1
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025; 45:882-900. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
2
|
Wang C, Su D, Zhang Z, Chen J, Liu Y, Peng C, Fan Y, Yan C, Han S, Chen M, Huang X, Ji J, Chen Z, Liu D, Yu D, Qin P. Zebrafish fluorescence imaging platform based on Bessel light sheet illumination. BIOMEDICAL OPTICS EXPRESS 2025; 16:1678-1691. [PMID: 40321999 PMCID: PMC12047710 DOI: 10.1364/boe.542599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 05/08/2025]
Abstract
We developed a three-dimensional (3D) zebrafish fluorescence imaging platform based on Bessel light sheet fluorescence microscopy (LSFM). During the 3D imaging process, the excitation light sheet remains static and the axial scanning is realized by moving the sample with one motorized positioning stage. To solve the defocusing problem caused by the optical path length change in 3D imaging, an electrically tunable lens (ETL) is adopted in the detection optical path. An auto-refocusing method that considers the sample structural anisotropy and has no limitation on the mathematical form of signals added to the ETL is designed. The results show that ETL can provide a satisfactory refocusing effect using detection objectives with a low numerical aperture (NA). In addition, the effects of the ETL on the system magnification and resolution are explored. A magnification calibration method is devised to refine the precision of the volume synthesis. The system design also facilitates the recording of ambient noise, which can help improve image quality with simple background image subtraction. This hardware-based background elimination method is compared with several state-of-the-art fluorescence image denoising algorithms, and the comparison results verified the high performance of this method. The imaging results of live zebrafish lymphatic and vascular structures, as well as blood flow, prove the reliability of this platform without necessitating further image deconvolution.
Collapse
Affiliation(s)
- Chuhui Wang
- Precision Medicine and Public Health, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong 518055, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Dongmei Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ziheng Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Jiaju Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Yang Liu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Cuiyi Peng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Yachen Fan
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Chenggang Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province 310018, China
- Lishui Institute of Hangzhou Dianzi University, Lishui, Zhejiang Province 323000, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xingru Huang
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province 310018, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wang XW, Ye CQ, Tang Q, Yu HM, Wang J, Fu GS, Ren KF, Yu L, Ji J. Drop-shaped microgrooves guide unidirectional cell migration for enhanced endothelialization. Nat Commun 2025; 16:1928. [PMID: 39994203 PMCID: PMC11850906 DOI: 10.1038/s41467-025-57146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Atrial fibrillation (AF) significantly increases the risk of ischemic stroke, and in non-valvular AF, 90% of stroke-causing thrombi arise from the left atrial appendage (LAA). Percutaneous LAA occlusion using an occluder is a crucial clinical intervention. However, occluder materials could provoke thrombi, termed device-related thrombosis (DRT), leading to treatment failure. Rapid endothelialization is essential to address the DRT but the occluder's large surface area and irregular cell migration on the surface impede this process. Here, we report a continuous drop-shaped microgroove, which has a drop-shaped unit structure similar to endothelial cells. The microgrooves polarize the cytoskeleton, guiding cell unidirectional migration within the grooves, and increase cell migration efficiency. We show that drop-shaped microgrooves accelerate wound healing in a rat model, and that occluder discs with drop-shaped microgrooves promote endothelialization in a canine model. Together, our results show that integrating microgrooves with medical devices is a promising approach for addressing DRT.
Collapse
Affiliation(s)
- Xing-Wang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Cheng-Qiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qian Tang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Hong-Mei Yu
- Department of Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Lu Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Bowley G, Irving S, Hoefer I, Wilkinson R, Pasterkamp G, Darwish HMS, White S, Francis SE, Chico T, Noel E, Serbanovic-Canic J, Evans PC. Zebrafish model for functional screening of flow-responsive genes controlling endothelial cell proliferation. Sci Rep 2024; 14:30130. [PMID: 39627337 PMCID: PMC11615307 DOI: 10.1038/s41598-024-77370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Local haemodynamics control arterial homeostasis and dysfunction by generating wall shear stress (WSS) which regulates endothelial cell (EC) physiology. Here we use a zebrafish model to identify genes that regulate EC proliferation in response to flow. Suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) reduced EC proliferation in the intersegmental vessels (ISVs) compared to controls exposed to flow. The expression of candidate regulators of proliferation was analysed in EC isolated from zebrafish embryos by qRT-PCR. Genes shown to be expressed in EC were analysed for the ability to regulate proliferation in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. wnk1 negatively regulated proliferation in no-flow conditions, whereas fzd5, gsk3β, trpm7 and bmp2a promoted proliferation in EC exposed to flow. Immunofluorescent staining of mammalian arteries revealed that WNK1 is expressed at sites of low WSS in the murine aorta, and in EC overlying human atherosclerotic plaques. We conclude that WNK1 is expressed in EC at sites of low WSS and in diseased arteries and may influence vascular homeostasis by reducing EC proliferation.
Collapse
Affiliation(s)
- George Bowley
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Sophie Irving
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Robert Wilkinson
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Hazem M S Darwish
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Stephen White
- Faculty of Medical Sciences, Biosciences Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Sheila E Francis
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tim Chico
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Emily Noel
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Paul C Evans
- Biochemical Pharmacology,William Harvey Research Institute, Barts & The London Faculty of Medicine &Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
5
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 PMCID: PMC11577002 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Pak B, Kim M, Han O, Lee HW, Dubrac A, Choi W, Yang JM, Boyé K, Cho H, Citrin KM, Kim I, Eichmann A, Bautch VL, Jin SW. ACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature. Angiogenesis 2024; 27:765-777. [PMID: 38955953 DOI: 10.1007/s10456-024-09936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Minjung Kim
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacy, Chosun University, Gwangju, Korea
| | - Alexandre Dubrac
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- CHU Sainte-Justine Research Center, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, QC, Canada
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jee Myung Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kevin Boyé
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heewon Cho
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Kathryn M Citrin
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria L Bautch
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Suk-Won Jin
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea.
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
8
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Phng LK, Hogan BM. Endothelial cell transitions in zebrafish vascular development. Dev Growth Differ 2024; 66:357-368. [PMID: 39072708 PMCID: PMC11457512 DOI: 10.1111/dgd.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Benjamin M Hogan
- Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Liu W, Ding Y, Shen Z, Xu C, Yi W, Wang D, Zhou Y, Zon LI, Liu JX. BF170 hydrochloride enhances the emergence of hematopoietic stem and progenitor cells. Development 2024; 151:dev202476. [PMID: 38940293 DOI: 10.1242/dev.202476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - YuYan Ding
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Shen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Xu
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William Yi
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhou
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute/Children's Hospital, 300 Longwood Avenue, Karp 8, Boston, MA 02115, USA
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
11
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, Miao Y, Mierke S, Kalva S, Zhu H, Gu M, Vadivelu S, Zhong S, Huang LF, Guo Z. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31:818-833.e11. [PMID: 38754427 PMCID: PMC11162335 DOI: 10.1016/j.stem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
Collapse
Affiliation(s)
- Lan Dao
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhen You
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tianyang Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hui Zhu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Yoshida
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Mierke
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Srijan Kalva
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhakar Vadivelu
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - L Frank Huang
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
12
|
Préau L, Lischke A, Merkel M, Oegel N, Weissenbruch M, Michael A, Park H, Gradl D, Kupatt C, le Noble F. Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype. Nat Commun 2024; 15:3118. [PMID: 38600061 PMCID: PMC11006894 DOI: 10.1038/s41467-024-47434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.
Collapse
Affiliation(s)
- Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Anna Lischke
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Neslihan Oegel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Maria Weissenbruch
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Andria Michael
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Hongryeol Park
- Dept. Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Roentgen Strasse 20, 48149, Muenster, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.
- Institute of Experimental Cardiology, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
13
|
Qi Y, Chang SS, Wang Y, Chen C, Baek KI, Hsiai T, Roper M. Hemodynamic regulation allows stable growth of microvascular networks. Proc Natl Acad Sci U S A 2024; 121:e2310993121. [PMID: 38386707 PMCID: PMC10907248 DOI: 10.1073/pnas.2310993121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.
Collapse
Affiliation(s)
- Yujia Qi
- Department of Mechanical Engineering, University of California, Los Angeles, CA90095
| | - Shyr-Shea Chang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Yixuan Wang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Cynthia Chen
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Marcus Roper
- Department of Mathematics, University of California, Los Angeles, CA90095
- Department of Computational Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
14
|
Maung Ye SS, Phng LK. A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration. PLoS Comput Biol 2023; 19:e1011665. [PMID: 38048371 PMCID: PMC10721208 DOI: 10.1371/journal.pcbi.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
The development of a functional cardiovascular system ensures a sustainable oxygen, nutrient and hormone delivery system for successful embryonic development and homeostasis in adulthood. While early vessels are formed by biochemical signaling and genetic programming, the onset of blood flow provides mechanical cues that participate in vascular remodeling of the embryonic vascular system. The zebrafish is a prolific animal model for studying the quantitative relationship between blood flow and vascular morphogenesis due to a combination of favorable factors including blood flow visualization in optically transparent larvae. In this study, we have developed a cell-and-plasma blood transport model using computational fluid dynamics (CFD) to understand how red blood cell (RBC) partitioning affect lumen wall shear stress (WSS) and blood pressure in zebrafish trunk blood vascular networks with altered rheology and morphology. By performing live imaging of embryos with reduced hematocrit, we discovered that cardiac output and caudal artery flow rates were maintained. These adaptation trends were recapitulated in our CFD models, which showed reduction in network WSS via viscosity reduction in the caudal artery/vein and via pressure gradient weakening in the intersegmental vessels (ISVs). Embryos with experimentally reduced lumen diameter showed reduced cardiac output and caudal artery flow rate. Factoring in this trend into our CFD models, simulations highlighted that lumen diameter reduction increased vessel WSS but this increase was mitigated by flow reduction due to the adaptive network pressure gradient weakening. Additionally, hypothetical network CFD models with different vessel lumen diameter distribution characteristics indicated the significance of axial variation in lumen diameter and cross-sectional shape for establishing physiological WSS gradients along ISVs. In summary, our work demonstrates how both experiment-driven and hypothetical CFD modeling can be employed for the study of blood flow physiology during vascular remodeling.
Collapse
Affiliation(s)
- Swe Soe Maung Ye
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
15
|
Xu Z, Kusumbe AP, Cai H, Wan Q, Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:1434-1446. [PMID: 36880538 DOI: 10.1002/jbm.b.35243] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.
Collapse
Affiliation(s)
- Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Anjali P Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford, UK
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Oguma T, Takigawa-Imamura H, Shinoda T, Ogura S, Uemura A, Miyata T, Maini PK, Miura T. Analyzing the effect of cell rearrangement on Delta-Notch pattern formation. Phys Rev E 2023; 107:064404. [PMID: 37464594 DOI: 10.1103/physreve.107.064404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/24/2023] [Indexed: 07/20/2023]
Abstract
The Delta-Notch system plays a vital role in many areas of biology and typically forms a salt and pepper pattern in which cells strongly expressing Delta and cells strongly expressing Notch are alternately aligned via lateral inhibition. In this study, we consider cell rearrangement events, such as cell mixing and proliferation, that alter the spatial structure itself and affect the pattern dynamics. We model cell rearrangement events by a Poisson process and analyze the model while preserving the discrete properties of the spatial structure. We investigate the effects of the intermittent perturbations arising from these cell rearrangement events on the discrete spatial structure itself in the context of pattern formation and by using an analytical approach, coupled with numerical simulation. We find that the homogeneous expression pattern is stabilized if the frequency of cell rearrangement events is sufficiently large. We analytically obtain the balanced frequencies of the cell rearrangement events where the decrease of the pattern amplitude, as a result of cell rearrangement, is balanced by the increase in amplitude due to the Delta-Notch interaction dynamics. Our framework, while applied here to the specific case of the Delta-Notch system, is applicable more widely to other pattern formation mechanisms.
Collapse
Affiliation(s)
- Toshiki Oguma
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | - Tomoyasu Shinoda
- Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuntaro Ogura
- Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Akiyoshi Uemura
- Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takaki Miyata
- Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford OX2 6GG, United Kingdom
| | - Takashi Miura
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
18
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Oberkersch RE, Lidonnici J, Santoro MM. How to Generate a Vascular-Labelled Transgenic Zebrafish Model to Study Tumor Angiogenesis and Extravasation. Methods Mol Biol 2023; 2572:191-202. [PMID: 36161418 DOI: 10.1007/978-1-0716-2703-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of transgenic animals carrying exogenous DNA integrated in their genome is a routine in modern-day laboratories. Nowadays, the zebrafish system represents the most useful tool for transgenesis studies mainly due to easy accessibility and manipulation of the eggs, which are produced in high numbers and over a relatively short generation time. The zebrafish transgenic technology is very straightforward when coupled with angiogenesis studies allowing easy in vivo observation of the vertebrate embryonic vasculature. Here, we describe the most common technique to generate vascular-labelled transgenic zebrafish embryos and their applications to study tumor angiogenesis and visualize tumor extravasation.
Collapse
Affiliation(s)
- Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Jacopo Lidonnici
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Shao M, Zhong MC, Wang Z, Ke Z, Zhong Z, Zhou J. Non-Invasive Dynamic Reperfusion of Microvessels In Vivo Controlled by Optical Tweezers. Front Bioeng Biotechnol 2022; 10:952537. [PMID: 35910027 PMCID: PMC9331193 DOI: 10.3389/fbioe.2022.952537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Distributive shock is considered to be a condition of microvascular hypoperfusion, which can be fatal in severe cases. However, traditional therapeutic methods to restore the macro blood flow are difficult to accurately control the blood perfusion of microvessels, and the currently developed manipulation techniques are inevitably incompatible with biological systems. In our approach, infrared optical tweezers are used to dynamically control the microvascular reperfusion within subdermal capillaries in the pinna of mice. Furthermore, we estimate the effect of different optical trap positions on reperfusion at branch and investigate the effect of the laser power on reperfusion. The results demonstrate the ability of optical tweezers to control microvascular reperfusion. This strategy allows near-noninvasive reperfusion of the microvascular hypoperfusion in vivo. Hence, our work is expected to provide unprecedented insights into the treatment of distributive shock.
Collapse
Affiliation(s)
- Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, China
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Min-Cheng Zhong, ; Jinhua Zhou,
| | - Zixin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zeyu Ke
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- *Correspondence: Min-Cheng Zhong, ; Jinhua Zhou,
| |
Collapse
|
22
|
Cui Y, Shi W, Zhang K, Hou Z, Wang Y, Yan W, Ma Q, He S, Huang J, Lu C, Wang Y, Wang G, Qiu J. Temporal-spatial low shear stress induces heterogenous distribution of hematopoietic stem cell budding in zebrafish. Cell Mol Life Sci 2022; 79:399. [PMID: 35792959 PMCID: PMC11073138 DOI: 10.1007/s00018-022-04411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) originate from endothelial cells (ECs) localized on the ventral side of the dorsal aorta (DA), and hemodynamic parameters may suffer sharp changes in DA at HSPCs development stage for intersegmental vessel formation. However, the temporal-spatial shear stress parameters and biomechanics mechanisms of HSPC budding remain unknown. Here, we found that the hematopoietic endothelium (HE) in the aorta-gonad-mesonephros was heterogeneous; that is, HEs were mainly distributed at the ventral side of the vascular bifurcation in zebrafish embryos, which was found to show low shear stress (LSS) through numerical simulation analysis. Furthermore, HSPCs localized in the posterior somite of aorta-gonad-mesonephros with slow velocity. On the temporal scale, there was a slow velocity and LSS during HE budding from 36 h post-fertilization and decreased shear stress with drug expanded HSPC numbers. Mechanistically, matrix metalloproteinase (MMP) expression and macrophage chemotaxis were significantly increased in HEs by RNA-seq. After treatment with an MMP13 inhibitor, HSPCs were significantly reduced in both the aorta-gonad-mesonephros and caudal hematopoietic tissue in embryos. Our results show that HSPC budding is heterogeneous, and the mechanism is that physiological LSS controls the emergence of HSPCs by promoting the accumulation of macrophages and subsequent MMP expression.
Collapse
Affiliation(s)
- Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yanyun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - WenHua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qinfeng Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chenfei Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
24
|
Baek KI, Chang SS, Chang CC, Roustaei M, Ding Y, Wang Y, Chen J, O'Donnell R, Chen H, Ashby JW, Xu X, Mack JJ, Cavallero S, Roper M, Hsiai TK. Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network. Front Cardiovasc Med 2022; 9:841101. [PMID: 35369301 PMCID: PMC8971683 DOI: 10.3389/fcvm.2022.841101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shyr-Shea Chang
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, United States
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| | - Chih-Chiang Chang
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mehrdad Roustaei
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Ding
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yixuan Wang
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin Chen
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan O'Donnell
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianne W. Ashby
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiaolei Xu
- Zebrafish Genetics, Mayo Clinic, Rochester, MN, United States
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Marcus Roper
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tzung K. Hsiai
- Department of Medicine and Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
25
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Rhee S, Wu JC. Vein to artery: the first arteriogenesis in the mammalian embryo. Cell Res 2022; 32:325-326. [PMID: 35165423 PMCID: PMC8976089 DOI: 10.1038/s41422-022-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022; 19:20210898. [PMID: 35167770 PMCID: PMC8848759 DOI: 10.1098/rsif.2021.0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K. Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
29
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022. [PMID: 35167770 DOI: 10.1101/2021.02.10.430654v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
30
|
Park SH, Kim K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. CHEMOSPHERE 2022; 286:131868. [PMID: 34399253 DOI: 10.1016/j.chemosphere.2021.131868] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention as potential environmental pollutants. However, toxic effects of exposure to MPs and NPs on organisms at developmental stages have not been elucidated yet. In this study, zebrafish embryos at early stage were used to evaluate potential toxic effects of exposure to MPs with diameter of 1 μm and NPs with diameter of 0.4 μm. Solution containing NPs was optically more transparent than solution containing MPs at the same mass concentration. However, exposure to NPs induced significantly higher mortality rate of zebrafish embryos than exposure to MPs. Exposure to MPs or NPs caused pathological changes of caudal vein plexus. In addition, caudal tissues were impaired with inhibition of intact growth of zebrafish embryos. Peripheral microcirculation at caudal region was significantly deteriorated by exposure to MPs or NPs. However, systematic perfusion was still maintained with preservation of RBC velocity profiles regardless of exposure to MPs or NPs. This study provides a new insight to the use of plastics, demonstrating that exposure to MPs or NPs can lead to developmental disorder with significant impairment of growth and peripheral microcirculation dysfunction.
Collapse
Affiliation(s)
- Sung Ho Park
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kiwoong Kim
- Mechanical Engineering, Hannam University, Daejeon, 34430, South Korea.
| |
Collapse
|
31
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
32
|
Kugler E, Snodgrass R, Bowley G, Plant K, Serbanovic-Canic J, Hamilton N, Evans PC, Chico T, Armitage P. The effect of absent blood flow on the zebrafish cerebral and trunk vasculature. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2021; 3:1-16. [PMID: 34522840 PMCID: PMC8428019 DOI: 10.1530/vb-21-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and EC number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Ryan Snodgrass
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Noémie Hamilton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Timothy Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK
| | - Paul Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| |
Collapse
|
33
|
Jiang K, Pichol-Thievend C, Neufeld Z, Francois M. Assessment of heterogeneity in collective endothelial cell behavior with multicolor clonal cell tracking to predict arteriovenous remodeling. Cell Rep 2021; 36:109395. [PMID: 34289351 DOI: 10.1016/j.celrep.2021.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
Arteries and veins form in a stepwise process that combines vasculogenesis and sprouting angiogenesis. Despite extensive data on the mechanisms governing blood vessel assembly at the single-cell level, little is known about how collective cell migration contributes to the organization of the balanced distribution between arteries and veins. Here, we use an endothelial-specific zebrafish reporter, arteriobow, to label small cohorts of arterial cells and trace their progeny from early vasculogenesis throughout arteriovenous remodeling. We reveal that the genesis of arteries and veins relies on the coordination of 10 types of collective cell dynamics. Within these behavioral categories, we identify a heterogeneity of collective cell motion specific to either arterial or venous remodeling. Using pharmacological blockade, we further show that cell-intrinsic Notch signaling and cell-extrinsic blood flow act as regulators in maintaining the heterogeneity of collective endothelial cell behavior, which, in turn, instructs the future territory of arteriovenous remodeling.
Collapse
Affiliation(s)
- Keyi Jiang
- The David Richmond Laboratory for Cardiovascular Development, Gene Regulation and Editing, the Centenary Institute, Camperdown, 2006 NSW, Australia; Institute for Molecular Bioscience, the University of Queensland, St Lucia, 4072 QLD, Australia
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, 4072 QLD, Australia; Tumor Microenvironment Laboratory, Institute Curie Research Center, Paris Saclay University, PSL Research University, Inserm U1021, CNRS, UMR3347 Orsay, France
| | - Zoltan Neufeld
- School of Mathematics and Physics, the University of Queensland, St Lucia, 4072 QLD, Australia
| | - Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development, Gene Regulation and Editing, the Centenary Institute, Camperdown, 2006 NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
34
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
35
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Pasut A, Becker LM, Cuypers A, Carmeliet P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021; 24:311-326. [PMID: 34061284 PMCID: PMC8169404 DOI: 10.1007/s10456-021-09797-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is characterized by a remarkable level of plasticity, which is the driving force not only of physiological repair/remodeling of adult tissues but also of pathological angiogenesis. The resulting heterogeneity of endothelial cells (ECs) makes targeting the endothelium challenging, no less because many EC phenotypes are yet to be identified and functionally inventorized. Efforts to map the vasculature at the single-cell level have been instrumental to capture the diversity of EC types and states at a remarkable depth in both normal and pathological states. Here, we discuss new EC subtypes and functions emerging from recent single-cell studies in health and disease. Interestingly, such studies revealed distinct metabolic gene signatures in different EC phenotypes, which deserve further consideration for therapy. We highlight how this metabolic targeting strategy could potentially be used to promote (for tissue repair) or block (in tumor) angiogenesis in a tissue or even vascular bed-specific manner.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
37
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
38
|
Weijts B, Shaked I, Ginsberg M, Kleinfeld D, Robin C, Traver D. Endothelial struts enable the generation of large lumenized blood vessels de novo. Nat Cell Biol 2021; 23:322-329. [PMID: 33837285 PMCID: PMC8500358 DOI: 10.1038/s41556-021-00664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
De novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell-1-3 or cord-hollowing4-7. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step. In this model, ECs coalesce into a network of struts in the future lumen of the vessel, a process dependent upon bone morphogenetic protein signalling. The vessel wall forms around this network and consists initially of only a few patches of ECs. To withstand external forces and to maintain the shape of the vessel, strut formation traps erythrocytes into compartments to form a rigid structure. Struts gradually prune and ECs from struts migrate into and become part of the vessel wall. Experimental severing of struts resulted in vessel collapse, disturbed blood flow and remodelling defects, demonstrating that struts enable the patency of large vessels during their formation.
Collapse
Affiliation(s)
- Bart Weijts
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Correspondence to: ;
| | - Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - David Traver
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Correspondence to: ;
| |
Collapse
|
39
|
Yin J, Heutschi D, Belting HG, Affolter M. Building the complex architectures of vascular networks: Where to branch, where to connect and where to remodel? Curr Top Dev Biol 2021; 143:281-297. [PMID: 33820624 DOI: 10.1016/bs.ctdb.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cardiovascular system is the first organ to become functional during vertebrate embryogenesis and is responsible for the distribution of oxygen and nutrients to all cells of the body. The cardiovascular system constitutes a circulatory loop in which blood flows from the heart through arteries into the microvasculature and back through veins to the heart. The vasculature is characterized by the heterogeneity of blood vessels with respect to size, cellular architecture and function, including both larger vessels that are found at defined positions within the body and smaller vessels or vascular beds that are organized in a less stereotyped manner. Recent studies have shed light on how the vascular tree is formed and how the interconnection of all branches is elaborated and maintained. In contrast to many other branched organs such as the lung or the kidney, vessel connection (also called anastomosis) is a key process underlying the formation of vascular networks; each outgrowing angiogenic sprout must anastomose in order to allow blood flow in the newly formed vessel segment. It turns out that during this "sprouting and anastomosis" process, too many vessels are generated, and that blood flow is subsequently optimized through the removal (pruning) of low flow segments. Here, we reflect on the cellular and molecular mechanisms involved in forming the complex architecture of the vasculature through sprouting, anastomosis and pruning, and raise some questions that remain to be addressed in future studies.
Collapse
Affiliation(s)
- Jianmin Yin
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Nakajima H, Chiba A, Fukumoto M, Morooka N, Mochizuki N. Zebrafish Vascular Development: General and Tissue-Specific Regulation. J Lipid Atheroscler 2021; 10:145-159. [PMID: 34095009 PMCID: PMC8159758 DOI: 10.12997/jla.2021.10.2.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Circulation is required for the delivery of oxygen and nutrition to tissues and organs, as well as waste collection. Therefore, the heart and vessels develop first during embryogenesis. The circulatory system consists of the heart, blood vessels, and blood cells, which originate from the mesoderm. The gene expression pattern required for blood vessel development is predetermined by the hierarchical and sequential regulation of genes for the differentiation of mesodermal cells. Herein, we review how blood vessels form distinctly in different tissues or organs of zebrafish and how vessel formation is universally or tissue-specifically regulated by signal transduction pathways and blood flow. In addition, the unsolved issues of mutual contacts and interplay of circulatory organs during embryogenesis are discussed.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Nanami Morooka
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
41
|
Bowley G, Chico TJA, Serbanovic-Canic J, Evans PC. Quantifying endothelial cell proliferation in the zebrafish embryo. F1000Res 2021; 10:1032. [PMID: 36846519 PMCID: PMC9944168 DOI: 10.12688/f1000research.73130.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Endothelial cell (EC) proliferation is a fundamental determinant of vascular development and homeostasis, and contributes to cardiovascular disease by increasing vascular permeability to blood-borne lipoproteins. Rodents have been traditionally used to analyse EC proliferation mechanisms in vascular health and disease; however, alternative models such as the zebrafish embryo allow researchers to conduct small scale screening studies in a physiologically relevant vasculature whilst reducing the use of mammals in biomedical research. In vitro models of EC proliferation are valuable but do not fully recapitulate the complexity of the in vivo situation. Several groups have used zebrafish embryos for vascular biology research because they offer the advantages of an in vivo model in terms of complexity but are also genetically manipulable and optically transparent. Methods: Here we investigated whether zebrafish embryos can provide a suitable model for the study of EC proliferation. We explored the use of antibody, DNA labelling, and time-lapse imaging approaches. Results: Antibody and DNA labelling approaches were of limited use in zebrafish due to the low rate of EC proliferation combined with the relatively narrow window of time in which they can label proliferating nuclei. By contrast, time-lapse imaging of fluorescent proteins localised to endothelial nuclei was a sensitive method to quantify EC proliferation in zebrafish embryos. Discussion: We conclude that time-lapse imaging is suitable for analysis of endothelial cell proliferation in zebrafish, and that this method is capable of capturing more instances of EC proliferation than immunostaining or cell labelling alternatives. This approach is relevant to anyone studying endothelial cell proliferation for screening genes or small molecules involved in EC proliferation. It offers greater biological relevance than existing in vitro models such as HUVECs culture, whilst reducing the overall number of animals used for this type of research.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Timothy JA Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
43
|
Sonmez UM, Cheng YW, Watkins SC, Roman BL, Davidson LA. Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator. LAB ON A CHIP 2020; 20:4373-4390. [PMID: 33099594 PMCID: PMC7686155 DOI: 10.1039/d0lc00738b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Endothelial cells (EC) respond to shear stress to maintain vascular homeostasis, and a disrupted response is associated with cardiovascular diseases. To understand how different shear stress modalities affect EC morphology and behavior, we developed a microfluidic device that concurrently generates three different levels of uniform wall shear stress (WSS) and six different WSS gradients (WSSG). In this device, human umbilical vein endothelial cells (HUVECs) exhibited a rapid and robust response to WSS, with the relative positioning of the Golgi and nucleus transitioning from a non-polarized to polarized state in a WSS magnitude- and gradient-dependent manner. By contrast, polarized HUVECs oriented their Golgi and nucleus polarity to the flow vector in a WSS magnitude-dependent manner, with positive WSSG inhibiting and negative WSSG promoting upstream orientation. Having validated this device, this chip can now be used to dissect the mechanisms underlying EC responses to different WSS modalities, including shear stress gradients, and to investigate the influence of flow on a diverse range of cells during development, homeostasis and disease.
Collapse
Affiliation(s)
- Utku M. Sonmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ya-Wen Cheng
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C. Watkins
- Department of Cellular Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L. Roman
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lance A. Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
44
|
Fenrich M, Habjanovic K, Kajan J, Heffer M. The circle of Willis revisited: Forebrain dehydration sensing facilitated by the anterior communicating artery: How hemodynamic properties facilitate more efficient dehydration sensing in amniotes. Bioessays 2020; 43:e2000115. [PMID: 33191609 DOI: 10.1002/bies.202000115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
We hypothesize that threat of dehydration provided selection pressure for the evolutionary emergence and persistence of the anterior communicating artery (ACoA - the inter-arterial connection that completes the Circle of Willis) in early amniotes. The ACoA is a hemodynamically insignificant artery, but, as we argue in this paper, its privileged position outside the blood-brain barrier gives it a crucial sensing function for the osmolarity of the blood against the background of the rest of the brain, which efficiently protects itself from dehydration. Till now, the questions of why the ACoA evolved, and what its physiological function is, have remained unsatisfactorily answered. The traditional view-that the ACoA serves as a collateral source of vascularization in case of arterial stenosis-is anthropocentric, and not in accordance with principles of natural selection that apply more generally. Diseases underlying arterial stenosis are associated with aging and the human lifestyle, so this cannot explain why the ACoA formed hundreds of millions of years ago and persisted in amniotes to this day. The peculiar hemodynamic properties of the ACoA could be selected traits that allowed for more efficient forebrain detection of dehydration and complex behavioral responses to water loss, a major advantage in the survival of early amniotes. This hypothesis also explains insufficient hydration often seen in elderly humans.
Collapse
Affiliation(s)
- Matija Fenrich
- Laboratory of Neurobiology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Karlo Habjanovic
- Laboratory of Neurobiology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Josip Kajan
- Laboratory of Neurobiology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Heffer
- Laboratory of Neurobiology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
45
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
46
|
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. VASCULAR BIOLOGY 2020; 2:R59-R71. [PMID: 32923975 PMCID: PMC7439923 DOI: 10.1530/vb-19-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Joshua D Hutcheson
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
47
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Okuda KS, Hogan BM. Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Front Physiol 2020; 11:842. [PMID: 32792978 PMCID: PMC7387577 DOI: 10.3389/fphys.2020.00842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 01/16/2023] Open
Abstract
The formation of the vertebrate vasculature involves the acquisition of endothelial cell identities, sprouting, migration, remodeling and maturation of functional vessel networks. To understand the cellular and molecular processes that drive vascular development, live-imaging of dynamic cellular events in the zebrafish embryo have proven highly informative. This review focusses on recent advances, new tools and new insights from imaging studies in vascular cell biology using zebrafish as a model system.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Abstract
All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Lucas Treps
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| |
Collapse
|
50
|
Liu X, Gao Q, Zhang Y, Li Y, Li B. In Vivo Optofluidic Switch for Controlling Blood Microflow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001414. [PMID: 32714772 PMCID: PMC7375249 DOI: 10.1002/advs.202001414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Indexed: 05/13/2023]
Abstract
Control of blood microflow is crucial for the prevention and therapy of blood disorders, such as cardiovascular diseases and their complications. Conventional control strategies generally implant exogenous synthetic materials into blood vessels as labeling markers or actuating sources, which are invasive and incompatible with biological systems. Here, a label-free, noninvasive, and biocompatible device constructed from natural red blood cells (RBCs) for controlling blood microflow in vivo is reported. The RBCs, optically manipulated, arranged, and rotated using scanning optical tweezers, can function as an optofluidic switch for targeted switching, directional enrichment, dynamic redirecting, and rotary actuation of blood microflow inside zebrafish. The regulation precision of the switch is determined to be at the single-cell level, and the response time is measured as ≈200 ms using a streamline tracking method. This in vivo optofluidic switch may provide a biofriendly device for exploring blood microenvironments in a noncontact and noninvasive manner.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Institute of NanophotonicsJinan UniversityGuangzhou511‐443China
| | - Qing Gao
- Institute of NanophotonicsJinan UniversityGuangzhou511‐443China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511‐443China
| | - Yuchao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511‐443China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511‐443China
| |
Collapse
|