Computational
System Chemistry, School of Chemistry and Chemical Engineering, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Alex R. Neale
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Graeme M. Day
- Computational
System Chemistry, School of Chemistry and Chemical Engineering, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laurence J. Hardwick
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Andrew I. Cooper
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
4
|
Wei S, Cui T, Zhang S. pH-Dependent Structural Engineering of Sulfonate-Carboxylate Cu-MOFs for High Proton Conductivity. Inorg Chem 2025; 64:8819-8828. [PMID: 40265218 DOI: 10.1021/acs.inorgchem.5c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic frameworks (MOFs) with free carboxylic acid (COOH) groups are promising for solid-state proton-conducting materials, owing to the Brønsted acidity, polarity, and the hydrogen-bonding ability of COOH groups. In this work, two Cu-MOFs with different dimensions were synthesized by adjusting the pH of the reaction solution using disodium-2,2'-disulfonate-4,4'-oxidibenzoic acid (Na2H2DSOA) and 4,4'-bipyridine (4,4'-bpy) as ligands to coordinate with Cu(II). The resulting compounds, CuDSOA-1 (([Cu(4,4'-bpy)2(H2O)2][Cu(H2DSOA)2(4,4'-bpy)(H2O)2]·12H2O)) and CuDSOA-2 ([Cu2(DSOA)(4,4'-bpy)2(H2O)2]·4H2O), have distinct dimensionalities and structures, mainly due to the pH's effect on carboxylic acid deprotonation. Notably, CuDSOA-1 with abundant COOH groups, uncoordinated sulfonate groups, and water molecules shows a significantly enhanced proton conductivity of 2.46 × 10-2 S cm-1 at 95 °C and 98% RH, surpassing CuDSOA-2 (3.40 × 10-5 S cm-1 at 85 °C and 98% RH). The conductivity mechanism was found to be a Grotthuss mechanism, confirmed by deuterium-hydrogen isotopic effects. This study offers a method to control the coordination of sulfonic-carboxylic acid ligands with Cu(II) by pH adjustment, aiming to create MOFs with ultrahigh proton conductivity.
Collapse
Affiliation(s)
- Shiyu Wei
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| | - Tingting Cui
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
| | - Shunlin Zhang
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Zhao KX, Zhang GQ, Wu XR, Luo HB, Han ZX, Liu Y, Ren XM. Proton Conduction in Zirconium-Based Metal-Organic Frameworks for Advanced Applications. ACS APPLIED ELECTRONIC MATERIALS 2025; 7:3164-3175. [PMID: 40290669 PMCID: PMC12020363 DOI: 10.1021/acsaelm.5c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as a promising class of crystalline porous materials, attracting significant interest in the field of proton conduction due to their exceptional chemical stability, structural flexibility, and functional tunability. Notably, proton-conducting Zr-MOFs show immense potential for diverse advanced technological applications. In this Spotlight on Applications paper, we provide an overview of proton-conducting Zr-MOFs and spotlight the recent progress of their utilization as proton exchange membranes in proton exchange membrane fuel cells (PEMFCs), light-responsive systems for proton pumps, and chemical sensors for formic acid detection. Furthermore, we also discussed the challenges, future prospects, and opportunities for promoting the application of proton-conducting Zr-MOFs.
Collapse
Affiliation(s)
- Kai-Xin Zhao
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Guo-Qin Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin-Ru Wu
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Bin Luo
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhi-Xing Han
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Xiao-Ming Ren
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Ucak-Astarlioglu MG, Fernando PUAI, Spane SA, Rodriguez SA, Kosgei GK, Weiss CA, Beckman IP, Villacorta B, Nouranian S, Al-Ostaz A. FIMOFs: Fiber-Integrated Metal-Organic Frameworks Through Electrospinning. Polymers (Basel) 2025; 17:1106. [PMID: 40284371 PMCID: PMC12030668 DOI: 10.3390/polym17081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Green synthesis plays a crucial role in advancing sustainability within materials science. This study explores the integration of metal-organic frameworks (MOFs), obtained through green synthesis, using an electrospinning post-processing technique to develop MOF-based composite materials. The resulting novel multifunctional composites demonstrate enhanced stability and functionality, compared to their control counterparts. The integration of four types of MOFs into an electrospun fiber network was investigated using a specific polymer solution. Characterization and preliminary adsorption studies were conducted to elucidate the chemistry, morphology, and adsorptive capabilities of the resulting MOF composites. Electrospinning MOFs into polymer fibers improved their stability and dye removal capabilities. More specifically, optimization of MOF-to-polymer ratios and processing conditions yielded composites that are thermally stable, with modified surface area and porosity. Post-processing MOFs resulted in a fiber diameter increase of 44 and 109%, enhancing the composites by providing more MOF active sites and improved mechanical strength. Zirconium-based post-processed MOFs demonstrated superior dye removal, different from the copper-based dyes. Electrospinning technology has demonstrated significant potential in the fabrication of high-performance multifunctional MOF composites. This has helped to create advanced sustainable composites with tailored properties, paving the way for more targeted and efficient applications. The applications of these composites show promise for military engineering where durable, light weight, and multifunctional materials are critical in contributing to improved performance, operational efficiency, and safety.
Collapse
Affiliation(s)
- Mine G. Ucak-Astarlioglu
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - P. U. Ashvin Iresh Fernando
- SIMETRI, Inc., Winter Park, FL 32792, USA;
- U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Rd, Hanover, NH 03755, USA;
| | - Spencer A. Spane
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - Sulymar A. Rodriguez
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.R.); (G.K.K.)
| | - Gilbert K. Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.R.); (G.K.K.)
| | - Charles A. Weiss
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - Ivan P. Beckman
- U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Rd, Hanover, NH 03755, USA;
| | - Byron Villacorta
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (B.V.); (S.N.)
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (B.V.); (S.N.)
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
- Department of Civil Engineering, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
7
|
Sharifzadeh Z, Razavi SAA, Morsali A. Functionalization of Defective Zr-MOFs for Water Decontamination: Mechanistic Insight into the Competitive Roles of -NH 2 and -SH Sites in the Removal of Hg(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17726-17740. [PMID: 38377577 DOI: 10.1021/acsami.3c15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Functional metal-organic frameworks (MOFs), especially those based on sulfur and nitrogen atoms, were frequently applied for the removal of Hg(II) ions. However, a systematic study on the cooperative or competitive roles of -SH and -NH2 functions in the presence of secondary mechanisms (proton transfer and redox) is still rare. In this work, the UiO-66 framework (Zr6(OH)4O4(BDC)6, BDC2- = benzene-1,4-dicarboxylate) was decorated with functional monocarboxylate linkers including glycine (Gly), mercaptopropionic acid (Mer), and cysteine (Cys). Due to the molecular similarity of these functional linkers, the coordination affinity between the amine and thiol sites with Hg(II) ions can be compared, and the effect of proton transfer and redox mechanisms on the possible thiol···Hg(II) and amine···Hg(II) interactions can be investigated. The results show that the Cys@UiO-66 framework can adsorb 1288 mg g-1 of Hg(II), while Mer@UiO-66 and Gly@UiO-66 can adsorb 593 and 313 mg g-1 at pH = 7 and 500 ppm, respectively. This is due to the facts that both the amine and the thiol functions of the Cys@UiO-66 framework show synergism in Hg(II) removal, and the secondary mechanisms reduce the affinity of thiol in Mer@UiO-66 and amine in Gly@UiO-66 frameworks in the removal process of Hg(II) ions. Free -SH sites in Mer@UiO-66 undergo a redox convert to -SO3H groups, and free protonated -NH2 sites in Gly@UiO-66 do not fully deprotonate during Hg(II) removal. Yet, in the case of Cys@UiO-66, free protonated -NH2 sites are fully deprotonated, and free SH sites did not convert to -SO3H groups during Hg(II) removal. These observations show that the redox and proton transfer mechanisms can negatively affect the adsorption capacity of functional MOFs containing free -SH and -NH2 groups. So, not only the functionalization but also control over secondary mechanisms in the removal process are necessary parameters to improve the affinity between functional MOFs and Hg(II) ions.
Collapse
Affiliation(s)
- Zahra Sharifzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
8
|
Yang C, Liu Y, Li J, Zhuang S, Wang F, Lin Z, Zhao Y, Huang W. Linkage Position-Controlled Synthesis of Diverse Zirconium Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivities. Inorg Chem 2025; 64:5271-5283. [PMID: 40042115 DOI: 10.1021/acs.inorgchem.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Herein, by engineering the geometries of the organic linkers, two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers (TAPPs) were successfully designed and subsequently used for the construction of two new zirconium-based metal-organic frameworks (Zr-MOFs) (IAM-10 and IAM-11). The reduction of the linker symmetry arises from both the asymmetric pyrrolo-pyrrole core and the integration of both the para- and meta-benzoate coordination groups on the linkers. Both MOFs are composed of 8-connected Zr6 nodes and 4-connected highly deformed TAPP4- linkers with the same scu topology, but distinct linker arrangements can be observed in two structures. The specific rhomb-shaped geometry together with the flexible m-benzoate groups through the rotation of the peripheral phenyl rings allows this type of TAPP linker to generate unique conformations and arrangements in MOF structures to optimize the coordination bonds with the inorganic building blocks and adapt to the final topologies. Furthermore, the presence of well-defined hydrophilic channels in the reported MOFs allowed us to evaluate the potential for proton conduction. Both IAM-10 and IAM-11 show the prominent intrinsic proton conductivities of 1.13 × 10-2 and 2.69 × 10-3 S cm-1 at 90 °C and 95% RH, making them the top-performing proton-conductive Zr-MOFs.
Collapse
Affiliation(s)
- Chunhui Yang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuanqian Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Jingjing Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shenhao Zhuang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Feiyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhihua Lin
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yonggang Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Gao Y, He P, Yang J, Liu B, Zhang Q, Zhou Q, Xu H, Jiang R, Dai Z, Wang S. Superior proton conductivity of amino acid-modified UiO-66-(COOH) 2 embedded in chitosan: Mechanistic insights into the acid-base interactions. Carbohydr Polym 2025; 348:122835. [PMID: 39562109 DOI: 10.1016/j.carbpol.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
We focus on optimizing acid-base interactions and hydrogen bonding networks to achieve enhanced proton conductivity under low relative humidity (RH) and high temperature. By functionalizing UiO-66-(COOH)2 with glutamic acid (Glu) and lysine (Lys), we generate Glu-UiO-66-(COOH)2 and Lys-UiO-66-(COOH)2. These modified materials are subsequently incorporated into chitosan (CS) to produce the composites Glu-UiO-66-(COOH)2@CS and Lys-UiO-66-(COOH)2@CS. The successful incorporation of amino acids and cross-linking between -COOH and -NH2 groups in the composites, confirmed by FTIR and PXRD analyses, significantly enhances the structural integrity and durability by strengthening the network, and reducing polymer chain mobility. Proton conductivity assessments reveal that Lys-UiO-66-(COOH)2@CS-7 exhibits a remarkable conductivity of 0.022 S/cm at 100 % RH and 363 K, outperforming Glu-UiO-66-(COOH)2@CS-7. The lower activation energy (Ea) of 0.28 eV for Lys-UiO-66-(COOH)2@CS-7, compared to 0.336 eV for Glu-UiO-66-(COOH)2@CS-7, highlights the significant improvement in intramolecular acid-base interactions and hydrogen bonding. Furthermore, Lys-UiO-66-(COOH)2@CS-7 maintains notable proton conductivity at 43 % RH, with an Ea of 0.216 eV, demonstrating its efficacy in low-humidity conditions. These findings underscore the profound impact of amino acid modifications and cross-linking on proton conductivity by reinforcing acid-base interactions, hydrogen bonding networks, and proton transfer efficiency.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China.
| | - Peng He
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Jingwen Yang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Bo Liu
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Qiong Zhang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Qi Zhou
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Hanlu Xu
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Rongli Jiang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Zhongran Dai
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Shaorong Wang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
10
|
Zhu L, Yang H, Xu T, Shen F, Si C. Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks. NANO-MICRO LETTERS 2024; 17:87. [PMID: 39658670 PMCID: PMC11631836 DOI: 10.1007/s40820-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal-organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Collapse
Affiliation(s)
- Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China
| | - Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| | - Feng Shen
- Agro-Environmenta Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, People's Republic of China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
11
|
Celaya-Azcoaga L, Pascual-Colino J, Beobide G, Castillo O, Fernández de Luis R, Luque A, Pérez-Yáñez S, Ruiz de Larramendi I. Chiral Supramolecular Proton Conductors: Harnessing Highly Charged Zirconium-Amino Acid Oxo-Clusters. Inorg Chem 2024; 63:23363-23373. [PMID: 39578047 DOI: 10.1021/acs.inorgchem.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Incorporation of amino acid capping molecules (alanine (Ala), methionine (Met), phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and valine (Val)) in their zwitterionic form into archetypal [Zr6(μ3-O)4(μ3-OH)4]12+ clusters creates supramolecular frameworks in which the assembly of these highly charged discrete units with chloride counterions provides a unique combination of porosity, chirality, and proton conductivity. The supramolecular frameworks assembled from these cluster entities (i.e., ZrAla, ZrMet, ZrPhe, ZrTrp, ZrTyr, and ZrVal) are based on the counterbalancing of the cationic hexanuclear entities by chloride anions. The resulting structures provide porous structures (except ZrVal) with variability of chemical and structural stability based on their supramolecular interactions. Among these compounds, ZrPhe and ZrVal remain stable due to the presence of a double chelation-like interaction involving four hydrogen bonds formed between a chloride anion, two ammonium groups, and two coordinated water molecules from two adjacent hexanuclear units. The presence of multiple acidic proton positions and strong hydrogen-bond donor/acceptor groups on the water channels gives rise to easy proton conduction pathways within the structures. In fact, ZrPhe and ZrVal, together with ZrTyr, exhibit high proton conductivity values with varying dependencies on the atmospheric humidity. Finally, the correlation between proton conduction and porosity is discussed.
Collapse
Affiliation(s)
- Leire Celaya-Azcoaga
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Jon Pascual-Colino
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Garikoitz Beobide
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Oscar Castillo
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Roberto Fernández de Luis
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Antonio Luque
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Sonia Pérez-Yáñez
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| |
Collapse
|
12
|
Ramesh RR, Chandrasekar I, Rathinam A, Jonnalagadda RR. Chrome-free leather processing based on amine pendant metal-organic frameworks and dialdehyde with enhanced dye affinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66477-66496. [PMID: 39636540 DOI: 10.1007/s11356-024-35501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
To overcome the stringent regulations in the usage of chromium salts and dye-rich effluent let out by the tanning industry, a sustainable way of leather processing has been demonstrated utilizing amine pendant metal-organic frameworks (MOF) UiO-66-NH2 along with glyoxal. It was found that an offer of 8% (w/w) MOF along with 6% (w/w) glyoxal increased the shrinkage temperature of the leathers to 89 ± 2 °C with exhaustion of MOF up to 84.3 ± 1.5%. The presence of cationic amine sites in the MOF aided in the fixation of anionic post-tanning agents and improved the adsorption of dyes from 74.3 ± 2.5% in the case of conventional leather to 91.8 ± 1.7% for experimental leather. In comparison to chrome-tanned leather, the experimental leathers were rated the highest in terms of dye fastness concerning rubbing action and against perspiration, showcasing the washable properties and better affinity and irreversible binding of dyes to the leather matrix. Mechanism studies through XPS spectroscopy revealed the interaction between the acidic amino acids of collagen and free zirconium metal sites and the imine linkage between amine pendants of MOF and basic amino acids of collagen protein. Further, the BOD5/COD ratio of 0.36 confirmed the better treatability of the wastewater emanating from the proposed process making it a sustainable tanning system. Thus, the combination of amine pendant MOFs with dialdehyde can be a promising strategy for the development of robust chrome-free leathers with excellent functional properties.
Collapse
Affiliation(s)
- Renganath Rao Ramesh
- Leather Process Technology Department, CSIR - Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India, 600020
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, Tamil Nadu, India, 600025
| | - Inbasekar Chandrasekar
- Inorganic and Physical Chemistry Department, CSIR - Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India, 600020
| | - Aravindhan Rathinam
- Leather Process Technology Department, CSIR - Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India, 600020
| | - Raghava Rao Jonnalagadda
- Inorganic and Physical Chemistry Department, CSIR - Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India, 600020.
| |
Collapse
|
13
|
Zuba I, Ponomareva OY, Vershinina TN, Vinogradov II, Korneeva EA, Hetmańczyk J, Pawlukojć A. Application of zirconium aspartic acid metal-organic framework (MIP-202(Zr)) for high efficient ruthenium adsorption from aqueous solutions. Appl Radiat Isot 2024; 213:111461. [PMID: 39217857 DOI: 10.1016/j.apradiso.2024.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The zirconium metal - organic framework MIP-202(Zr), based on L-aspartic acid, was prepared by hydrothermal method and used for study of ruthenium adsorption from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD), infra red spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The batch adsorption experiment was performed for determination of adsorption equilibrium, kinetics and thermodynamics parameters to Ru(III) from aqueous solution on MIP-202(Zr). The data of ruthenium sorption onto MIP-202(Zr) were fitted and analyzed by the Langmuir, Freundlich and Temkin equilibrium isotherm models, while the Langumir adsorption isotherm models fit the best. Kinetic data were analyzed by four kinetic models, and ruthenium sorption on MIP202(Zr) can be describes the best by intra particle diffusion (Weber Morris). Analysis of thermodynamic properties of ruthenium ions sorption onto MIP-202(Zr) shows that the sorption process has a spontaneous and endothermic nature and is energetically beneficial.
Collapse
Affiliation(s)
- I Zuba
- Institue of Nuclear Chemistry and Technology, Dorodna 16 Str., Warsaw, Poland.
| | - O Yu Ponomareva
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - T N Vershinina
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - I I Vinogradov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - E A Korneeva
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, Russia
| | - J Hetmańczyk
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków,Poland
| | - A Pawlukojć
- Institue of Nuclear Chemistry and Technology, Dorodna 16 Str., Warsaw, Poland
| |
Collapse
|
14
|
Zhu S, Sun C, Zhu Z, Qu J, Fang Z, Chen Y, Lin J, Xu X, Cheng M, Jiang M, Zheng H. Copper-based photocatalysts with natural organic ligands for efficient removal of tetracycline under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123052. [PMID: 39447352 DOI: 10.1016/j.jenvman.2024.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The excessive use of broad-spectrum antibiotics, such as tetracycline, presents a significant challenge to human survival and development. Oxygen vacancies (OVs) metal-organic framework (MOF) materials were synthesized using natural organic acids (L-malic acid, L-aspartic acid, and L-asparagine) with similar structures but different charge densities, along with copper as the metal linking agent. The presence of oxygen vacancies in the catalyst provides abundant active sites for photocatalytic reactions. The employment of flexible straight-chain organic ligands devoid of rigid polycyclic rings, combined with the incorporation of different substituents to induce variations in charge density, the resulting catalysts exhibit distinct photocatalytic activities under visible light. Density functional theory calculations confirm that L-asparagine exhibits the largest electron density difference, and the Cu-based MOF (Cu-ASU) synthesized as an organic ligand exhibits the highest photocatalytic activity under visible light excitation. The catalyst displayed remarkable photocatalytic activity against tetracycline antibiotics under identical conditions (with removal rates of 93.5 % for tetracycline, 81.4 % for terramycin, and 95.6 % for chloramphenicol hydrochloride). This provides a novel approach for the design and synthesis of photocatalysts for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Shouxin Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Can Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zhexiao Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jingyi Qu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yangben Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahui Lin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaolu Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Miaoyan Cheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Min Jiang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Hui Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
15
|
Ma N, Kosasang S, Theissen J, Gys N, Hauffman T, Otake KI, Horike S, Ameloot R. Systematic design and functionalisation of amorphous zirconium metal-organic frameworks. Chem Sci 2024; 15:d4sc05053c. [PMID: 39386911 PMCID: PMC11457265 DOI: 10.1039/d4sc05053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Controlling the structure and functionality of crystalline metal-organic frameworks (MOFs) using molecular building units and post-synthetic functionalisation presents challenges when extending this approach to their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising a series of Zr-based aMOFs, which involves linking metal-organic clusters with specific ligands to regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in amorphous systems, demonstrating that homogeneous functionalisation is achievable even without regular internal voids. By altering the acidity of the side group, length, and degree of connectivity of the linker, we could control the porosity, proton conductivity, and mechanical properties of the resulting aMOFs.
Collapse
Affiliation(s)
- Nattapol Ma
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jennifer Theissen
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Nick Gys
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Tom Hauffman
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
16
|
Li H, Murugesan A, Shoaib M, Sheng W, Chen Q. Functionalized metal-organic frameworks with biomolecules for sensing and detection applications of food contaminants. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39323356 DOI: 10.1080/10408398.2024.2406482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The increasing demand for toxin-free food, driven by the rise in fast food consumption and changing dietary habits, necessitates advanced and efficient detection methods to address the potential risks associated with contaminated food. Nanomaterial-based detection methods have shown significant promise, particularly using metal-organic frameworks (MOFs) combined with biomolecules. This review article provides an overview of recent advancements in using functionalized metal-organic frameworks (FMOFs) with biomolecules to detect various food contaminants, including heavy metals, antibiotics, pesticides, bacteria, mycotoxins and other chemical contaminants. We discuss the fundamental principles of detecting food contaminants, evaluate existing analytical techniques, and explore the development of biomacromolecule-functionalized MOF-based sensors encompassing colorimetric, optical, electrochemical, and portable variants. The review also examines sensing mechanisms, uses FMOFs as signal probes and carriers for capture probes, and assesses sensitivity. Additionally, we explore the opportunities and challenges in producing FMOFs with biomacromolecules for food contaminant assessment. Future directions include improving sensor sensitivity and specificity, developing more cost-effective production methods, and integrating these technologies into real-world food safety monitoring systems. This work aims to pave the way for innovative and reliable solutions to ensure the safety of our food supply.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arul Murugesan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, PR China
| |
Collapse
|
17
|
Huang B, Zhang S, Wan C, Liang X, Zhang F, Feng L, Wen C. Combined Effect of Hydrophilic Pore and the Type of Protons on Proton Conductivity in Porous Metal-Organic Frameworks: A Feasible Approach to Achieve a Super Proton Conductor under Hydrated Conditions. Inorg Chem 2024; 63:16688-16701. [PMID: 39177243 DOI: 10.1021/acs.inorgchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
There has been a steady growth of interest in proton-conductive metal-organic frameworks (MOFs) due to their potential utility in proton-exchange membrane fuel cells. To attain a super proton conductivity (>1 × 10-2 S cm-1) in a MOF-based proton conductor is a key step toward practical application. Currently, most studies are focused on enhancing the proton conductivity of porous MOFs by controlling a single factor, such as the type of protons or hydrophilic pore or hydrogen bond. However, a limited contribution from a single factor cannot afford to remarkably increase the proton conductivity of the MOF and form a super proton conductor. Herein, we constructed two distinct porous MOFs, {(H3O+)4[Cu12(ci)12(OH)4(H2O)12]·3H2O·9DMF} (Cu-ci-3D, H2ci = 1H-indazole-5-carboxylic acid, DMF = N,N'-dimethylformamide) and {[Co(Hppca)2]·2HN(CH3)2·CH3OH·2H2O} (Co-ppca-2D, H2ppca = 5-(pyridin-3-yl)-1H-pyrazole-3-carboxylic acid), to tune their proton conductivities at high relative humidity (RH) using the combined effect of hydrophilic pore and the type of protons, ultimately achieving super proton conduction. Excitingly, Cu-ci-3D indeed harvests a super proton conductivity of 1.37 × 10-2 S cm-1 at 353 K and ∼97% RH, superior to some previously reported MOF-based proton conductors. The results present a unique perspective for developing high-performance MOF-based proton conductors and understanding their structure-performance relationships.
Collapse
Affiliation(s)
- Biao Huang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Shiwen Zhang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chengan Wan
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Lei Feng
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Chen Wen
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| |
Collapse
|
18
|
Dong L, Xiong Y, Xiang X, Li F, Song Q, Wang S. Kinetic and stability studies of amino acid metal-organic frameworks for encapsulating of amino acid dehydrogenase. J Biotechnol 2024; 391:50-56. [PMID: 38852680 DOI: 10.1016/j.jbiotec.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Zr-MOFs was applied for the immobilization of hyperthermophilic and halophilic amino acid dehydrogenase (Zr-MOFs-NTAaDH) by physical adsorption for the biosynthesis of L-homophenylalanine. Activity of Zr-MOFs-NTAaDH was enhanced by 3.3-fold of the free enzyme at 70°C. And the enzyme activity of Zr-MOFs-NTAaDH was maintained at 4.16 U/mg at pH 11, which was 7.8 folds of that of NTAaDH. Kinetic parameters indicated catalytic efficiency of Zr-MOFs-NTAaDH was increased compared to the free enzyme as kcat of Zr-MOFs-NTAaDH was 12.3-fold of that of free enzyme. After 7 recycles, the activity of Zr-MOFs-NTAaDH remained 68 %. And Zr-MOFs-NTAaDH exhibited high ionic liquid tolerance which indicated the great potential for industrial application.
Collapse
Affiliation(s)
- Lingling Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Xiong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyan Xiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feixuan Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qidi Song
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
19
|
Bagherzadeh M, Chegeni M, Bayrami A, Amini M. Superior and efficient performance of cost-effective MIP-202 catalyst over UiO-66-(CO 2H) 2 in epoxide ring opening reactions. Sci Rep 2024; 14:17730. [PMID: 39085363 PMCID: PMC11291889 DOI: 10.1038/s41598-024-68497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
This study explored the catalytic performance of two robust zirconium-based metal-organic frameworks (MOFs), MIP-202(Zr) and UiO-66-(CO2H)2 in the ring-opening of epoxides using alcohols and amines as nucleophilic reagents. The MOFs were characterized by techniques such as FT-IR, PXRD, FE-SEM, and EDX. Through systematic optimization of key parameters (catalyst amount, time, temperature, solvent), MIP-202(Zr) achieved 99% styrene oxide conversion in 25 min with methanol at room temperature using 5 mg catalyst. In contrast, UiO-66-(CO2H)2 required drastically harsher conditions of 120 min, 60 °C, and four times the catalyst loading to reach 98% conversion. A similar trend was observed for ring-opening with aniline -MIP-202(Zr) gave 93% conversion in one hour at room temperature, while UiO-66-(CO2H)2 needed two hours at 60 °C for 95% conversion. The superior performance of MIP-202(Zr) likely stems from cooperative Brønsted/Lewis acid sites and higher proton conductivity enabling more efficient epoxide activation. Remarkably, MIP-202(Zr) maintained consistent activity over five recycles in the ring-opening of styrene oxide by methanol and over three recycles in the ring-opening of styrene oxide by aniline. Testing various epoxide substrates and nucleophiles revealed trends in reactivity governed by electronic and steric effects. The results provide useful insights into tuning Zr-MOF-based catalysts and highlight the promise of the cost-effective and sustainable MIP-202(Zr) for diverse epoxide ring-opening reactions on an industrial scale.
Collapse
Affiliation(s)
- Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, PO Box, Tehran, 11155-3615, Iran.
| | - Mohsen Chegeni
- Chemistry Department, Sharif University of Technology, PO Box, Tehran, 11155-3615, Iran
| | - Arshad Bayrami
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Hong YL, Xu Z, Du J, Shi ZQ, Zuo YH, Hu HL, Li G. Prominent Intrinsic Proton Conduction in Two Robust Zr/Hf Metal-Organic Frameworks Assembled by Bithiophene Dicarboxylate. Inorg Chem 2024; 63:10786-10797. [PMID: 38772008 DOI: 10.1021/acs.inorgchem.4c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Yi-Hao Zuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
21
|
Li Y, Wang Y, Cheng J, Huang L, Gao D, Zou G, Zhao Y, Lin Z. Two histidine-templated metal phosphate-oxalates: solvent-free synthesis, luminescence, and proton-conducting properties. Dalton Trans 2024; 53:9675-9679. [PMID: 38814118 DOI: 10.1039/d4dt01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two new histidine-templated metal phosphate-oxalates (MPOs) were prepared under solvent-free conditions. Single-crystal X-ray diffraction analysis reveals that they have layered and chainlike structures, respectively. Under ultraviolet light irradiation, the two MPOs exhibit blue luminescence originating from histidine templates. Their proton-conducting properties were also investigated under different conditions.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Yulin Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Juan Cheng
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ling Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Daojiang Gao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
22
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
23
|
Pal SC, Mukherjee D, Oruganti Y, Lee BG, Lim DW, Pramanik B, Manna AK, Das MC. Room-Temperature Superprotonic Conductivity beyond 10 -1 S cm -1 in a Co(II) Coordination Polymer. J Am Chem Soc 2024; 146:14546-14557. [PMID: 38748181 DOI: 10.1021/jacs.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An efficient design of crystalline solid-state proton conductors (SSPCs) is crucial for the progress of clean energy applications. Developing such materials to make them work at room temperature with a conductivity of ≥10-1 S cm-1 is of significant interest in terms of technical and commercial aspects. Utilizing the recently highlighted "coordinated-water-driven proton conduction" approach, herein, we have rationally synthesized two highly stable and scalable 1D Co(II) coordination polymers (CPs) as SSPCs, PCM-2 {[Co(bpy)(H2O)2(NO3)2]·H2O}n and PCM-3 {[Co2(bpy)2(SO4)2(H2O)6].4H2O}n, with distinct alignments in coordinated water and coordinated oxo-anions (nitrate and sulfate, respectively). The acidity of the metal-bound water molecules in PCM-2 is further enhanced through cooperative long-range continuous H bonds with coordinated Brønsted basic nitrates (proton acceptors), leading to ultrahigh superprotonic conductivities even at 25 °C (1.03 × 10-1 S cm-1 under 95% RH), and reached a maximum of 2.99 × 10-1 S cm-1 at 85 °C (95% RH). The conductivity at 25 °C is even higher than that of commercial Nafion 117 (6.74 × 10-2 S cm-1 at 100% RH). The absence of such an H-bonding interaction in PCM-3 (closed loops) resulted in a lesser conductivity of 5.87 × 10-5 S cm-1 (95% RH, 85 °C). PCM-2 represents the first example of SSPC exhibiting conductivity in the order 10-1 S cm-1 at ambient temperature (25 °C) with excellent recyclability.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Yasaswini Oruganti
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Byoung Gwan Lee
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
24
|
Zhou K, Zhang J, Geng Y, Gao P, Xie Y, Dong J, Shang Y, Cui Y, Gong W. Water-Resistant, Scalable, and Inexpensive Chiral Metal-Organic Framework Featuring Global Negative Electrostatic Potentials for Efficient Acetylene Separation. CHEM & BIO ENGINEERING 2024; 1:349-356. [PMID: 39974468 PMCID: PMC11835167 DOI: 10.1021/cbe.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/21/2025]
Abstract
Physical separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) on metal-organic frameworks (MOFs) is crucial for achieving high-purity feed gases with minimal energy penalty. However, such processes are exceptionally challenging due to their close physical properties and are also critically restricted by the high cost of large-scale MOF synthesis. Here, we demonstrate the readily scalable synthesis of a highly water-resistant chiral Cu-MOF (TAMOF-1) based on an inexpensive proteogenic amino acid derivative bearing rich N/O sites. Notably, the unique coordination in this ultramicroporous MOF has resulted in the generation of rare global negative electrostatic potentials, which greatly facilitate the electrostatic interactions with C2H2 molecules, thus leading to their efficient separation from C2H2/CO2 and C2H2/C2H4 mixtures under ambient conditions. The separation efficiency and mechanism are unequivocally validated by breakthrough experiments and computational simulations. This work not only highlights the pivotal role of creating a negative electro-environment in confined spaces for boosting C2H2 capture and separation but also opens up new ways of employing cheap amino acid derivatives bearing rich electro-negative N and O sites as organic linkers to constructing high-performing MOF materials for gas separation purposes.
Collapse
Affiliation(s)
- Kaiyuan Zhou
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Geng
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department
of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Shang
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yong Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Cui Y, Li D, Shao Z, Zhao Y, Geng K, Huang J, Zhang Y, Hou H. Construction of Hydration Layer for Proton Transport by Implanting the Hydrophilic Center Ag 0 in Nickel Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307964. [PMID: 38009486 DOI: 10.1002/smll.202307964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The directional arrangement of H2O molecules can effectively regulate the ordered protons transfer to improve transport efficiency, which can be controlled by the interaction between materials and H2O. Herein, a strategy to build a stable hydration layer in metal-organic framework (MOF) platforms, in which hydrophilic centers that can manipulate H2O molecules are implanted into MOF cavities is presented. The rigid grid-Ni-MOF is selected as the supporting material due to the uniformly distributed cavities and rigid structures. The Ag0 possesses potential combination ability with the hydrophilic substances, so it is introduced into the MOF as hydration layer centers. Relying on the strong interaction between Ag0 and H2O, the H2O molecules can rearrange around Ag0 in the cavity, which is intuitively verified by DFT calculation and molecular dynamics simulation. The establishment of a hydration layer in Ag@Ni-MOF regulates the chemical properties of the material and gives the material excellent proton conduction performance, with a proton conductivity of 4.86 × 10-2 S cm-1.
Collapse
Affiliation(s)
- Yang Cui
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan, 450002, China
| | - Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Jing Huang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
26
|
Piri A, Kaykhaii M, Khajeh M, Oveisi AR. Application of a magnetically separable Zr-MOF for fast extraction of palladium before its spectrophotometric detection. BMC Chem 2024; 18:63. [PMID: 38555428 PMCID: PMC10981821 DOI: 10.1186/s13065-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
In this research, a novel magnetic zirconium-based metal-organic framework (Fe3O4@SiO2@MIP-202, MMOF), was fabricated, fully characterized, and applied for the batch-mode solid phase extraction of trace amounts of Pd2+ ions from water and wastewater samples before its spectrophotometric detection. Pd2+ ions were desorbed from MMOF by nitric acid and were complexed by treating with KI solution to have a maximum absorbance at 410 nm. The synthesized MMOF composite showed a very large surface area (65 m2.g- 1), good magnetization (1.7 emu.g- 1) and a large pore volume (0.059 cm3.g- 1) with adsorption capacity of 194.5 mg of Pd2+ ions/g of the adsorbent. This nanosorbent boasts chemo-mechanical stability, high adsorption capacity due to its vast active sites, and facile recovery facilitated by its magnetic properties. Parameters affecting the extraction efficiency of the method were optimized as pH of the sample 7.4, volume of the sample 25 mL, 15 mg adsorbent, 1 mL of 0.1 M HNO3 eluent, with 10 and 15 min as the extraction and desorption times, respectively. The calibration curve was found to be linear across the 10.0-1500.0 µg.L- 1 range with a limit of detection of 1.05 µg.L- 1. The obtained extraction efficiency and enrichment were 98% and 245, respectively. The total analysis time was less than 30 min. This MMOF has never been used for the extraction of Pd2+ ions before.
Collapse
Affiliation(s)
- Amin Piri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| | - Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
27
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
28
|
Yu J, Wang X, Wang Y, Xie X, Xie H, Vorayos N, Sun J. Heating-induced adsorption promoting the efficient removal of toluene by the metal-organic framework UiO-66 (Zr) under visible light. J Colloid Interface Sci 2024; 653:1478-1487. [PMID: 37804616 DOI: 10.1016/j.jcis.2023.09.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
The removal of indoor/outdoor toluene by photocatalysis has drawn much attention due to its low energy consumption and easy availability. However, light inevitably generates heat, and pollutants desorb from catalysts as the temperature rises, which is not beneficial to degradation. Contrast to the frequently occurred phenomena, we firstly found that the adsorption capacity of UiO-66 (Zr) on toluene increased with increasing temperature as adsorption isotherms and in-situ Fourier transform infrared spectra (in-situ FTIR) showed. The optimum temperature was 30 °C. This stage in which adsorption capacity was positively correlated with temperature was called heating-induced adsorption, which achieved a toluene removal efficiency of 69.6 %. By density functional theory (DFT) calculations and changing the metal centers and organic ligands of UiO-66 (Zr) respectively, we disclosed that the heating-induced adsorption was mainly related to the π-π stacking interaction of MOF ligands and toluene. The analysis of samples before and after adsorption showed that the interaction between UiO-66 (Zr) and adsorbed toluene facilitated the charge transfer and prolonged the carrier lifetime, leading to the increase of hydroxyl radicals (•OH) in photocatalysis. Therefore, a synergistic effect between heating-induced adsorption and photocatalysis was proposed by analyzing the adsorption of toluene on UiO-66 (Zr) in detail. This work provided new viewpoint to understand the role of concomitant heat contributed to the adsorption and degradation of toluene during photocatalysis.
Collapse
Affiliation(s)
- Jiajun Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, China
| | - Xiao Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Yan Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Xiaofeng Xie
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., No. 712 Wen'er West Road, Hangzhou, Zhejiang 310003, China
| | - Nat Vorayos
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Thailand
| | - Jing Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China.
| |
Collapse
|
29
|
Nabipour H, Rohani S. Green Synthesis of pH-Responsive Metal-Organic Frameworks for Delivery of Diclofenac Sodium. IEEE Trans Nanobioscience 2024; 23:63-70. [PMID: 37428669 DOI: 10.1109/tnb.2023.3289787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.
Collapse
|
30
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
31
|
Binaeian E, Nabipour H, Ahmadi S, Rohani S. The green synthesis and applications of biological metal-organic frameworks for targeted drug delivery and tumor treatments. J Mater Chem B 2023; 11:11426-11459. [PMID: 38047399 DOI: 10.1039/d3tb01959d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.
Collapse
Affiliation(s)
- Ehsan Binaeian
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Soroush Ahmadi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
32
|
Mao X, Ding X, Wang Q, Sun X, Qin L, Huang F, Wen L, Xiang X. Oriented Self-assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308739. [PMID: 38054629 DOI: 10.1002/smll.202308739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Building of metal-organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super-assembly strategy to construct micro-scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium-oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self-assembly of flexible nanoribbons into pumpkin-like microspheres. The confined effect between water-flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self-assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g-1 ) accompanied with heavy metal removal (1331.67 mg g-1 ) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinqi Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wang
- Marine Academy of Zhejiang Province, Hangzhou, 310014, China
| | - Xiping Sun
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fei Huang
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luhong Wen
- Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, China
| | - Xingwei Xiang
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
33
|
Ma X, Zhang L, Liu R, Li X, Yan H, Zhao X, Yang Y, Zhu H, Kong X, Yin J, Zhou H, Li X, Kong L, Hao H, Zhong D, Dai F. A Multifunctional Co-Based Metal-Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorg Chem 2023. [PMID: 38015879 DOI: 10.1021/acs.inorgchem.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(μ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong266580, China
| |
Collapse
|
34
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
35
|
Zhang Q, Jiang S, Lv T, Peng Y, Pang H. Application of Conductive MOF in Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305532. [PMID: 37382197 DOI: 10.1002/adma.202305532] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The use of conductive MOFs (c-MOFs) in zinc-based batteries has been a popular research direction. Zinc-based batteries are widely used with the advantages of high specific capacity and safety and stability, but they also face many problems. c-MOFs have excellent conductivity compared with other primitive MOFs, and therefore have better applications in zinc-based batteries. In this paper, the transfer mechanisms of the unique charges of c-MOFs: hop transport and band transport, respectively, are discussed and the way of electron transport is further addressed. Then, the various ways to prepare c-MOFs are introduced, among which solvothermal, interfacial synthesis, and postprocessing methods are widely used. In addition, the applications of c-MOFs are discussed in terms of their role and performance in different types of zinc-based batteries. Finally, the current problems of c-MOFs and the prospects for their future development are presented.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Tingting Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
36
|
Wu Y, Li H, Liu T, Xu M. Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305063. [PMID: 37474115 DOI: 10.1002/adma.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Rechargeable batteries are of great significance for alleviating the growing energy crisis by providing efficient and sustainable energy storage solutions. However, the multiple issues associated with the diverse components in a battery system as well as the interphase problems greatly hinder their applications. Proteins and their subunits, peptides, and amino acids, are versatile biomolecules. Functional groups in different amino acids endow these biomolecules with unique properties including self-assembly, ion-conducting, antioxidation, great affinity to exterior species, etc. Besides, protein and its subunit materials can not only work in solid forms but also in liquid forms when dissolved in solutions, making them more versatile to realize materials engineering via diverse approaches. In this review, it is aimed to offer a comprehensive understanding of the properties of proteins and their subunits, and research progress of using these versatile biomolecules to address the engineering issues of various rechargeable batteries, including alkali-ion batteries, lithium-sulfur batteries, metal-air batteries, and flow batteries. The state-of-the-art advances in electrode, electrolyte, separator, binder, catalyst, interphase modification, as well as recycling of rechargeable batteries are involved, and the impacts of biomolecules on electrochemical properties are particularly emphasized. Finally, perspectives on this interesting field are also provided.
Collapse
Affiliation(s)
- Yulun Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P.R. China
| | - Huangxu Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Tiancheng Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
37
|
Sahoo R, Mondal S, Chand S, Manna AK, Das MC. A Water-Stable Cationic SIFSIX MOF for Luminescent Probing of Cr 2 O 7 2- via Single-Crystal to Single-Crystal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304581. [PMID: 37501327 DOI: 10.1002/smll.202304581] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, AP, 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
38
|
Zhang S, Xie Y, Somerville RJ, Tirani FF, Scopelliti R, Fei Z, Zhu D, Dyson PJ. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206999. [PMID: 37317016 DOI: 10.1002/smll.202206999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2 S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.
Collapse
Affiliation(s)
- Shunlin Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Yuxin Xie
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rosie J Somerville
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dunru Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
39
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Zhuang Q, Chen S, Xu K, Kang L, Li Z, Li G. Syntheses and High Proton Conductivities of Two 3D Zr(IV)/Hf(IV)-MOFs from Furandicarboxylic Acid. Inorg Chem 2023; 62:11570-11580. [PMID: 37434493 DOI: 10.1021/acs.inorgchem.3c01258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
With the gradual progress of research on proton-conducting metal-organic framework (MOFs), it has become a challenging task to find MOF materials that are easy to prepare and have low toxicity, high stability, and splendid proton conductivity. With the abovementioned objectives in mind, we selected the non-toxic organic ligand 2,5-furandicarboxylic acid and the low toxic quadrivalent metals zirconium(IV) or hafnium(IV) as starting materials and successfully obtained 2 three-dimensional porous MOFs, [M6O4(OH)4(FDC)4(OH)4(H2O)4] [M = ZrIV (1) and HfIV (2)], with ultrahigh water stability using a rapid and green synthesis approach. Their proton conductive ability is remarkable, thanks to the large number of Lewis acidic sites contained in their porous frameworks and the abundant H-bonding network, hydroxyl groups, as well as coordination and crystalline water molecules. The positive correlation of their proton conductivity with relative humidity (RH) and the temperature was observed. Notably, their optimized proton conductivities are 2.80 × 10-3 S·cm-1 of 1 and 3.38 × 10-3 S·cm-1 of 2 under 100 °C/98% RH, which are at the forefront of Zr(IV)/Hf(IV) MOFs with prominent proton conductivity. Logically, their framework features, nitrogen/water adsorption/desorption data, and activation energy values are integrated to deduce their proton conductivity and conducting mechanism differences.
Collapse
Affiliation(s)
- Qi Zhuang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Shizhong Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Kaiyin Xu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Lulu Kang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Zifeng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| |
Collapse
|
41
|
Mohd Mokhtar NAI, Ashari SE, Mohd Zawawi R. Optimization of a lipase/reduced graphene oxide/metal-organic framework electrode using a central composite design-response surface methodology approach. RSC Adv 2023; 13:13493-13504. [PMID: 37152575 PMCID: PMC10155190 DOI: 10.1039/d3ra01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Lipase has been gaining attention as the recognition element in electrochemical biosensors. Lipase immobilization is important to maintain its stability while providing excellent conductivity. In this study, a lipase electrochemical biosensor immobilized on a copper-centred metal-organic framework integrated with reduced graphene oxide (lipase/rGO/Cu-MOF) was synthesized by a facile method at room temperature. Response surface methodology (RSM) via central composite design (CCD) was used to optimize the synthesis parameters, which are rGO weight, ultrasonication time, and lipase concentration, to maximize the current response for the detection of p-nitrophenyl acetate (p-NPA). The results of the analysis of variance (ANOVA) showed that all three parameters were significant, while the interaction between the ultrasonication time and lipase concentration was the only significant interaction with a p-value of less than 0.05. The optimized electrode with parameters of 1 mg of rGO, 30 min ultrasonication time, and 30 mg mL-1 lipase exhibited the highest current response of 116.93 μA using cyclic voltammetry (CV) and had a residual standard error (RSE) of less than 2% in validation, indicating that the model is suitable to be used. It was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR), where the integration of the composite was observed. Immobilization using ultrasonication altered the lipase's secondary structure, but reduced its unorderly coils. The electrochemical and thermal analysis showed that the combination of Cu-MOF with rGO enhanced the electrochemical conductivity and thermostability.
Collapse
Affiliation(s)
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| |
Collapse
|
42
|
Sharma A, Lim J, Lah MS. Strategies for designing metal–organic frameworks with superprotonic conductivity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Fop S, Vivani R, Masci S, Casciola M, Donnadio A. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH 5 (PO 4 ) 3. Angew Chem Int Ed Engl 2023; 62:e202218421. [PMID: 36856155 DOI: 10.1002/anie.202218421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
The development of solid-state proton conductors with high proton conductivity at low temperatures is crucial for the implementation of hydrogen-based technologies for portable and automotive applications. Here, we report on the discovery of a new crystalline metal acid triphosphate, ZrH5 (PO4 )3 (ZP3), which exhibits record-high proton conductivity of 0.5-3.1×10-2 S cm-1 in the range 25-110 °C in anhydrous conditions. This is the highest anhydrous proton conductivity ever reported in a crystalline solid proton conductor in the range 25-110 °C. Superprotonic conductivity in ZP3 is enabled by extended defective frustrated hydrogen bond chains, where the protons are dynamically disordered over two oxygen centers. The high proton conductivity and stability in anhydrous conditions make ZP3 an excellent candidate for innovative applications in fuel cells without the need for complex water management systems, and in other energy technologies requiring fast proton transfer.
Collapse
Affiliation(s)
- Sacha Fop
- The Chemistry Department, University of Aberdeen, Aberdeen, AB24 3UE, UK
- ISIS Facility, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimiche, Fisiche e Biomediche, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Silvia Masci
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Mario Casciola
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimiche, Fisiche e Biomediche, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
44
|
Construction of MOF@COF composite-based electrochemical aptasensor for detection of Staphylococcus aureus. ANAL SCI 2023; 39:901-909. [PMID: 36811185 DOI: 10.1007/s44211-023-00295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
In this work, a biological metal-organic framework@conductive covalent organic framework composite (bio-MOF@con-COF, denoted as Zn-Glu@PTBD-COF, here, Glu indicates L-glutamic acid, PT indicates 1,10-phenanthroline-2,9-dicarbaldehyde, and BD indicates benzene-1,4-diamine) was prepared and used as sensing material to fabricate aptasensor for trace detection of Staphylococcus aureus (SA). The Zn-Glu@PTBD-COF integrates the mesoporous structure and abundant defects of the MOF framework, the excellent conductivity of the COF framework, and high stability of the composite, providing abundant active sites to effectively anchor aptamers. As a result, the Zn-Glu@PTBD-COF-based aptasensor shows high sensitivity to detect SA via specific recognition between aptamer and SA, as well as the formation of aptamer-SA complex. Low detection limits of 2.0 and 1.0 CFU·mL-1 are deduced from the electrochemical impedance spectroscopy and differential pulse voltammetry within a wide linear range of 10-108 CFU·mL-1 for SA, respectively. The Zn-Glu@PTBD-COF-based aptasensor also shows good selectivity, reproducibility, stability, regenerability, and applicability for real milk and honey samples. Therefore, the Zn-Glu@PTBD-COF-based aptasensor will be promising for fast screening of foodborne bacteria in food service industry. Zn-Glu@PTBD-COF composite was prepared and used as sensing material to fabricate aptasensor for trace detection of Staphylococcus aureus (SA). Low detection limits of 2.0 and 1.0 CFU·mL-1 are deduced from the electrochemical impedance spectroscopy and differential pulse voltammetry within a wide linear range of 10-108 CFU·mL-1 for SA, respectively. The Zn-Glu@PTBD-COF-based aptasensor also shows good selectivity, reproducibility, stability, regenerability, and applicability for real milk and honey samples.
Collapse
|
45
|
Kang LL, Xing C, Jin YX, Xie LX, Li ZF, Li G. Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorg Chem 2023; 62:3036-3046. [PMID: 36757379 DOI: 10.1021/acs.inorgchem.2c03758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl4/HfCl4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H2TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H2O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10-3 and 3.86 × 10-3 S cm-1, respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.
Collapse
Affiliation(s)
- Lu-Lu Kang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Chen Xing
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yi-Xin Jin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
46
|
Wu Y, Huang T, Luo Y, Dai L, Wang M, Xia Z, Hu L. Zirconium-amino acid framework as a green phosphatase-like nanozyme for the selective detection of phosphate-containing drugs. Chem Commun (Camb) 2023; 59:1098-1101. [PMID: 36625352 DOI: 10.1039/d2cc06606h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The zirconium-amino acid framework MIP-202(Zr) was reported as a green phosphatase-like nanozyme for the first time. Moreover, its phosphatase-like activity can be inhibited by phosphate-containing drugs. Based on this finding, a universal fluorimetric strategy for sensing phosphate-containing drugs was developed. The detection limit was as low as 2 ng mL-1 for the model drug alendronate sodium. This strategy exhibits excellent selectivity over other non-phosphate-containing drugs and will broaden the applications of phosphatase-like nanozymes in clinical pharmacy.
Collapse
Affiliation(s)
- Yuxin Wu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Ting Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Yuefei Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Ling Dai
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
47
|
Purification of borneol from its isomeric mixture by using metal–organic frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Room-temperature rapid self-assembled biocompatible MOFs as an Instant, temporary tooth sealant. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Song N, Li W, Luo W, Zhai Z, Wang S, Huai R, Zhang D, Zhou Z, Yang L. Efficient and selective fluorescence sensing of nitro-containing aromatic compounds by a binuclear lanthanide-based metal-organic framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Cai X, Bao X, Wu Y. Metal-Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics 2022; 14:2641. [PMID: 36559134 PMCID: PMC9781098 DOI: 10.3390/pharmaceutics14122641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with periodic network structures formed by self-assembly of metal ions and organic ligands. Attributed to their tunable composition and pore size, ultrahigh surface area (1000-7000 m2/g) and pore volume (1.04-4.40 cm3/g), easy surface modification, appropriate physiological stability, etc., MOFs have been widely used in biomedical applications in the last two decades, especially for the delivery of bioactive agents. In the initial stage, MOFs were widely used to load small molecule drugs with ultra-high doses. Whereafter, more recent work has focused on the load of biomacromolecules, such as nucleic acids and proteins. Over the past years, we have devoted extensive effort to investigate the function of MOF materials for bioactive agent delivery. MOFs can be used not only as an intelligent nanocarrier to deliver or protect bioactive agents but also as an activator for their release or activation in response to the different microenvironments. Altogether, this review details the current progress of MOF materials for bioactive agent delivery and looks into their future development.
Collapse
Affiliation(s)
- Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|