1
|
Rubin JB. Gender and sex interactions are intrinsic components of cancer phenotypes. Nat Rev Cancer 2025:10.1038/s41568-025-00829-4. [PMID: 40389544 DOI: 10.1038/s41568-025-00829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/21/2025]
Abstract
Sex is a significant determinant of cancer incidence and outcome. The effects of sexual differentiation on normal and cancer biology underly this epidemiology. The resultant sex differences in therapeutic target pathways and processes provide a foundation for developing more personalized cancer treatments. However, our efforts at personalization cannot stop there. Humans also have gender, and sex and gender are highly interactive in individuation. Thus, we will also need to consider how gender-sex interactions (GSI) affect cancer biology and clinical parameters such as the timing of diagnoses, clinical trial enrolment, and the completeness of efficacy and toxicity data. Ignoring the effects of GSI can compromise the quality of basic biological and clinical data and the conclusions drawn from them. This is not to say that GSI will always have a significant effect or any effect at all in every cancer study. Rather, it is to say that we know enough about GSI and human cancer to anticipate measurable differences when GSI are considered in research, enabling us to experimentally determine whether their effects are significant. Here, I delve deeply into GSI and cancer, as this approach to treatment personalization holds great promise to benefit all patients with cancer.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Paediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Charney E, Darity W, Hubbard L. How epigenetic inheritance fails to explain the Black-White health gap. Soc Sci Med 2025; 366:117697. [PMID: 39827685 DOI: 10.1016/j.socscimed.2025.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Slavery, legal segregation, and ongoing discrimination have exacted an unfathomable toll on the black population in the United States, particularly with respect to the impact on health outcomes. In recent years, various researchers and activists have suggested that racial disparities in the modern era can be attributed directly to the trauma of slavery, postulating that these unspeakable traumas led to epigenetic changes in slaves-changes that have since been passed down to subsequent generations. Investigating those claims in this paper, we comprise a review of previous literature that considers the potential for transgenerational epigenetic transmission of trauma in humans. However, we find that there is little evidence to indicate the presence of transgenerational epigenetic transmission of trauma in humans. We find no prior evidence that supports (or is relevant to) the notion that the black-white health gap stems from the inherited trauma of slavery. We conclude that, given the ongoing traumas black Americans are exposed to in modern America, it is much more likely that present-day racial health disparities are due to more direct and current mechanisms than transgenerational transmission of slavery-era trauma.
Collapse
Affiliation(s)
| | - William Darity
- Samuel DuBois Cook Center on Social Equity at Duke University, Durham, NC, USA.
| | - Lucas Hubbard
- Samuel DuBois Cook Center on Social Equity at Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Aljabali SM, Pai S, Teperino R. Paternal impact on the developmental programming of sexual dimorphism. Front Cell Dev Biol 2024; 12:1520783. [PMID: 39712575 PMCID: PMC11659275 DOI: 10.3389/fcell.2024.1520783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Sexual dimorphism involves distinct anatomical, physiological, behavioral, and developmental differences between males and females of the same species, influenced by factors prior to conception and during early development. These sex-specific traits contribute to varied phenotypes and individual disease risks within and across generations and understanding them is essential in mammalian studies. Hormones, sex chromosomes, and imprinted genes drive this dimorphism, with over half of quantitative traits in wildtype mice showing sex-based variation. This review focuses on the impact of paternal non-genetic factors on sexual dimorphism. We synthesize current research on how paternal health before conception affects offspring phenotypes in a sex-specific manner, examining mechanisms such as DNA methylation, paternally imprinted genes, sperm RNA, and seminal plasma. Additionally, we explore how paternal influences indirectly shape offspring through maternal behavior, uterine environment, and placental changes, affecting males and females differently. We propose mechanisms modulating sexual dimorphism during development, underscoring the need for sex-specific documentation in animal studies.
Collapse
Affiliation(s)
- Shefa’ M. Aljabali
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Shruta Pai
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
4
|
Villamor E, Cnattingius S. Grandmaternal body mass index in early pregnancy and risk of infant mortality in grandoffspring: a population-based multigeneration cohort study. Am J Clin Nutr 2024; 120:1156-1164. [PMID: 39475386 PMCID: PMC11600072 DOI: 10.1016/j.ajcnut.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Maternal obesity increases risk of infant mortality. Because obesity is highly inheritable, grandmaternal obesity could also play a role. However, it is unknown whether grandmaternal obesity is related to grandoffspring infant mortality risk. OBJECTIVES We investigated the associations of grandmaternal early pregnancy body mass index [BMI (in kg/m2)] and grandoffspring infant mortality risk. METHODS Using Swedish nationwide registers, we estimated infant mortality hazard ratios (HRs) by levels of maternal grandmaternal early pregnancy BMI among 315,461 singleton live-born grandoffspring. We examined whether the association was mediated through maternal body size. In a subset of 164,095 grandsoffspring we evaluated the role of paternal grandmaternal BMI. To explore whether factors shared within families explained these associations, we studied the relations of maternal or paternal full sisters' BMI and infant mortality. RESULTS Maternal grandmaternal overweight or obesity (BMI ≥ 25.0) was associated with increased grandoffspring infant mortality risk. Compared with the population median BMI (21.7), estimated adjusted hazard ratios [HRs (95% confidence interval [CI])] of grandoffspring mortality for BMI 25.0 and 30.0 were, respectively, 1.60 (1.14, 2.23) and 1.61 (1.13, 2.27). Maternal high birth weight-for-gestational age and early pregnancy obesity (BMI ≥ 30.0) were also associated with increased infant mortality risk. The association between maternal grandmaternal overweight or obesity and grandoffspring infant mortality was mostly (62%) mediated through maternal overweight or obesity. Maternal sisters' BMI was unrelated to infant mortality. Paternal grandmaternal obesity was associated with increased infant mortality risk (HR [95% CI] for BMI 30.0 compared with 21.7: 1.65 [1.02, 2.67]); associations with paternal sisters' BMI were not statistically significant. CONCLUSIONS Maternal grandmaternal overweight or obesity is associated with increased risk of grandoffspring infant mortality; factors shared within families may not play a major role. The association is mediated through the maternal early pregnancy BMI. Whether the association with paternal grandmaternal BMI is explained by shared familial factors warrants future confirmation.
Collapse
Affiliation(s)
- Eduardo Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States.
| | - Sven Cnattingius
- Section of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
7
|
Wu W, Liao H, Yang X. Education disrupts the intergenerational transmission of health disadvantage across three generations in China. PLoS One 2024; 19:e0302963. [PMID: 38848425 PMCID: PMC11161082 DOI: 10.1371/journal.pone.0302963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/17/2024] [Indexed: 06/09/2024] Open
Abstract
This article utilizes survey data from the China Family Panel Studies (CFPS) to examine whether grandparents' health disadvantage have both direct and indirect effects on the health disadvantage of their grandchildren, and whether the completion of compulsory education by parents disrupts these intergenerational transmissions in China. The findings suggest that grandparents' health disadvantage significantly increases the probability of grandchildren's health disadvantage with and without controlling parental health disadvantage and other characteristics. Moreover, the study identifies a disruptive influence of parental education on this transmission process. Rigorous robustness tests, including the use of the Compulsory Education Law as an instrumental variable to control for unobserved factors, validate these results. Mechanism analysis shows that parents completing compulsory education contribute to improving their nutritional balance and adopting healthy behaviors, attaining higher social status, earning higher income, which ultimately reduce the probability of health disadvantage for both themselves and their children. These findings highlight the persistent intergenerational transmission of health disparities within families and emphasize the importance of enhancing individuals' education levels to disrupt this transmission. By doing so, it may be possible to mitigate health inequalities and disparities across the population.
Collapse
Affiliation(s)
- Weijuan Wu
- School of Economics and Management, South China Normal University, Panyu District, Guangzhou City, Guangdong Province, China
| | - Haokai Liao
- College of Humanities and Arts, Heyuan Polytechnic, Yuancheng District, Heyuan City, Guangdong Province, China
| | - Xuelin Yang
- The School of Marxism, Jiangxi University of Technology, Gaoxin District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
8
|
Costa DL. Grandchildren's Longevity and Their Grandfathers' POW Trauma in the U.S. Civil War. Demography 2024; 61:337-361. [PMID: 38393987 PMCID: PMC11813633 DOI: 10.1215/00703370-11191183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
I document the transmission of a grandfather's net nutritional deprivation and psychosocial stress in young adulthood across multiple generations using the grandfather's ex-prisoner of war (ex-POW) status in the U.S. Civil War (1861-1865). Using a newly created dataset, I uncover an association between a grandfather's ex-POW status and the longevity after age 45 of his sons and male-line grandsons but not of his daughters, granddaughters, female-line grandsons, children-in-law, or grandchildren-in-law. Male-line grandsons lost roughly a year of life at age 45 (4% of remaining life expectancy) if descended from ex-POWs who suffered severe captivity conditions than if descended from non-POWs. If their grandfathers faced a less harsh captivity, male-line grandsons lost less than a year of life compared with those descended from non-POWs. I find that the grandfather's age at exposure and the grandson's education, as well as the son's and the grandson's poor late gestational conditions (proxied by season of birth), mediate this relationship. I rule out socioeconomic status, marriage and mortality selection, and cultural or psychological transmission from grandfathers to grandsons as explanations. I cannot rule out an epigenetic explanation.
Collapse
Affiliation(s)
- Dora L Costa
- Department of Economics, University of California, Los Angeles, Los Angeles, CA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| |
Collapse
|
9
|
Costa DL, Lewis C, Yetter N. Children and Grandchildren of Union Army Veterans: New Data Collections to Study the Persistence of Longevity and Socioeconomic Status Across Generations. HISTORICAL METHODS 2024; 56:223-239. [PMID: 38742179 PMCID: PMC11090407 DOI: 10.1080/01615440.2023.2301578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This paper introduces four new intergenerational and multigenerational datasets which follow both sons and daughters and which can be used to study the persistence of longevity, socioeconomic status, family structure, and geographic mobility across generations. The data follow the children of Black and White Union Army (US Civil War, 1861-5) veterans from birth to death, linking them to the available censuses. The White samples include an over-sample of children of ex-POWs. A separate collection links grandchildren of White Union Army veterans to their death records. The data were created with high quality manual linkage procedures utilizing a wide variety of records to establish links.
Collapse
|
10
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
11
|
Golding J, Tunstall H, Gregory S, Granell R, Dodd JW, Iles-Caven Y, Watkins S, Suderman M. A history of asthma may be associated with grandparents' exposures to stress and cigarette smoking. FRONTIERS IN TOXICOLOGY 2023; 5:1253442. [PMID: 37808180 PMCID: PMC10556739 DOI: 10.3389/ftox.2023.1253442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: Within human epidemiological studies, associations have been demonstrated between grandparental exposures during childhood and grandchildren's outcomes. A few studies have assessed whether asthma has ancestral associations with exposure to cigarette smoking, but results have been mixed so far. Material and methods: In this study we used four generations: (F0 great-grandparents, F1 grandparents, F2 parents, F3 study children) of the Avon Longitudinal Study of Parents and Children (ALSPAC) to determine whether there is evidence of associations between asthma in generations F2 or F3 and exposures to severe trauma in childhood and/or active cigarette smoking during the adolescence of grandmothers and grandfathers in generations F0 and F1 respectively, or of a history of a F0 or F1 grandmother smoking during pregnancy. Results: We have shown that: a) stress exemplified by the death of a F1 grandparent's parent during the grandparents' childhood was associated with increased risk of asthma in generation F3, especially if the grandparent involved was the paternal grandmother; b) if the grandparents of generations F0 or F1 smoked during adolescence (i.e. < 17 years), their grandchildren in generations F2 and F3 were more likely to have a history of asthma; c) paternal F1 grandmother's smoking in pregnancy was associated with her F3 grandchild's asthma at age 7; d) There were differences between the results for the grandsons and granddaughters of the paternal grandmother with exposure to smoking in adolescence and with smoking in pregnancy. e) The addition of all of the individual exposure variables to the different analyses often provided a considerable increase in goodness of fit compared with only adding demographic factors associated with asthma at P < 0.10 such as social class; this was particularly true when all four exposure variables were combined in one model, suggesting possible synergistic effects between them. Discussion: We have shown associations between all four types of exposure to the grandparents to be associated with asthma in the grandchildren, such that the results both depended on whether the male or female line was involved, and the sex of the grandchildren. It was notable that the paternal grandmother was particularly involved in many of the associations. We emphasize that these are exploratory analyses, that asthma diagnostic criteria likely changed over time and may not be consistent between generations, and that the results should be tested in other cohorts.
Collapse
Affiliation(s)
- Jean Golding
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly Tunstall
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Steve Gregory
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Raquel Granell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - James W. Dodd
- Academic Respiratory Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yasmin Iles-Caven
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sarah Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
13
|
Li B, Almquist YB, Liu C, Berg L. Disentangling the multigenerational transmissions of socioeconomic disadvantages and mental health problems by gender and across lineages: Findings from the Stockholm Birth Cohort Multigenerational Study. SSM Popul Health 2023; 22:101357. [PMID: 36846629 PMCID: PMC9947103 DOI: 10.1016/j.ssmph.2023.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
There is a paucity of research examining the patterning of socioeconomic disadvantages and mental health problems across multiple generations. The current study therefore aimed to investigate the interconnected transmissions of socioeconomic disadvantages and mental health problems from grandparents to grandchildren through the parents, as well as the extent to which these transmissions differ according to lineage (i.e., through matrilineal/patrilineal descent) and grandchild gender. Drawing on the Stockholm Birth Cohort Multigenerational Study, the sample included 21,416 unique lineages by grandchild gender centered around cohort members born in 1953 (parental generation) as well as their children (grandchild generation) and their parents (grandparental generation). Based on local and national register data, socioeconomic disadvantages were operationalized as low income, and mental health problems as psychiatric disorders. A series of path models based on structural equation modelling were applied to estimate the associations between low income and psychiatric disorders across generations and for each lineage-gender combination. We found a multigenerational transmission of low income through the patriline to grandchildren. Psychiatric disorders were transmitted through both the patriline and matriline, but only to grandsons. The patriline-grandson transmission of psychiatric disorder partially operated via low income of the fathers. Furthermore, grandparents' psychiatric disorders influenced their children's and grandchildren's income. We conclude that there is evidence of transmissions of socioeconomic disadvantages and mental health problems across three generations, although these transmissions differ by lineage and grandchild gender. Our findings further highlight that grandparents' mental health problems could cast a long shadow on their children's and grandchildren's socioeconomic outcomes, and that socioeconomic disadvantages in the intermediate generation may play an important role for the multigenerational transmission of mental health problems.
Collapse
Affiliation(s)
- Baojing Li
- Centre for Health Equity Studies (CHESS), Karolinska Institutet/Stockholm University, Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ylva B. Almquist
- Centre for Health Equity Studies (CHESS), Karolinska Institutet/Stockholm University, Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Can Liu
- Centre for Health Equity Studies (CHESS), Karolinska Institutet/Stockholm University, Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Lisa Berg
- Centre for Health Equity Studies (CHESS), Karolinska Institutet/Stockholm University, Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
14
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
da Cruz RS, Dominguez O, Chen E, Gonsiewski AK, Nasir A, Cruz MI, Zou X, Galli S, Makambi K, McCoy M, Schmidt MO, Jin L, Peran I, de Assis S. Environmentally Induced Sperm RNAs Transmit Cancer Susceptibility to Offspring in a Mouse Model. RESEARCH SQUARE 2023:rs.3.rs-2507391. [PMID: 36798383 PMCID: PMC9934767 DOI: 10.21203/rs.3.rs-2507391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
DNA sequence accounts for the majority of disease heritability, including cancer. Yet, not all familial cancer cases can be explained by genetic factors. It is becoming clear that environmentally induced epigenetic inheritance occurs and that the progeny's traits can be shaped by parental environmental experiences. In humans, epidemiological studies have implicated environmental toxicants, such as the pesticide DDT, in intergenerational cancer development, including breast and childhood tumors. Here, we show that the female progeny of males exposed to DDT in the pre-conception period have higher susceptibility to developing aggressive tumors in mouse models of breast cancer. Sperm of DDT-exposed males exhibited distinct patterns of small non-coding RNAs, with an increase in miRNAs and a specific surge in miRNA-10b levels. Remarkably, embryonic injection of the entire sperm RNA load of DDT-exposed males, or synthetic miRNA-10b, recapitulated the tumor phenotypes observed in DDT offspring. Mechanistically, miR-10b injection altered the transcriptional profile in early embryos with enrichment of genes associated with cell differentiation, tissue and immune system development. In adult DDT-derived progeny, transcriptional and protein analysis of mammary tumors revealed alterations in stromal and in immune system compartments. Our findings reveal a causal role for sperm RNAs in environmentally induced inheritance of cancer predisposition and, if confirmed in humans, this could help partially explain some of the "missing heritability" of breast, and other, malignancies.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Odalys Dominguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexandra K Gonsiewski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Apsra Nasir
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xiaojun Zou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Susana Galli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Biostatistics, Bioinformatics, & Biomathematics, Georgetown University, Washington, DC, USA
| | - Matthew McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Marcel O Schmidt
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
16
|
Golding J, Gregory S, Northstone K, Pembrey M, Ellis G, Watkins S, Iles-Caven Y, Suderman M. Possible transgenerational associations between grandparents’ childhood exposures and religious belief in their granddaughters: a longitudinal cohort study. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18049.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Research in non-genetic inheritance indicates that grandparents’ smoking habits and their childhood experiences of trauma can influence the physical and psychological attributes of their grandchildren. This was particularly apparent for outcomes such as autism and obesity where the population prevalence changed over time. Other factors which have changed temporally include religious and spiritual beliefs (RSBs) which have been declining in Western populations. Methods: We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to explore whether grandparental exposures were associated with the religious and/or spiritual beliefs of their grandchildren as measured with a positive response to the question “Do you believe in God or some divine power?” . In line with other inter/trans-generational human studies we hypothesised that: (H1) grandparents’ childhood exposures to cigarette smoking (whether in utero or by active smoking) and/or exposure to traumatic events during childhood will be associated with their grandchild’s RSB; (H2) associations will differ between maternal and paternal lines of inheritance; (H3) relationships will vary with age at grandparental exposure, and (H4) associations will differ between grandsons and granddaughters. Results: We found significant associations between the grandchild’s RSB and both the grandparents’ smoking and their childhood trauma histories (H1 supported). These associations were mainly found down the maternal line (H2 possibly supported) and results varied with age of exposure of the grandparents; being strongest for in utero exposure of cigarette smoke and for pre-puberty exposure of traumatic events (H3 supported), and that granddaughters were more affected than grandsons (H4 supported). Conclusions: We hope that these results will motivate collection of similar data to further evaluate these questions in other populations, including a possible role for biological mechanisms.
Collapse
|
17
|
Food abundance in men before puberty predicts a range of cancers in grandsons. Nat Commun 2022; 13:7507. [PMID: 36473854 PMCID: PMC9726939 DOI: 10.1038/s41467-022-35217-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Nutritional conditions early in human life may influence phenotypic characteristics in later generations. A male-line transgenerational pathway, triggered by the early environment, has been postulated with support from animal and a small number of human studies. Here we analyse individuals born in Uppsala Sweden 1915-29 with linked data from their children and parents, which enables us to explore the hypothesis that pre-pubertal food abundance may trigger a transgenerational effect on cancer events. We used cancer registry and cause-of-death data to analyse 3422 cancer events in grandchildren (G2) by grandparental (G0) food access. We show that variation in harvests and food access in G0 predicts cancer occurrence in G2 in a specific way: abundance among paternal grandfathers, but not any other grandparent, predicts cancer occurrence in grandsons but not in granddaughters. This male-line response is observed for several groups of cancers, suggesting a general susceptibility, possibly acquired in early embryonic development. We observed no transgenerational influence in the middle generation.
Collapse
|
18
|
Grandmaternal smoking during pregnancy is associated with differential DNA methylation in peripheral blood of their grandchildren. Eur J Hum Genet 2022; 30:1373-1379. [PMID: 35347270 PMCID: PMC9712525 DOI: 10.1038/s41431-022-01081-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 01/29/2023] Open
Abstract
The idea that information can be transmitted to subsequent generation(s) by epigenetic means has been studied for decades but remains controversial in humans. Epidemiological studies have established that grandparental exposures are associated with health outcomes in their grandchildren, often with sex-specific effects; however, the mechanism of transmission is still unclear. We conducted Epigenome Wide Association Studies (EWAS) to test whether grandmaternal smoking during pregnancy is associated with altered DNA methylation (DNAm) in peripheral blood from their adolescent grandchildren. We used data from a birth cohort, with discovery and replication datasets of up to 1225 and 708 individuals (respectively, for the maternal line), aged 15-17 years, and tested replication in the same individuals at birth and 7 years. We show for the first time that DNAm at a small number of loci in cord blood is associated with grandmaternal smoking in humans. In adolescents we see suggestive associations in regions of the genome which we hypothesised a priori could be involved in transgenerational transmission - we observe sex-specific associations at two sites on the X chromosome and one in an imprinting control region. All are within transcription factor binding sites (TFBSs), and we observe enrichment for TFBS among the CpG sites with the strongest associations; however, there is limited evidence that the associations we see replicate between timepoints. The implication of this work is that effects of smoking during pregnancy may induce DNAm changes in later generations and that these changes are often sex-specific, in line with epidemiological associations.
Collapse
|
19
|
Boscardin C, Manuella F, Mansuy IM. Paternal transmission of behavioural and metabolic traits induced by postnatal stress to the 5th generation in mice. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac024. [PMID: 36518875 PMCID: PMC9730319 DOI: 10.1093/eep/dvac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Life experiences and environmental conditions in childhood can change the physiology and behaviour of exposed individuals and, in some cases, of their offspring. In rodent models, stress/trauma, poor diet, and endocrine disruptors in a parent have been shown to cause phenotypes in the direct progeny, suggesting intergenerational inheritance. A few models also examined transmission to further offspring and suggested transgenerational inheritance, but such multigenerational inheritance is not well characterized. Our previous work on a mouse model of early postnatal stress showed that behaviour and metabolism are altered in the offspring of exposed males up to the 4th generation in the patriline and up to the 2nd generation in the matriline. The present study examined if symptoms can be transmitted beyond the 4th generation in the patriline. Analyses of the 5th and 6th generations of mice revealed that altered risk-taking and glucose regulation caused by postnatal stress are still manifested in the 5th generation but are attenuated in the 6th generation. Some of the symptoms are expressed in both males and females, but some are sex-dependent and sometimes opposite. These results indicate that postnatal trauma can affect behaviour and metabolism over many generations, suggesting epigenetic mechanisms of transmission.
Collapse
Affiliation(s)
- Chiara Boscardin
- Laboratory of Neuroepigenetics, Brain Research Institute, Faculty of Medicine of the University Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology of ETH Zürich, Centre for Neuroscience Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute, Faculty of Medicine of the University Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology of ETH Zürich, Centre for Neuroscience Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Isabelle M Mansuy
- *Correspondence address. Laboratory of Neuroepigenetics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland. Tel: +41 44 6353360; Fax: +41 44 635 33 03; E-mail:
| |
Collapse
|
20
|
Michońska I, Łuszczki E, Zielińska M, Oleksy Ł, Stolarczyk A, Dereń K. Nutritional Programming: History, Hypotheses, and the Role of Prenatal Factors in the Prevention of Metabolic Diseases-A Narrative Review. Nutrients 2022; 14:4422. [PMID: 36297106 PMCID: PMC9607048 DOI: 10.3390/nu14204422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Childhood obesity and the numerous lifestyle diseases associated with it are undoubtedly among the key problems in modern medicine and public health. However, this problem concerns not only the present or immediate future, but also the longer term. Adult health is fundamentally shaped in the first years of life and in the fetal period. The preconceptual period, which is responsible for the proper preparation of the internal environment for the life and development of the fetus during pregnancy, is also significant. A special role in describing the phenomenon of conditioning the metabolism of the new human being is now attributed to the theory of nutritional programming. Research in this area was pioneered by David Barker, who put forward the theory of the "stunted phenotype" and described the relationship between a child's birth weight, which is largely a consequence of the mother's feeding behaviour, and diseases such as ischaemic heart disease, type 2 diabetes (T2D), dyslipidemia, or high blood pressure. This narrative review aims to provide an overview of the history, theory, and prenatal mechanisms involved in nutritional programming and its relationship to childhood obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Izabela Michońska
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Magdalena Zielińska
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Łukasz Oleksy
- Faculty of Health Sciences, Department of Physiotherapy, Jagiellonian University Medical College Krakow, 31-008 Krakow, Poland
| | - Artur Stolarczyk
- Orthopedic and Rehabilitation Department, Medical Faculty, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
21
|
Sperm-inherited H3K27me3 epialleles are transmitted transgenerationally in cis. Proc Natl Acad Sci U S A 2022; 119:e2209471119. [PMID: 36161922 PMCID: PMC9546627 DOI: 10.1073/pnas.2209471119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood. Here, we utilized a model in which Caenorhabditis elegans sperm and oocyte alleles were inherited in different states of the repressive mark H3K27me3. This resulted in the alleles achieving different transcriptional states within the nuclei of offspring. Using this model, we showed that sperm alleles inherited without H3K27me3 were sensitive to up-regulation in offspring somatic and germline tissues, and tissue context determined which genes were up-regulated. We found that the subset of sperm alleles that were up-regulated in offspring germlines retained the H3K27me3(-) state and were transmitted to grandoffspring as H3K27me3(-) and up-regulated epialleles, demonstrating that H3K27me3 can serve as a transgenerational epigenetic carrier in C. elegans.
Collapse
|
22
|
Golding J, Gregory S, Northstone K, Pembrey M, Ellis G, Watkins S, Iles-Caven Y, Suderman M. Possible transgenerational associations between grandparents’ childhood exposures and religious belief in their granddaughters: a longitudinal cohort study. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.18049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Research in non-genetic inheritance indicates that grandparents’ smoking habits and their childhood experiences of trauma can influence the physical and psychological attributes of their grandchildren. This was particularly apparent for outcomes such as autism and obesity where the population prevalence changed over time. Other factors which have changed temporally include religious and spiritual beliefs (RSBs) which have been declining in Western populations. Methods: We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to explore whether grandparental exposures were associated with the religious and/or spiritual beliefs of their grandchildren. In line with other inter/trans-generational human studies we predicted that: (P1) grandparents’ childhood exposures to cigarette smoking (whether in utero or by active smoking) and/or exposure to traumatic events during childhood will be associated with their grandchild’s RSB; (P2) associations will differ between maternal and paternal lines of inheritance; (P3) relationships will vary with age at grandparental exposure, and (P4) associations will differ between grandsons and granddaughters. Results: We found significant associations between the grandchild’s RSB and both the grandparents’ smoking and their childhood trauma histories (P1 supported). These associations were mainly found down the maternal line (P2 possibly supported) and results varied with age of exposure of the grandparents; being strongest for in utero exposure of cigarette smoke and for pre-puberty exposure of traumatic events (P3 supported), and that granddaughters were more affected than grandsons (P4 supported). Conclusions: We hope that these results will motivate collection of similar data to further evaluate these questions in other populations, including a possible role for biological mechanisms.
Collapse
|
23
|
Molderings GJ. Systemic mast cell activation disease variants and certain genetically determined comorbidities may be consequences of a common underlying epigenetic disease. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Nicolella HD, de Assis S. Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. Int J Mol Sci 2022; 23:4671. [PMID: 35563062 PMCID: PMC9102839 DOI: 10.3390/ijms23094671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Parental environmental experiences affect disease susceptibility in the progeny through epigenetic inheritance. Pesticides are substances or mixtures of chemicals-some of which are persistent environmental pollutants-that are used to control pests. This review explores the evidence linking parental exposure to pesticides and endocrine disruptors to intergenerational and transgenerational susceptibility of cancer in population studies and animal models. We also discuss the impact of pesticides and other endocrine disruptors on the germline epigenome as well as the emerging evidence for how epigenetic information is transmitted between generations. Finally, we discuss the importance of this mode of inheritance in the context of cancer prevention and the challenges ahead.
Collapse
Affiliation(s)
- Heloiza Diniz Nicolella
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Sonia de Assis
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|
25
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
26
|
Abstract
Purpose of Review To review the effects of early-life, preconception, and prior-generation exposures on reproductive health in women. Recent Findings Women’s early-life factors can affect reproductive health by contributing to health status or exposure level on entering pregnancy. Alternately, they can have permanent effects, regardless of later-life experience. Nutrition, social class, parental smoking, other adverse childhood experiences, environmental pollutants, infectious agents, and racism and discrimination all affect reproductive health, even if experienced in childhood or in utero. Possible transgenerational effects are now being investigated through three- or more-generation studies. These effects occur with mechanisms that may include direct exposure, behavioral, endocrine, inflammatory, and epigenetic pathways. Summary Pregnancy is increasingly understood in a life course perspective, but rigorously testing hypotheses on early-life effects is still difficult. In order to improve the health outcomes of all women, we need to expand our toolkit of methods and theory. Supplementary Information The online version contains supplementary material available at 10.1007/s40471-021-00279-0.
Collapse
|
27
|
Svanes C, Bertelsen RJ, Accordini S, Holloway JW, Júlíusson P, Boateng E, Krauss-Etchmann S, Schlünssen V, Gómez-Real F, Skulstad SM. Exposures during the prepuberty period and future offspring's health: evidence from human cohort studies†. Biol Reprod 2021; 105:667-680. [PMID: 34416759 PMCID: PMC8444705 DOI: 10.1093/biolre/ioab158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that exposures in prepuberty, particularly in fathers-to-be, may impact the phenotype of future offspring. Analyses of the RHINESSA cohort find that offspring of father’s exposed to tobacco smoking or overweight that started in prepuberty demonstrate poorer respiratory health in terms of more asthma and lower lung function. A role of prepuberty onset smoking for offspring fat mass is suggested in the RHINESSA and ALSPAC cohorts, and historic studies suggest that ancestral nutrition during prepuberty plays a role for grand-offspring’s health and morbidity. Support for causal relationships between ancestral exposures and (grand-)offspring’s health in humans has been enhanced by advancements in statistical analyses that optimize the gain while accounting for the many complexities and deficiencies in human multigeneration data. The biological mechanisms underlying such observations have been explored in experimental models. A role of sperm small RNA in the transmission of paternal exposures to offspring phenotypes has been established, and chemical exposures and overweight have been shown to influence epigenetic programming in germ cells. For example, exposure of adolescent male mice to smoking led to differences in offspring weight and alterations in small RNAs in the spermatozoa of the exposed fathers. It is plausible that male prepuberty may be a time window of particular susceptibility, given the extensive epigenetic reprogramming taking place in the spermatocyte precursors at this age. In conclusion, epidemiological studies in humans, mechanistic research, and biological plausibility, all support the notion that exposures in the prepuberty of males may influence the phenotype of future offspring.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Oral Health Centre of Expertise Western Norway, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pétur Júlíusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Register Research and Development, National Institute of Public Health, Bergen, Norway
| | - Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Susanne Krauss-Etchmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Vivi Schlünssen
- Department of Public Health-Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
28
|
Paternal environmental exposure-induced spermatozoal small noncoding RNA alteration meditates the intergenerational epigenetic inheritance of multiple diseases. Front Med 2021; 16:176-184. [PMID: 34515940 DOI: 10.1007/s11684-021-0885-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Studies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.
Collapse
|
29
|
Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients 2021; 13:nu13082818. [PMID: 34444978 PMCID: PMC8400857 DOI: 10.3390/nu13082818] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
It is well established that the maternal diet during the periconceptional period affects the progeny’s health. A growing body of evidence suggests that the paternal diet also influences disease onset in offspring. For many years, sperm was considered only to contribute half of the progeny’s genome. It now appears that it also plays a crucial role in health and disease in offspring’s adult life. The nutritional status and environmental exposure of fathers during their childhood and/or the periconceptional period have significant transgenerational consequences. This review aims to describe the effects of various human and rodent paternal feeding patterns on progeny’s metabolism and health, including fasting or intermittent fasting, low-protein and folic acid deficient food, and overnutrition in high-fat and high-sugar diets. The impact on pregnancy outcome, metabolic pathways, and chronic disease onset will be described. The biological and epigenetic mechanisms underlying the transmission from fathers to their progeny will be discussed. All these data provide evidence of the impact of paternal nutrition on progeny health which could lead to preventive diet recommendations for future fathers.
Collapse
|
30
|
Karlsson O, Svanholm S, Eriksson A, Chidiac J, Eriksson J, Jernerén F, Berg C. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145771. [PMID: 33621874 PMCID: PMC7615066 DOI: 10.1016/j.scitotenv.2021.145771] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Underlying drivers of species extinctions need to be better understood for effective conservation of biodiversity. Nearly half of all amphibian species are at risk of extinction, and pollution may be a significant threat as seasonal high-level agrochemical use overlaps with critical windows of larval development. The potential of environmental chemicals to reduce the fitness of future generations may have profound ecological and evolutionary implications. This study characterized effects of male developmental exposure to environmentally relevant concentrations of the anti-androgenic pesticide linuron over two generations of offspring in Xenopus tropicalis frogs. The adult male offspring of pesticide-exposed fathers (F1) showed reduced body size, decreased fertility, and signs of endocrine system disruption. Impacts were further propagated to the grand-offspring (F2), providing evidence of transgenerational effects in amphibians. The adult F2 males demonstrated increased weight and fat body palmitoleic-to-palmitic acid ratio, and decreased plasma glucose levels. The study provides important cross-species evidence of paternal epigenetic inheritance and pollutant-induced transgenerational toxicity, supporting a causal and complex role of environmental contamination in the ongoing species extinctions, particularly of amphibians.
Collapse
Affiliation(s)
- Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm 114 18, Sweden.
| | - Sofie Svanholm
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Andreas Eriksson
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joseph Chidiac
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Johanna Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
31
|
Karlsson O, Rocklöv J, Lehoux AP, Bergquist J, Rutgersson A, Blunt MJ, Birnbaum LS. The human exposome and health in the Anthropocene. Int J Epidemiol 2021; 50:378-389. [PMID: 33349868 PMCID: PMC8128460 DOI: 10.1093/ije/dyaa231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alizée P Lehoux
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Anna Rutgersson
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Martin J Blunt
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences, National Toxicology Program, Durham, NC, USA
| |
Collapse
|
32
|
Systemic alterations play a dominant role in epigenetic predisposition to breast cancer in offspring of obese fathers and is transmitted to a second generation. Sci Rep 2021; 11:7317. [PMID: 33795711 PMCID: PMC8016877 DOI: 10.1038/s41598-021-86548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations. In this study, we show that mammary glands from F1 control (CO) female offspring exhibit enhanced growth when transplanted into OID females compared to CO mammary glands transplanted into CO females. Similarly, carcinogen-induced mammary tumors from F1 CO female offspring transplanted into OID females has a higher proliferation/apoptosis rate. Further, we show that granddaughters (F2) from the OID grand-paternal germline have accelerated tumor growth compared to CO granddaughters. This between-generation transmission of cancer predisposition is associated with changes in sperm tRNA fragments in OID males. Our findings indicate that systemic and mammary stromal alterations are significant contributors to programming of mammary development and likely cancer predisposition in OID daughters. Our data also show that breast cancer predisposition is transmitted to subsequent generations and may explain some familial cancers, if confirmed in humans.
Collapse
|
33
|
Hossin MZ, Falkstedt D, Allebeck P, Mishra G, Koupil I. Early life programming of adult ischemic heart disease within and across generations: The role of the socioeconomic context. Soc Sci Med 2021; 275:113811. [PMID: 33713928 DOI: 10.1016/j.socscimed.2021.113811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The developmental origins of ischemic heart disease (IHD) have been widely documented but little is known about their persistence across more than one generation. This study aimed to investigate whether the effects of early life disadvantages on adult IHD have changed between generations and are mediated by adult socioeconomic circumstances, and further explore the transgenerational effects of grandparental and parental exposures to disadvantaged circumstances on adult offspring's IHD. METHODS We used register-based data from the Uppsala Multigenerational Study, Sweden. The study populations were the parents born 1915-1929 and their offspring born 1932-1972 with available obstetric data. The offspring were further linked to grandparents who had their socioeconomic and demographic data recorded. The outcome was incident IHD assessed at ages 32-75 during a follow-up from January 1, 1964 till December 31, 2008. The exposures included birthweight standardized-for-gestational age, ponderal index, gestational length, and parental socioeconomic position (SEP). Education and income were analyzed as mediators. Potential transgenerational associations were explored by linking offspring IHD to parents' standardized birthweight and gestational length, grandparental SEP, and to grandmothers' age, parity, and marital status at parental birth. All associations were examined in Cox proportional hazard regression models. RESULTS Lower standardized birthweight and lower parental SEP were found to be associated with higher IHD rates in both generations, with no evidence of effect modification by generation. Education and income did not mediate the association between standardized birthweight and IHD. Disadvantaged grandparental SEP, younger and older childbearing ages of grandmothers, and paternal preterm birth affected offspring's IHD independent of parental education, income, or IHD history. CONCLUSIONS The findings point to similar magnitudes of IHD inequalities by early life disadvantages across two historical periods and the existence of transgenerational effects on IHD. Epigenetic dysregulation involving the germline is a plausible candidate mechanism underlying the transgenerational associations that warrant further research.
Collapse
Affiliation(s)
| | - Daniel Falkstedt
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Peter Allebeck
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Gita Mishra
- School of Public Health, The University of Queensland, Herston, Australia.
| | - Ilona Koupil
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden; Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
34
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
35
|
Jawaid A, Jehle KL, Mansuy IM. Impact of Parental Exposure on Offspring Health in Humans. Trends Genet 2020; 37:373-388. [PMID: 33189388 DOI: 10.1016/j.tig.2020.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The possibility that parental life experiences and environmental exposures influence mental and physical health across generations is an important concept in biology and medicine. Evidence from animal models has established the existence of a non-genetic mode of inheritance. This form of heredity involves transmission of the effects of parental exposure to the offspring through epigenetic changes in the germline. Studying the mechanisms of epigenetic inheritance in humans is challenging because it is difficult to obtain multigeneration cohorts, to collect reproductive cells in exposed parents, and to exclude psychosocial and cultural confounders. Nonetheless, epidemiological studies in humans exposed to famine, stress/trauma, or toxicants have provided evidence that parental exposure can impact the health of descendants, in some cases, across several generations. A few studies have also started to reveal epigenetic changes in the periphery and sperm after certain exposures. This article reviews these studies and evaluates the current evidence for the potential contribution of epigenetic factors to heredity in humans. The challenges and limitations of this fundamental biological process, its implications, and its societal relevance are also discussed.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, Zürich, Switzerland; Institute for Neuroscience, Department of Health Science and Technology of the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland; BRAINCITY EMBL-Nencki Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland; Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | | | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, Zürich, Switzerland; Institute for Neuroscience, Department of Health Science and Technology of the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
| |
Collapse
|
36
|
|
37
|
Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenetics 2020; 12:136. [PMID: 32917273 PMCID: PMC7488552 DOI: 10.1186/s13148-020-00929-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly apparent that certain phenotypes are inherited across generations independent of the information contained in the DNA sequence, by factors in germ cells that remain largely uncharacterized. As evidence for germline non-genetic inheritance of phenotypes and diseases continues to grow in model organisms, there are fewer reports of this phenomenon in humans, due to a variety of complications in evaluating this mechanism of inheritance in humans. This review summarizes the evidence for germline-based non-genetic inheritance in humans, as well as the significant challenges and important caveats that must be considered when evaluating this process in human populations. Most reports of this process evaluate the association of a lifetime exposure in ancestors with changes in DNA methylation or small RNA expression in germ cells, as well as the association between ancestral experiences and the inheritance of a phenotype in descendants, down to great-grandchildren in some cases. Collectively, these studies provide evidence that phenotypes can be inherited in a DNA-independent manner; the extent to which this process contributes to disease development, as well as the cellular and molecular regulation of this process, remain largely undefined.
Collapse
Affiliation(s)
- Liana Senaldi
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Matthew Smith-Raska
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Golding J, Gregory S, Matthews S, Smith D, Suarez-Perez A, Bowring C, Iles Caven Y, Birmingham K, Pembrey M, Suderman M, Northstone K. Ancestral childhood environmental exposures occurring to the grandparents and great-grandparents of the ALSPAC study children. Wellcome Open Res 2020; 5:207. [PMID: 33043146 PMCID: PMC7527864 DOI: 10.12688/wellcomeopenres.16257.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Cohort studies tend to be designed to look forward from the time of enrolment of the participants, but there is considerable evidence that the previous generations have a particular relevance not only in the genes that they have passed on, their cultural beliefs and attitudes, but also in the ways in which previous environmental exposures may have had non-genetic impacts, particularly for exposures during fetal life or in childhood. Methods: To investigate such non-genetic inheritance, we have collected information on the childhoods of the ancestors of the cohort of births comprising the original Avon Longitudinal Study of Parents and Children (ALSPAC). The data collected on the study child's grandparents and great grandparents comprise: (a) countries of birth; (b) years of birth; (c) age at onset of smoking; (d) whether the ancestral mothers smoked during pregnancy; (e) social class of the household; (f) information on 19 potentially traumatic situations in their childhoods such as death of a parent, being taken into care, not having enough to eat, or being in a war situation; (g) causes of death for those ancestors who had died. The ages at which the individual experienced the traumatic situations distinguished between ages <6; 6-11, and 12-16 years. The numbers of ancestors on which data were obtained varied from 1128 paternal great-grandfathers to 4122 maternal great grandmothers. These ancestral data will be available for analysis to bona fide researchers on application to the ALSPAC Executive Committee.
Collapse
Affiliation(s)
- Jean Golding
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Steven Gregory
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | | | - Claire Bowring
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Yasmin Iles Caven
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Karen Birmingham
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Marcus Pembrey
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Matthew Suderman
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Kate Northstone
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
39
|
Guo T, Luo F, Lin Q. You are affected by what your parents eat: Diet, epigenetics, transgeneration and intergeneration. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proc Natl Acad Sci U S A 2020; 117:13637-13646. [PMID: 32482879 DOI: 10.1073/pnas.1920343117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) that direct animal embryogenesis must respond to varying environmental and physiological conditions to ensure robust construction of organ systems. While GRNs are evolutionarily modified by natural genomic variation, the roles of epigenetic processes in shaping plasticity of GRN architecture are not well understood. The endoderm GRN in Caenorhabditis elegans is initiated by the maternally supplied SKN-1/Nrf2 bZIP transcription factor; however, the requirement for SKN-1 in endoderm specification varies widely among distinct C. elegans wild isotypes, owing to rapid developmental system drift driven by accumulation of cryptic genetic variants. We report here that heritable epigenetic factors that are stimulated by transient developmental diapause also underlie cryptic variation in the requirement for SKN-1 in endoderm development. This epigenetic memory is inherited from the maternal germline, apparently through a nuclear, rather than cytoplasmic, signal, resulting in a parent-of-origin effect (POE), in which the phenotype of the progeny resembles that of the maternal founder. The occurrence and persistence of POE varies between different parental pairs, perduring for at least 10 generations in one pair. This long-perduring POE requires piwi-interacting RNA (piRNA) function and the germline nuclear RNA interference (RNAi) pathway, as well as MET-2 and SET-32, which direct histone H3K9 trimethylation and drive heritable epigenetic modification. Such nongenetic cryptic variation may provide a resource of additional phenotypic diversity through which adaptation may facilitate evolutionary changes and shape developmental regulatory systems.
Collapse
|
41
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
42
|
Chan JC, Morgan CP, Adrian Leu N, Shetty A, Cisse YM, Nugent BM, Morrison KE, Jašarević E, Huang W, Kanyuch N, Rodgers AB, Bhanu NV, Berger DS, Garcia BA, Ament S, Kane M, Neill Epperson C, Bale TL. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat Commun 2020; 11:1499. [PMID: 32198406 PMCID: PMC7083921 DOI: 10.1038/s41467-020-15305-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a unique mode of intercellular communication capable of incredible specificity in transmitting signals involved in cellular function, including germ cell maturation. Spermatogenesis occurs in the testes, behind a protective barrier to ensure safeguarding of germline DNA from environmental insults. Following DNA compaction, further sperm maturation occurs in the epididymis. Here, we report reproductive tract EVs transmit information regarding stress in the paternal environment to sperm, potentially altering fetal development. Using intracytoplasmic sperm injection, we found that sperm incubated with EVs collected from stress-treated epididymal epithelial cells produced offspring with altered neurodevelopment and adult stress reactivity. Proteomic and transcriptomic assessment of these EVs showed dramatic changes in protein and miRNA content long after stress treatment had ended, supporting a lasting programmatic change in response to chronic stress. Thus, EVs as a normal process in sperm maturation, can also perform roles in intergenerational transmission of paternal environmental experience.
Collapse
Affiliation(s)
- Jennifer C Chan
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher P Morgan
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yasmine M Cisse
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bridget M Nugent
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Eldin Jašarević
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Science, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Nickole Kanyuch
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ali B Rodgers
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dara S Berger
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Maureen Kane
- Department of Pharmaceutical Science, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - C Neill Epperson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
43
|
Costa DL, Yetter N, DeSomer H. Wartime health shocks and the postwar socioeconomic status and mortality of union army veterans and their children. JOURNAL OF HEALTH ECONOMICS 2020; 70:102281. [PMID: 31918029 PMCID: PMC7096284 DOI: 10.1016/j.jhealeco.2019.102281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
We investigate when and how health shocks reverberate across the life cycle and down to descendants in a manual labor economy by examining the association of war wounds with the socioeconomic status and older age mortality of US Civil War (1861-5) veterans and of their adult children. Younger veterans who had been severely wounded in the war left the farm sector, becoming laborers. Consistent with human capital and job matching models, older severely wounded men were unlikely to switch sectors and their wealth declined by 37-46%. War wounds were correlated with children's socioeconomic and mortality outcomes in ways dependent on sex and paternal age group.
Collapse
Affiliation(s)
- Dora L Costa
- UCLA Department of Economics, 9272 Bunche Hall, Los Angeles, CA 90095-1477, United States; National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138, United States.
| | - Noelle Yetter
- National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138, United States.
| | - Heather DeSomer
- National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138, United States.
| |
Collapse
|
44
|
Hall A, Northstone K, Iles-Caven Y, Ellis G, Gregory S, Golding J, Pembrey M. Intolerance of loud sounds in childhood: Is there an intergenerational association with grandmaternal smoking in pregnancy? PLoS One 2020; 15:e0229323. [PMID: 32092095 PMCID: PMC7039668 DOI: 10.1371/journal.pone.0229323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
Recent research using the Avon Longitudinal Study of Parents and Children (ALSPAC) demonstrated an association between maternal grandmother smoking in pregnancy and the autistic traits of impaired social communication and repetitive behaviour in granddaughters but not grandsons, but of paternal grandmother smoking and early development of myopia in the grandchild. Here we investigate whether grandmaternal smoking in pregnancy is associated with intolerance to loud sounds. ALSPAC collected information during the index pregnancy from the study parents on the smoking habits, social and other features of their own parents. Maternal report when the child was aged 6 and 13 included hating loud sounds; at age 11 the child was tested for volume preference for listening to music through headphones. Statistical analysis compared results for grandchildren in relation to whether a parent had been exposed in utero to maternal smoking, adjusted for their grandparents' social and demographic attributes. We hypothesised that there would be sex differences in the effects of grandmaternal prenatal smoking, based on previous intergenerational studies. For 6-year-old children maternal report of intolerance to loud noise was more likely in grandsons if the maternal grandmother had smoked [adjusted odds ratio (AOR) 1.27; 95% confidence interval (CI) 1.03,1.56; P = 0.025], but less likely in girls [AOR 0.82; 95%CI 0.63,1.07] Pinteraction <0.05. If the paternal grandmother had smoked the grandchildren were less likely to be intolerant, especially girls. The objective measure of choice of volume for music through headphones showed that grandsons of both maternal and paternal smoking grandmothers were less likely to choose high volumes compared with granddaughters (P<0.05). In line with our prior hypothesis of sex differences, we showed that grandsons were more intolerant of loud sounds than granddaughters particularly at age 6, and this was confirmed by objective measures at age 11.
Collapse
Affiliation(s)
- Amanda Hall
- School of Life and Health Sciences, Aston University, Birmingham, England, United Kingdom
| | - Kate Northstone
- Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Yasmin Iles-Caven
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Genette Ellis
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Steve Gregory
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Jean Golding
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Marcus Pembrey
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| |
Collapse
|
45
|
Affiliation(s)
- Katharina Gapp
- Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK; Institute for Neuroscience, Swiss Federal Institute of Technology, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland.
| |
Collapse
|
46
|
Estill M, Hauser R, Nassan FL, Moss A, Krawetz SA. The effects of di-butyl phthalate exposure from medications on human sperm RNA among men. Sci Rep 2019; 9:12397. [PMID: 31455814 PMCID: PMC6711971 DOI: 10.1038/s41598-019-48441-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Endocrine disruptors, such as phthalates, are suspected of affecting reproductive function. The Mesalamine and Reproductive Health Study (MARS) was designed to address the physiological effect of in vivo phthalate exposure on male reproduction in patients with Inflammatory Bowel Disease (IBD). As part of this effort, the effect on sperm RNAs to DBP exposure were longitudinally assessed using a cross-over cross-back binary design of high or background, exposures to DBP. As the DBP level was altered, numerous sperm RNA elements (REs) were differentially expressed, suggesting that exposure to or removal from high DBP produces effects that require longer than one spermatogenic cycle to resolve. In comparison, small RNAs were minimally affected by DBP exposure. While initial study medication (high or background) implicates different biological pathways, initiation on the high-DBP condition activated oxidative stress and DNA damage pathways. The negative correlation of REs with specific genomic repeats suggests a regulatory role. Using ejaculated sperm, this work provides insight into the male germline's response to phthalate exposure.
Collapse
Affiliation(s)
- Molly Estill
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Russ Hauser
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School, and Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Feiby L Nassan
- Departments of Environmental Health and Nutrition, Harvard T. H. Chan School of Public Health, MA, 02115, USA
| | - Alan Moss
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
47
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Rajaleid K, Vågerö D. Stress resilience in young men mediates the effect of childhood trauma on their offspring's birth weight - An analysis of 250,000 families. SSM Popul Health 2019; 8:100429. [PMID: 31249858 PMCID: PMC6584590 DOI: 10.1016/j.ssmph.2019.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 10/31/2022] Open
Abstract
Experiencing the death of a parent during childhood is a severe trauma that seems to affect the next generation's birth weight. We studied the consequences of parental loss during childhood for men's psychological and physiological characteristics at age 18, and whether these were important for their first-born offspring's birth outcomes. We used a structured life-course approach and four-way decomposition analysis to analyse data for 250,427 three-generation families retrieved from nationwide Swedish registers and found that psychological resilience was impaired and body mass index was higher in men who had experienced parental death. Both characteristics were linked to offspring birth weight. This was lower by 18.0 g (95% confidence interval: 5.7, 30.3) for men who lost a parent at ages 8-17 compared to other ages. Resilience mediated 40% of this influence. Mediation by body mass index, systolic and diastolic blood pressure was negligible, as was the effect of parental loss on length of gestation. There was no mediation by the education of the men's future spouse. Previous literature has indicated that the period before puberty, the "slow growth period", is sensitive. Our evidence suggests that this may be too narrow a restriction: boys aged 8-17 appear to be particularly likely to respond to parental loss in a way which affects their future offspring's birth weight. We conclude that the observed transgenerational influence on birth weight is mediated by the father's psychological resilience but not by his body mass index or blood pressure.
Collapse
Affiliation(s)
- Kristiina Rajaleid
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Denny Vågerö
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Dupont C, Kappeler L, Saget S, Grandjean V, Lévy R. Role of miRNA in the Transmission of Metabolic Diseases Associated With Paternal Diet-Induced Obesity. Front Genet 2019; 10:337. [PMID: 31057600 PMCID: PMC6482346 DOI: 10.3389/fgene.2019.00337] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
The concept of Developmental Origins of Health and Diseases (DOHaD) recognizes that an unfavorable maternal environment alters the developmental trajectory of the fetus and can lead to long-term risk of developing chronic noncommunicable diseases. More recently, the concept of a paternal transmission [Paternal Origins of Health and Diseases (POHaD)] has emerged stressing the impact of paternal overweight or obesity on offspring's health and development. While very few examples of paternal epigenetic inheritance of metabolic disorders have been evidenced in human, many experimental mouse models based on high-fat diet (HFD)-induced paternal obesity have been developed to breakdown molecular mechanisms involved in the process. Besides DNA methylation and chromatin structure, sperm short noncoding RNAs have been considered as the main epigenetic vector of inheritance of paternally environmentally induced changes. Among them, sperm miRNAs are one particular subspecies sensitive to environmental changes and obesity can modify the sperm miRNA profile. Once delivered into the zygote, these molecules might induce epigenetic modifications in the embryo, thereby leading to consequences for fetus development and offspring physical and metabolic health later on in life. Furthermore, some data also suggest that metabolic pathologies may be intergenerationally or transgenerationally transmitted.
Collapse
Affiliation(s)
- Charlotte Dupont
- Sorbonne Université, Inserm, Centre de Recherche St-Antoine, CRSA, AP-HP, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| | - Laurent Kappeler
- Sorbonne Université, INSERM, Institute of Cardiometabolism, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Sarah Saget
- Sorbonne Université, INSERM, Institute of Cardiometabolism, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Valérie Grandjean
- Inserm U1065, Team Control of Gene Expression (10), Université Cote d’Azur, Nice, France
| | - Rachel Lévy
- Sorbonne Université, Inserm, Centre de Recherche St-Antoine, CRSA, AP-HP, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| |
Collapse
|
50
|
Golding J, Gregory S, Northstone K, Iles-Caven Y, Ellis G, Pembrey M. Investigating Possible Trans/Intergenerational Associations With Obesity in Young Adults Using an Exposome Approach. Front Genet 2019; 10:314. [PMID: 31024624 PMCID: PMC6459952 DOI: 10.3389/fgene.2019.00314] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Animal experiments demonstrate ways in which an exposure in one generation can be reflected in a variety of outcomes in later generations. In parallel human observational studies have shown associations between grandparental and parental exposures to cigarette smoking and/or nutrition and growth and survival of the grandchild. These studies have controlled for just a few confounders selected ad hoc. Here we use an exposome approach (using all available measures of exposure) to determine trans/inter-generational factors that may be important in studying environmental factors associated with fat mass in young human adults. The study takes advantage of the rich data available in the Avon Longitudinal Study of Parents and Children (ALSPAC). We test associations with features of grandparents (G0) and the childhood of the parents (G1) of 24-year olds (G2). We hypothesized that intergenerational associations would be revealed, particularly with exposure to cigarette smoke, and that these would vary with the sexes of all three generations. The study exposome analyzed 172 exposures to the maternal line and 182 to the paternal line. A series of stepwise regression analyses reduced the initial 40 unadjusted factors (P < 0.05) to eight independent features on the maternal line, and of 26 on the paternal line to five. We found strong associations between the father starting to smoke cigarettes regularly before age 11 and increased fat mass in his adult children (unadjusted = +7.82 [95% CI +2.75, +12.90] Kg; adjusted = +11.22 [+5.23, +17.22] Kg); this association was stronger in male offspring. In addition, when the paternal grandmother had smoked in pregnancy her adult granddaughters, but not grandsons had elevated mean fat mass (interaction with sex after adjustment, P = 0.001). The exposome technique identified other factors that were independently associated with fat mass in young adults. These may be useful in identifying appropriate confounders in other more proximal analyses, but also may identify features that may be on epigenetic pathways leading to increased fat mass in subsequent generations. We acknowledge that the results need to be replicated in other cohorts and encourage further linkage of outcomes with previous generational exposures, particularly along the paternal line.
Collapse
Affiliation(s)
- Jean Golding
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|