1
|
Shitut S, van Dijk T, Claessen D, Rozen D. Bacterial heterozygosity promotes survival under multidrug selection. Curr Biol 2025; 35:1437-1445.e3. [PMID: 40037350 DOI: 10.1016/j.cub.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/21/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Although bacterial cells typically contain a single chromosome, some species are naturally polyploid and carry multiple copies of their chromosome. Polyploid chromosomes can be identical or heterogeneous, the latter giving rise to bacterial heterozygosity. Although the benefits of heterozygosity are well studied in eukaryotes, its consequences in bacteria are less understood. Here, we examine this question in the context of antibiotic resistance to understand how bacterial genomic heterozygosity affects bacterial survival. Using a cell-wall-deficient model system in the actinomycete Kitasatospora viridifaciens, we found that heterozygous cells that contain different chromosomes expressing different antibiotic resistance markers persist across a broad range of antibiotic concentrations. Recombinant cells containing the same resistance genes on a single chromosome also survive these conditions, but these cells pay a significant fitness cost due to the constitutive expression of these genes. By contrast, heterozygous cells can mitigate these costs by flexibly adjusting the ratio of their different chromosomes, thereby allowing rapid responses in temporally and spatially variable environments. Our results provide evidence that bacterial heterozygosity can increase adaptive plasticity in bacterial cells in a similar manner to the evolutionary benefits provided by multicopy plasmids in bacteria.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Groningen, the Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands.
| | - Thomas van Dijk
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Daniel Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands.
| |
Collapse
|
2
|
Zhong X, Baur SSM, Ongenae VMA, Guerrero Egido G, Shitut S, Du C, Vijgenboom E, van Wezel GP, Carrion Bravo V, Briegel A, Bramkamp M, Claessen D. The stomatin-like protein StlP organizes membrane microdomains to govern polar growth in filamentous actinobacteria under hyperosmotic stress. Nat Commun 2025; 16:2669. [PMID: 40102465 PMCID: PMC11920096 DOI: 10.1038/s41467-025-58093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The cell wall represents an essential structure conserved among most bacteria, playing a crucial role in growth and development. While extensively studied model bacteria have provided insights into cell wall synthesis coordination, the mechanism governing polar growth in actinobacteria remains enigmatic. Here we identify the stomatin-like protein StlP as a pivotal factor for orchestrating polar growth in filamentous actinobacteria under hyperosmotic stress. StlP facilitates the establishment of a membrane microdomain with increased membrane fluidity, a process crucial for maintaining proper growth. The absence of StlP leads to branching of filaments, aberrant cell wall synthesis, thinning of the cell wall, and the extrusion of cell wall-deficient cells at hyphal tips. StlP interacts with key components of the apical glycan synthesis machinery, providing protection to filaments during apical growth. Introduction of StlP in actinobacteria lacking this protein enhances polar growth and resilience under hyperosmotic stress, accompanied by the formation of a membrane microdomain. Our findings imply that stomatin-like proteins, exemplified by StlP, confer a competitive advantage to actinobacteria encountering hyperosmotic stress. Given the widespread conservation of StlP in filamentous actinobacteria, our results propose that the mediation of polar growth through membrane microdomain formation is a conserved phenomenon in these bacteria.
Collapse
Affiliation(s)
- Xiaobo Zhong
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Sarah S M Baur
- Institute for General Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Veronique M A Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Shraddha Shitut
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chao Du
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor Carrion Bravo
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Integrative Structural Cell Biology Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, 75724, Paris, France
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Jordan ML, Schlimpert S. Microbe Profile: Streptomyces venezuelae - a model species to study morphology and differentiation in filamentous bacteria. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001541. [PMID: 40080054 PMCID: PMC11906614 DOI: 10.1099/mic.0.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
Streptomyces bacteria are renowned for their multicellular lifestyle and production of bioactive molecules (natural products) with important applications in medicine, agriculture and industry. Studies of several Streptomyces species have provided a foundational understanding of their biology and metabolism. However, investigating the spatiotemporal processes governing the morphogenesis and development of these remarkable bacteria has been technically challenging due to their complex life cycle. The adoption of Streptomyces venezuelae as a new experimental model species has overcome these limitations and opened the door to fully explore the regulation and cell biology of Streptomyces development. A key advantage of S. venezuelae is its ability to complete its entire life cycle in liquid culture, facilitating the effective use of genome-wide analysis techniques and advanced cell biology approaches. This has provided significant new insights into the regulatory networks and molecular mechanisms underlying Streptomyces growth, division, developmental transitions and genome organization.
Collapse
Affiliation(s)
- Max L. Jordan
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
4
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Maldanis L, Fernandez-Remolar D, Lemelle L, Knoll AH, Guizar-Sicairos M, Holler M, da Silva FMC, Magnin V, Mermoux M, Simionovici A. Unveiling Challenging Microbial Fossil Biosignatures from Rio Tinto with Micro-to-Nanoscale Chemical and Ultrastructural Imaging. ASTROBIOLOGY 2024; 24:721-733. [PMID: 38985734 DOI: 10.1089/ast.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars. In this study, we use an innovative multiscale approach that combines the state-of-the-art synchrotron X-ray nanoimaging methods of ptychographic X-ray computed laminography and nano-X-ray fluorescence to reveal Rio Tinto's microfossils at subcellular resolution. The unprecedented nanoscale views of several different specimens within their geological and geochemical contexts reveal novel intricacies of preserved microbial communities. Different morphotypes, ecological interactions, and possible taxonomic affinities were inferred based on qualitative and quantitative 3D ultrastructural information, whereas diagenetic processes and metabolic affinities were inferred from complementary chemical information. Our integrated nano-to-microscale analytical approach revealed previously invisible microbial and mineral interactions, which complemented and filled a gap of spatial resolution in conventional methods. Ultimately, this study contributes to the challenge of deciphering the faint chemical and morphological biosignatures that can indicate life's presence on the early Earth and on distant worlds.
Collapse
Affiliation(s)
- Lara Maldanis
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - David Fernandez-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | | | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge Massachusetts, USA
| | - Manuel Guizar-Sicairos
- Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mirko Holler
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Francisco Mateus Cirilo da Silva
- Brazilian Synchrotron Light Laboratory, LNLS, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
- Institute of Physics, IFGW, Campinas University, UNICAMP, Campinas, Brazil
| | - Valérie Magnin
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - Michel Mermoux
- LEPMI, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Alexandre Simionovici
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| |
Collapse
|
6
|
He R, Wei P, Odiba AS, Gao L, Usman S, Gong X, Wang B, Wang L, Jin C, Lu G, Fang W. Amino sugars influence Aspergillus fumigatus cell wall polysaccharide biosynthesis, and biofilm formation through interfering galactosaminogalactan deacetylation. Carbohydr Polym 2024; 324:121511. [PMID: 37985096 DOI: 10.1016/j.carbpol.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Aspergillus fumigatus is a ubiquitous fungal pathogen responsible for a significant number of deaths annually due to invasive aspergillosis infection. While the utilization of diverse carbon sources, including amino sugars, has been explored in other fungi, its impact on A. fumigatus remains uncharted territory. In this study, we investigated A. fumigatus responses to glucose (Glc), glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) as carbon sources. GlcN inhibited growth, reduced sporulation and delayed germination, while GlcNAc had no such effects. Both amino sugars induced alterations in cell wall composition, leading to a reduction in glucan and galactomannan levels while increasing chitin and mannan content, rendering A. fumigatus susceptible to cell wall stress and osmotic stress. GlcN repressed biofilm formation via downregulation of galactosaminogalactan (GAG) cluster genes, notably agd3, which encodes a GAG-specific deacetylase. Moreover, GlcN increased biofilm susceptibility to echinocandins, suggesting its potential for enhancing the effectiveness of antifungal treatments. This study sheds light on the multifaceted effects of amino sugars on A. fumigatus, encompassing growth, cell wall biosynthesis, and biofilm formation, offering promising avenues for innovative aspergillosis treatment strategies.
Collapse
Affiliation(s)
- Rui He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Pingzhen Wei
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sayed Usman
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiufang Gong
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangtao Lu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Kanaparthi D, Lampe M, Krohn JH, Zhu B, Klingl A, Lueders T. The reproduction of gram-negative protoplasts and the influence of environmental conditions on this process. iScience 2023; 26:108149. [PMID: 37942012 PMCID: PMC10628739 DOI: 10.1016/j.isci.2023.108149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bacterial protoplasts are known to reproduce independently of canonical molecular biological processes. Although their reproduction is thought to be influenced by environmental conditions, the growth of protoplasts in their natural habitat has never been empirically studied. Here, we studied the life cycle of protoplasts in their native environment. Contrary to the previous perception that protoplasts reproduce in an erratic manner, cells in our study reproduced in a defined sequence of steps, always leading to viable daughter cells. Their reproduction can be explained by an interplay between intracellular metabolism, the physicochemical properties of cell constituents, and the nature of cations in the growth media. The efficiency of reproduction is determined by the environmental conditions. Under favorable environmental conditions, protoplasts reproduce with nearly similar efficiency to cells that possess a cell wall. In short, here we demonstrate the simplest method of cellular reproduction and the influence of environmental conditions on this process.
Collapse
Affiliation(s)
- Dheeraj Kanaparthi
- Max-Planck Institute for Biochemistry, Munich, Germany
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan-Hagen Krohn
- Max-Planck Institute for Biochemistry, Munich, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Baoli Zhu
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, CAS, Changsha, China
| | - Andreas Klingl
- Department of Biology, LMU, Planegg-Martinsried, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Chen J, Li Z, Xu D, Xiao Q, Liu H, Li X, Chao L, Qu H, Zheng Y, Liu X, Wang P, Bao Y. Patterns and drivers of microbiome in different rock surface soil under the volcanic extreme environment. IMETA 2023; 2:e122. [PMID: 38867933 PMCID: PMC10989942 DOI: 10.1002/imt2.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2024]
Abstract
Soil microbial communities were investigated under the volcanic extreme environment. Soil bacterial networks exhibited higher stability than fungal networks. Holocene granite had a more complex microbial network than basalt. Soil pH and total protein were key drivers of microbial network stability.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
- National Engineering Laboratory of Crop Stress Resistance BreedingAnhui Agricultural UniversityHefeiPeople's Republic of China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance BreedingAnhui Agricultural UniversityHefeiPeople's Republic of China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople's Republic of China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance BreedingAnhui Agricultural UniversityHefeiPeople's Republic of China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance BreedingAnhui Agricultural UniversityHefeiPeople's Republic of China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life SciencesInner Mongolia UniversityHohhotPeople's Republic of China
| |
Collapse
|
9
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Ohta K, Shimizu T, Oshima T, Ichihashi N. Genetic analysis of Bacillus subtilis stable L-forms obtained via long-term cultivation. J GEN APPL MICROBIOL 2023; 69:45-52. [PMID: 36384691 DOI: 10.2323/jgam.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.
Collapse
Affiliation(s)
- Kazuki Ohta
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo
| | - Tenma Shimizu
- Graduate School of Frontier Biosciences, Osaka University
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo
- Komaba Institute for Science, The University of Tokyo
- Universal Biology Institute, Graduate School of Science, The University of Tokyo
| |
Collapse
|
11
|
Bhowmick S, Shenouda ML, Tschowri N. Osmotic stress responses and the biology of the second messenger c-di-AMP in Streptomyces. MICROLIFE 2023; 4:uqad020. [PMID: 37223731 PMCID: PMC10117811 DOI: 10.1093/femsml/uqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Streptomyces are prolific antibiotic producers that thrive in soil, where they encounter diverse environmental cues, including osmotic challenges caused by rainfall and drought. Despite their enormous value in the biotechnology sector, which often relies on ideal growth conditions, how Streptomyces react and adapt to osmotic stress is heavily understudied. This is likely due to their complex developmental biology and an exceptionally broad number of signal transduction systems. With this review, we provide an overview of Streptomyces' responses to osmotic stress signals and draw attention to open questions in this research area. We discuss putative osmolyte transport systems that are likely involved in ion balance control and osmoadaptation and the role of alternative sigma factors and two-component systems (TCS) in osmoregulation. Finally, we highlight the current view on the role of the second messenger c-di-AMP in cell differentiation and the osmotic stress responses with specific emphasis on the two models, S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mary L Shenouda
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Corresponding author. Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany. E-mail:
| |
Collapse
|
12
|
Emami K, Banks P, Wu LJ, Errington J. Repurposing drugs with specific activity against L-form bacteria. Front Microbiol 2023; 14:1097413. [PMID: 37082179 PMCID: PMC10110866 DOI: 10.3389/fmicb.2023.1097413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Cell wall deficient “L- form” bacteria are of growing medical interest as a possible source of recurrent or persistent infection, largely because of their complete resistance to cell wall active antibiotics such as β-lactams. Antibiotics that specifically kill L-forms would be of potential interest as therapeutics, but also as reagents with which to explore the role of L-forms in models of recurrent infection. To look for specific anti-L-form antibiotics, we screened a library of several hundred FDA-approved drugs and identified compounds highly selective for L-form killing. Among the compounds identified were representatives of two different classes of calcium channel blockers: dihydropyridines, e.g., manidipine; and diphenylmethylpiperazine, e.g., flunarizine. Mode of action studies suggested that both classes of compound work by decreasing membrane fluidity. This leads to a previously recognized phenotype of L-forms in which the cells can continue to enlarge but fail to divide. We identified a considerable degree of variation in the activity of different representatives of the two classes of compounds, suggesting that it may be possible to modify them for use as drugs for L-form-dependent infections.
Collapse
Affiliation(s)
- Kaveh Emami
- Centre for Bacterial Cell Biology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Banks
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffery Errington
- Centre for Bacterial Cell Biology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Jeffery Errington,
| |
Collapse
|
13
|
Lubbers M, van Wezel GP, Claessen D. Reproducible switching between a walled and cell wall-deficient lifestyle of actinomycetes using gradient agar plates. J Microbiol Methods 2023; 204:106660. [PMID: 36563750 DOI: 10.1016/j.mimet.2022.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The cell wall is a shape-defining structure that envelopes almost all bacteria, protecting them from biotic and abiotic stresses. Paradoxically, some filamentous actinomycetes have a natural ability to shed their cell wall under influence of hyperosmotic stress. These wall-deficient cells can revert to their walled state when transferred to a medium without osmoprotection but often lyse due to their fragile nature. Here, we designed plates with an osmolyte gradient to reduce cell lysis and thereby facilitating the transition between a walled and wall-deficient state. These gradient plates allow determining of the osmolyte concentration where switching takes place, thereby enabling careful and reproducible comparison between mutants affected by switching. Exploring these transitions could give valuable insights into the ecology of actinomycetes and their biotechnological applications.
Collapse
Affiliation(s)
- Maarten Lubbers
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Gilles P van Wezel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Dennis Claessen
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
14
|
Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M, Daviran D, Roverts R, Akiva A, van Wezel GP, Kros A, Claessen D. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat Commun 2022; 13:5524. [PMID: 36138004 PMCID: PMC9500057 DOI: 10.1038/s41467-022-33054-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete Kitasatospora viridifaciens can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to comEC and comEA, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall. Horizontal gene transfer in bacteria can occur through mechanisms such as conjugation, transduction and transformation, which facilitate the passage of DNA across the cell wall. Here, Kapteijn et al. show that cell wall-deficient bacteria can take up DNA and other extracellular materials via an endocytosis-like process.
Collapse
Affiliation(s)
- Renée Kapteijn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Shraddha Shitut
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Le Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Deniz Daviran
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| |
Collapse
|
15
|
Shitut S, Shen MJ, Claushuis B, Derks RJE, Giera M, Rozen D, Claessen D, Kros A. Generating Heterokaryotic Cells via Bacterial Cell-Cell Fusion. Microbiol Spectr 2022; 10:e0169322. [PMID: 35862998 PMCID: PMC9430406 DOI: 10.1128/spectrum.01693-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Fusion of cells is an important and common biological process that leads to the mixing of cellular contents and the formation of multinuclear cells. Cell fusion occurs when distinct membranes are brought into proximity of one another and merge to become one. Fusion holds promise for biotechnological innovations, for instance, for the discovery of urgently needed new antibiotics. Here, we used antibiotic-producing bacteria that can proliferate without their cell wall as a model to investigate cell-cell fusion. We found that fusion between genetically distinct cells yields heterokaryons that are viable, contain multiple selection markers, and show increased antimicrobial activity. The rate of fusion induced using physical and chemical methods was dependent on membrane fluidity, which is related to lipid composition as a function of cellular age. Finally, by using an innovative system of synthetic membrane-associated lipopeptides, we achieved targeted fusion between distinctly marked cells to further enhance fusion efficiency. These results provide a molecular handle to understand and control cell-cell fusion, which can be used in the future for the discovery of new drugs. IMPORTANCE Cell-cell fusion is instrumental in introducing different sets of genes in the same environment, which subsequently leads to diversity. There is need for new protocols to fuse cells of different types together for biotechnological applications like drug discovery. We present here wall-deficient cells as a platform for the same. We identify the fluidity of the membrane as an important characteristic for the process of fusion. We demonstrate a cell-specific approach for fusion using synthetically designed peptides yielding cells with modified antibiotic production profiles. Overall, wall-deficient cells can be a chassis for innovative metabolite production by providing an alternative method for cell-cell fusion.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Groningen, the Netherlands
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Meng-Jie Shen
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bart Claushuis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Rico J. E. Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniel Rozen
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| |
Collapse
|
16
|
Lazenby JJ, Li ES, Whitchurch CB. Cell wall deficiency - an alternate bacterial lifestyle? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35925044 DOI: 10.1099/mic.0.001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease.
Collapse
Affiliation(s)
- James J Lazenby
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Erica S Li
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Cynthia B Whitchurch
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TK, UK
| |
Collapse
|
17
|
Ongenae V, Mabrouk AS, Crooijmans M, Rozen D, Briegel A, Claessen D. Reversible bacteriophage resistance by shedding the bacterial cell wall. Open Biol 2022; 12:210379. [PMID: 35673854 PMCID: PMC9174709 DOI: 10.1098/rsob.210379] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Phages are highly abundant in the environment and pose a major threat for bacteria. Therefore, bacteria have evolved sophisticated defence systems to withstand phage attacks. Here, we describe a previously unknown mechanism by which mono- and diderm bacteria survive infection with diverse lytic phages. Phage exposure leads to a rapid and near-complete conversion of walled cells to a cell-wall-deficient state, which remains viable in osmoprotective conditions and can revert to the walled state. While shedding the cell wall dramatically reduces the number of progeny phages produced by the host, it does not always preclude phage infection. Altogether, these results show that the formation of cell-wall-deficient cells prevents complete eradication of the bacterial population and suggest that cell wall deficiency may potentially limit the efficacy of phage therapy, especially in highly osmotic environments or when used together with antibiotics that target the cell wall.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Adam Sidi Mabrouk
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Marjolein Crooijmans
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Daniel Rozen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Commun Biol 2022; 5:444. [PMID: 35545700 PMCID: PMC9095699 DOI: 10.1038/s42003-022-03383-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities. A reductive amination-based fluorophore labelling of complex wood-derived glycans provides a proof-of-principle multi-modal platform for monitoring glycan uptake by bacteria.
Collapse
|
19
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
20
|
Marco S, Loredana M, Riccardo V, Raffaella B, Walter C, Luca N. Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. HORTICULTURE RESEARCH 2022; 9:uhac160. [PMID: 36204199 PMCID: PMC9531342 DOI: 10.1093/hr/uhac160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
In the past years, breeding programs have been mainly addressed on pushing the commercial features, forgetting important traits, such as those related to environmental stress resilience, that are instead present in wild relatives. Among the traits neglected by breeding processes, the ability to recruit beneficial microorganisms that recently is receiving a growing attention due to its potentiality. In this context, this review will provide a spotlight on critical issues of the anthropocentric point of view that, until now, has characterized the selection of elite plant genotypes. Its effects on the plant-microbiome interactions, and the possibility to develop novel strategies mediated by the exploitation of beneficial root-microbe interactions, will be discussed. More sustainable microbial-assisted strategies might in fact foster the green revolution and the achievement of a more sustainable agriculture in a climatic change scenario.
Collapse
Affiliation(s)
| | | | - Velasco Riccardo
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | | | | | | |
Collapse
|
21
|
Papadopoulos AO, Ealand C, Gordhan BG, VanNieuwenhze M, Kana BD. Characterisation of a putative M23-domain containing protein in Mycobacterium tuberculosis. PLoS One 2021; 16:e0259181. [PMID: 34784363 PMCID: PMC8594824 DOI: 10.1371/journal.pone.0259181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Collapse
Affiliation(s)
- Andrea Olga Papadopoulos
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna Gowan Gordhan
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Bavesh Davandra Kana
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
22
|
Li S, Dong L, Lian WH, Lin ZL, Lu CY, Xu L, Li L, Hozzein WN, Li WJ. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148235. [PMID: 34380255 DOI: 10.1016/j.scitotenv.2021.148235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Streptomycetes have been, for over 70 years, one of the most abundant sources for the discovery of new antibiotics and clinic drugs. However, in recent decades, it has been more and more difficult to obtain new phylotypes of the genus Streptomyces by using conventional samples and culture strategies. In this study, we combined culture-dependent and culture-independent approaches to better explore the Streptomyces communities in desert sandy soils. Moreover, two different culture strategies termed Conventional Culture Procedure (CCP) and Streptomycetes Culture Procedure (SCP) were employed to evaluate the isolation efficiency of Streptomyces spp. with different intensities of selectivity. The 16S rRNA gene amplicon analysis revealed a very low abundance (0.04-0.37%, average 0.22%) of Streptomyces in all the desert samples, conversely the percentage of Streptomyces spp. obtained by the culture-dependent method was very high (5.20-39.57%, average 27.76%), especially in the rhizospheric sand soils (38.40-39.57%, average 38.99%). Meanwhile, a total of 1589 pure cultures were isolated successfully, dominated by Streptomyces (29.52%), Microvirga (8.06%) and Bacillus (7.68%). In addition, 400 potential new species were obtained, 48 of which belonged to the genus Streptomyces. More importantly, our study demonstrated the SCP strategy which had highly selectivity could greatly expand the number and phylotypes of Streptomyces spp. by almost 4-fold than CCP strategy. These results provide insights on the diversity investigation of desert Streptomyces, and it could be reference for researchers to bring more novel actinobacteria strains from the environment into culture.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh 999088, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
23
|
Ongenae V, Briegel A, Claessen D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol 2021; 11:210199. [PMID: 34465216 PMCID: PMC8437236 DOI: 10.1098/rsob.210199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
24
|
Wong F, Wilson S, Helbig R, Hegde S, Aftenieva O, Zheng H, Liu C, Pilizota T, Garner EC, Amir A, Renner LD. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Front Microbiol 2021; 12:712007. [PMID: 34421870 PMCID: PMC8372035 DOI: 10.3389/fmicb.2021.712007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
Collapse
Affiliation(s)
- Felix Wong
- Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ralf Helbig
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olha Aftenieva
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Hai Zheng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| |
Collapse
|
25
|
Rahdar HA, Mahmoudi S, Bahador A, Ghiasvand F, Sadeghpour Heravi F, Feizabadi MM. Molecular identification and antibiotic resistance pattern of actinomycetes isolates among immunocompromised patients in Iran, emerging of new infections. Sci Rep 2021; 11:10745. [PMID: 34031507 PMCID: PMC8144606 DOI: 10.1038/s41598-021-90269-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent advancements in DNA-based approaches have led to the identification of uncommon and rare bacterial pathogens. In this study, by utilizing a DNA-based approach, a total of 1043 clinical specimens were processed for the identification of actinobacteria targeting the 16S rRNA and gyrB genes. Drug susceptibility testing was also conducted using micro-broth dilution and PCR. Two isolates of Nocardia flavorosea and Rhodococcus erythropolis were reported for the first time in Iran. Also, Nocardiopsis dassonvillei, Streptomyces olivaceus, and Streptomyces griseus were reported for the first time in Asia. Infections caused by Nocardia caishijiensis and Prauserella muralis have also been reported in this study. The first Asian case of pulmonary infection caused by Nocardia ignorata and the first global case of brain abscess caused by Nocardia ninae and Nocardia neocaledoniensis have been reported in this study. Overall 30 isolates belonging to 6 genera (Nocardia, Streptomyces, Rodoccoccus, Nocardiopsis, Rothia, and Prauserella) were detected in 30 patients. All 30 isolates were susceptible to amikacin and linezolid. Three isolates including Nocardia otitidiscaviarum (n = 2) and Nocardia flavorosea (n = 1) were resistant to trimethoprim-sulfamethoxazole which were the first trimethoprim-sulfamethoxazole resistant clinical actinomycetes in Iran. Isolation of rare species of actinomycetes particularly Nocardia spp. requires urgent action before they spread clinically particularly among immunocompromised patients.
Collapse
Affiliation(s)
- Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Ghiasvand
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mohammad Mehdi Feizabadi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Abstract
Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis.
Collapse
|
27
|
Ultee E, Zhong X, Shitut S, Briegel A, Claessen D. Formation of wall-less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen-limiting conditions. Mol Microbiol 2020; 115:1181-1190. [PMID: 33278050 PMCID: PMC8359286 DOI: 10.1111/mmi.14662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
The cell wall is considered an essential component for bacterial survival, providing structural support, and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall‐deficient S‐cells upon prolonged exposure to hyperosmotic stress. Here, we performed cryo‐electron tomography and live cell imaging to further characterize S‐cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S‐cell extrusion, and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S‐cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament‐like protein FilP. Furthermore, micro‐aerobic culturing promotes the formation of S‐cells in the wild type, but the limited oxygen still impedes S‐cell formation in the ΔfilP mutant. These results demonstrate that S‐cell formation is stimulated by oxygen‐limiting conditions and dependent on functional cytoskeleton remodeling.
Collapse
Affiliation(s)
- Eveline Ultee
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Xiaobo Zhong
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Shraddha Shitut
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
28
|
Shitut S, Bergman GÖ, Kros A, Rozen DE, Claessen D. Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms 2020; 8:microorganisms8121897. [PMID: 33265975 PMCID: PMC7760116 DOI: 10.3390/microorganisms8121897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous actinobacteria are widely used as microbial cell factories to produce valuable secondary metabolites, including the vast majority of clinically relevant antimicrobial compounds. Secondary metabolites are typically encoded by large biosynthetic gene clusters, which allow for a modular approach to generating diverse compounds through recombination. Protoplast fusion is a popular method for whole genome recombination that uses fusion of cells that are transiently wall-deficient. This process has been applied for both inter- and intraspecies recombination. An important limiting step in obtaining diverse recombinants from fused protoplasts is regeneration of the cell wall, because this forces the chromosomes from different parental lines to segregate, thereby preventing further recombination. Recently, several labs have gained insight into wall-deficient bacteria that have the ability to proliferate without their cell wall, known as L-forms. Unlike protoplasts, L-forms can stably maintain multiple chromosomes over many division cycles. Fusion of such L-forms would potentially allow cells to express genes from both parental genomes while also extending the time for recombination, both of which can contribute to an increased chemical diversity. Here, we present a perspective on how L-form fusion has the potential to become a platform for novel compound discovery and may thus help to overcome the antibiotic discovery void.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence: (S.S.); (D.C.)
| | - Güniz Özer Bergman
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Dennis Claessen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Correspondence: (S.S.); (D.C.)
| |
Collapse
|
29
|
Nath D, Ghangrekar MM. Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale. Sci Rep 2020; 10:17185. [PMID: 33057031 PMCID: PMC7560832 DOI: 10.1038/s41598-020-74092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Wastewater treatment coupled with electricity recovery in microbial fuel cell (MFC) prefer mixed anaerobic sludge as inoculum in anodic chamber than pure stain of electroactive bacteria (EAB), due to robustness and syntrophic association. Genetic modification is difficult to adopt for mixed sludge microbes for enhancing power production of MFC. Hence, we demonstrated use of eco-friendly plant secondary metabolites (PSM) with sub-lethal concentrations to enhance the rate of extracellular electron transfer between EAB and anode and validated it in both bench-scale as well as pilot-scale MFCs. The PSMs contain tannin, saponin and essential oils, which are having electron shuttling properties and their addition to microbes can cause alteration in cell morphology, electroactive behaviour and shifting in microbial population dynamics depending upon concentrations and types of PSM used. Improvement of 2.1-times and 3.8-times in power densities was observed in two different MFCs inoculated with Eucalyptus-extract pre-treated mixed anaerobic sludge and pure culture of Pseudomonas aeruginosa, respectively, as compared to respective control MFCs operated without adding Eucalyptus-extract to inoculum. When Eucalyptus-extract-dose was spiked to anodic chamber (125 l) of pilot-scale MFC, treating septage, the current production was dramatically improved. Thus, PSM-dosing to inoculum holds exciting promise for increasing electricity production of field-scale MFCs.
Collapse
Affiliation(s)
- Dibyojyoty Nath
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
30
|
Affiliation(s)
- Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeff Errington
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Pathogen Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
31
|
Simmons T, Styer AB, Pierroz G, Gonçalves AP, Pasricha R, Hazra AB, Bubner P, Coleman-Derr D. Drought Drives Spatial Variation in the Millet Root Microbiome. FRONTIERS IN PLANT SCIENCE 2020; 11:599. [PMID: 32547572 PMCID: PMC7270290 DOI: 10.3389/fpls.2020.00599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/20/2020] [Indexed: 05/29/2023]
Abstract
Efforts to boost crop yield and meet global food demands while striving to reach sustainability goals are hindered by the increasingly severe impacts of abiotic stress, such as drought. One strategy for alleviating drought stress in crops is to utilize root-associated bacteria, yet knowledge concerning the relationship between plant hosts and their microbiomes during drought remain under-studied. One broad pattern that has recently been reported in a variety of monocot and dicot species from both native and agricultural environments, is the enrichment of Actinobacteria within the drought-stressed root microbiome. In order to better understand the causes of this phenomenon, we performed a series of experiments in millet plants to explore the roles of drought severity, drought localization, and root development in provoking Actinobacteria enrichment within the root endosphere. Through 16S rRNA amplicon-based sequencing, we demonstrate that the degree of drought is correlated with levels of Actinobacterial enrichment in four species of millet. Additionally, we demonstrate that the observed drought-induced enrichment of Actinobacteria occurs along the length of the root, but the response is localized to portions of the root experiencing drought. Finally, we demonstrate that Actinobacteria are depleted in the dead root tissue of Japanese millet, suggesting saprophytic activity is not the main cause of observed shifts in drought-treated root microbiome structure. Collectively, these results help narrow the list of potential causes of drought-induced Actinobacterial enrichment in plant roots by showing that enrichment is dependent upon localized drought responses but not root developmental stage or root death.
Collapse
Affiliation(s)
- Tuesday Simmons
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Alexander B. Styer
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Grady Pierroz
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Antonio Pedro Gonçalves
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Ramji Pasricha
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Amrita B. Hazra
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia Bubner
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture–Agriculture Research Service, Albany, CA, United States
| |
Collapse
|
32
|
Ramijan K, Zhang Z, van Wezel GP, Claessen D. Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie van Leeuwenhoek 2020; 113:825-837. [PMID: 32060816 PMCID: PMC7188733 DOI: 10.1007/s10482-020-01393-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Filamentous Actinobacteria are multicellular bacteria with linear replicons. Kitasatospora viridifaciens DSM 40239 contains a linear 7.8 Mb chromosome and an autonomously replicating plasmid KVP1 of 1.7 Mb. Here we show that lysozyme-induced protoplast formation of the multinucleated mycelium of K. viridifaciens drives morphological diversity. Characterisation and sequencing of an individual revertant colony that had lost the ability to differentiate revealed that the strain had not only lost most of KVP1 but also carried deletions in the right arm of the chromosome. Strikingly, the deletion sites were preceded by insertion sequence elements, suggesting that the rearrangements may have been caused by replicative transposition and homologous recombination between both replicons. These data indicate that protoplast formation is a stressful process that can lead to profound genetic changes.
Collapse
Affiliation(s)
- Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Zheren Zhang
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
33
|
Fung TC, Vuong HE, Luna CD, Pronovost GN, Aleksandrova AA, Riley NG, Vavilina A, McGinn J, Rendon T, Forrest LR, Hsiao EY. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol 2019; 4:2064-2073. [PMID: 31477894 PMCID: PMC6879823 DOI: 10.1038/s41564-019-0540-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023]
Abstract
The gut microbiota regulates levels of serotonin (5-hydroxytryptamine (5-HT)) in the intestinal epithelium and lumen1-5. However, whether 5-HT plays a functional role in bacteria from the gut microbiota remains unknown. We demonstrate that elevating levels of intestinal lumenal 5-HT by oral supplementation or genetic deficiency in the host 5-HT transporter (SERT) increases the relative abundance of spore-forming members of the gut microbiota, which were previously reported to promote host 5-HT biosynthesis. Within this microbial community, we identify Turicibacter sanguinis as a gut bacterium that expresses a neurotransmitter sodium symporter-related protein with sequence and structural homology to mammalian SERT. T. sanguinis imports 5-HT through a mechanism that is inhibited by the selective 5-HT reuptake inhibitor fluoxetine. 5-HT reduces the expression of sporulation factors and membrane transporters in T. sanguinis, which is reversed by fluoxetine exposure. Treating T. sanguinis with 5-HT or fluoxetine modulates its competitive colonization in the gastrointestinal tract of antibiotic-treated mice. In addition, fluoxetine reduces the membership of T. sanguinis in the gut microbiota of conventionally colonized mice. Host association with T. sanguinis alters intestinal expression of multiple gene pathways, including those important for lipid and steroid metabolism, with corresponding reductions in host systemic triglyceride levels and inguinal adipocyte size. Together, these findings support the notion that select bacteria indigenous to the gut microbiota signal bidirectionally with the host serotonergic system to promote their fitness in the intestine.
Collapse
Affiliation(s)
- Thomas C. Fung
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: and
| | - Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher D.G. Luna
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Geoffrey N. Pronovost
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Antoniya A. Aleksandrova
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noah G. Riley
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia Vavilina
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Julianne McGinn
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tomiko Rendon
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lucy R. Forrest
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: and
| |
Collapse
|
34
|
Fröjd MJ, Flärdh K. Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress. Microbiology (Reading) 2019; 165:1295-1305. [DOI: 10.1099/mic.0.000836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Markus J. Fröjd
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | |
Collapse
|
35
|
Claessen D, Errington J. Cell Wall Deficiency as a Coping Strategy for Stress. Trends Microbiol 2019; 27:1025-1033. [PMID: 31420127 DOI: 10.1016/j.tim.2019.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
The cell wall is a surface layer located outside the cell membrane of almost all bacteria; it protects cells from environmental stresses and gives them their typical shape. The cell wall is highly conserved in bacteria and is the target for some of our best antibiotics. Surprisingly, some bacteria are able to shed their wall under the influence of stress, yielding cells that are cell-wall-deficient. Notably, wall-deficient cells are flexible and are able to maneuver through narrow spaces, insensitive to wall-targeting antibiotics, and capable of taking up and exchanging DNA. Moreover, given that wall-associated epitopes are often recognized by host defense systems, wall deficiency provides a plausible explanation for how some bacteria may hide in their host. In this review we focus on this paradoxical stress response, which provides cells with unique opportunities that are unavailable to walled cells.
Collapse
Affiliation(s)
- Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4AX, UK.
| |
Collapse
|
36
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
37
|
|