1
|
Klein J, Schad L, Malliavin TE, Müller MM. Protein-membrane interactions with a twist. SOFT MATTER 2025. [PMID: 40197985 DOI: 10.1039/d4sm01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Within a framework of elasticity theory and geometry, the twister mechanism has been proposed some years ago for describing the interaction between a biofilament containing a twisted hydrophobic strip and a lipid membrane: this mechanism is capable of inducing deformations of the membrane, which can lead to its opening. The present work intends to extend this model to the interactions between a membrane and protein regions conserving their folds using coarse-grained molecular dynamics simulations. The protein region is modeled as a cylinder stabilized by a tensegrity scheme, leading to an elasticity similar to that observed in real proteins. Recording molecular dynamics trajectories of this cylinder in the presence of a fluid lipid bilayer membrane allows investigation of the effect of the positions of the hydrophobic parts on the interaction with the membrane. The entire configuration space is explored by systematically varying the hydrophobic strip width, the twisting of the strip as well as the range of hydrophobic interactions between the cylinder and the membrane. Three different states are observed: no interaction between the cylinder and membrane, the cylinder in contact with the membrane surface and the cylinder inserted into the membrane with a variable tilt angle. The variations of the tilt angle are explained using a qualitative model based on the total hydrophobic moment of the cylinder. A deformation pattern of the membrane, previously predicted for the filament-membrane interaction by the twister model, is observed for the state when the cylinder is in contact with the membrane surface, which allows estimation of the applied torques.
Collapse
Affiliation(s)
- Jordan Klein
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
| | - Lorène Schad
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
| | - Thérèse E Malliavin
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
- Université de Lorraine, CNRS, LPCT, 54000 Nancy, France
| | | |
Collapse
|
2
|
Khanppnavar B, Leka O, Pal SK, Korkhov VM, Kammerer RA. Cryo-EM structure of the botulinum neurotoxin A/SV2B complex and its implications for translocation. Nat Commun 2025; 16:1224. [PMID: 39934119 PMCID: PMC11814414 DOI: 10.1038/s41467-025-56304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Botulinum neurotoxin A1 (BoNT/A1) belongs to the most potent toxins and is used as a major therapeutic agent. Neurotoxin conformation is crucial for its translocation to the neuronal cytosol, a key process for intoxication that is only poorly understood. To gain molecular insights into the steps preceding toxin translocation, we determine cryo-EM structures of BoNT/A1 alone and in complex with its receptor synaptic vesicle glycoprotein 2B (SV2B). In solution, BoNT/A1 adopts a unique, semi-closed conformation. The toxin changes its structure into an open state upon receptor binding with the translocation domain (HN) and the catalytic domain (LC) remote from the membrane, suggesting translocation incompatibility. Under acidic pH conditions, where translocation is initiated, receptor-bound BoNT/A1 switches back into a semi-closed conformation. This conformation brings the LC and HN close to the membrane, suggesting that a translocation-competent state of the toxin is required for successful LC transport into the neuronal cytosol.
Collapse
Affiliation(s)
| | - Oneda Leka
- PSI Center for Life Sciences, Villigen, Switzerland
| | | | - Volodymyr M Korkhov
- PSI Center for Life Sciences, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
3
|
de Brevern AG. Special Issue: "Molecular Dynamics Simulations and Structural Analysis of Protein Domains". Int J Mol Sci 2024; 25:10793. [PMID: 39409122 PMCID: PMC11477144 DOI: 10.3390/ijms251910793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The 3D protein structure is the basis for all their biological functions [...].
Collapse
Affiliation(s)
- Alexandre G. de Brevern
- DSIMB Bioinformatics Team, BIGR, INSERM, Université Paris Cité, F-75015 Paris, France; ; Tel.: +33-1-4449-3000
- DSIMB Bioinformatics Team, BIGR, INSERM, Université de la Réunion, F-97715 Saint Denis, France
| |
Collapse
|
4
|
Park W, Park M, Chun J, Hwang J, Kim S, Choi N, Kim SM, Kim S, Jung S, Ko KS, Kweon DH. Delivery of endolysin across outer membrane of Gram-negative bacteria using translocation domain of botulinum neurotoxin. Int J Antimicrob Agents 2024; 64:107216. [PMID: 38795926 DOI: 10.1016/j.ijantimicag.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Nayoon Choi
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Soo Min Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - SeungJoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Sangwon Jung
- Research Center, MVRIX, Anyang, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Research Center, MVRIX, Anyang, Republic of Korea.
| |
Collapse
|
5
|
Delort A, Cottone G, Malliavin TE, Müller MM. Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle. Int J Mol Sci 2024; 25:2481. [PMID: 38473729 DOI: 10.3390/ijms25052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic Twister model are used to investigate the consequences of this proposition for the toxin-membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water-ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the Twister model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed.
Collapse
Affiliation(s)
| | - Grazia Cottone
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, 90128 Palermo, Italy
| | | | | |
Collapse
|
6
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
7
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
8
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
9
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
10
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
11
|
Cottone G, Chiodo L, Maragliano L, Popoff MR, Rasetti-Escargueil C, Lemichez E, Malliavin TE. In Silico Conformational Features of Botulinum Toxins A1 and E1 According to Intraluminal Acidification. Toxins (Basel) 2022; 14:toxins14090644. [PMID: 36136581 PMCID: PMC9500700 DOI: 10.3390/toxins14090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although botulinum neurotoxins (BoNTs) are among the most toxic compounds found in nature, their molecular mechanism of action is far from being elucidated. A key event is the conformational transition due to acidification of the interior of synaptic vesicles, leading to translocation of the BoNT catalytic domain into the neuronal cytosol. To investigate these conformational variations, homology modeling and atomistic simulations are combined to explore the internal dynamics of the sub-types BoNT/A1 (the most-used sub-type in medical applications) and BoNT/E1 (the most kinetically efficient sub-type). This first simulation study of di-chain BoNTs in closed and open states considers the effects of both neutral and acidic pH. The conformational mobility is driven by domain displacements of the ganglioside-binding site in the receptor binding domain, the translocation domain (HCNT) switch, and the belt α-helix, which present multiple conformations, depending on the primary sequence and the pH. Fluctuations of the belt α-helix are observed for closed conformations of the toxins and at acidic pH, while patches of more solvent-accessible residues appear under the same conditions in the core translocation domain HCNT. These findings suggest that, during translocation, the higher mobility of the belt could be transmitted to HCNT, leading to the favorable interaction of HCNT residues with the non-polar membrane environment.
Collapse
Affiliation(s)
- Grazia Cottone
- Department of Physics and Chemistry Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Letizia Chiodo
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Luca Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Michel-Robert Popoff
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Christine Rasetti-Escargueil
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
- Correspondence: (E.L.); (T.E.M.)
| | - Thérèse E. Malliavin
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Bioinformatique Structurale, 75015 Paris, France
- Laboratoire de Physique et Chimie Théoriques (LPCT), CNRS UMR7019, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France
- Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, 54506 Vandoeuvre-lès-Nancy, France
- Correspondence: (E.L.); (T.E.M.)
| |
Collapse
|
12
|
Lalaurie CJ, Splevins A, Barata TS, Bunting KA, Higazi DR, Zloh M, Spiteri VA, Perkins SJ, Dalby PA. Elucidation of critical pH-dependent structural changes in Botulinum Neurotoxin E. J Struct Biol 2022; 214:107876. [PMID: 35738335 DOI: 10.1016/j.jsb.2022.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.
Collapse
Affiliation(s)
- Christophe J Lalaurie
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK
| | - Andrew Splevins
- Evox Therapeutics Ltd, Oxford Science Park, Medwar Center, Oxford, England OX4 4HG, UK; Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Teresa S Barata
- FairJourney Biologics, 823 Rua do Campo Alegre, Porto, Porto 4150-180, Portugal; Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Karen A Bunting
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Daniel R Higazi
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, LL13 9UF, UK
| | - Mire Zloh
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Valentina A Spiteri
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
13
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
14
|
Pirazzini M, Grinzato A, Corti D, Barbieri S, Leka O, Vallese F, Tonellato M, Silacci-Fregni C, Piccoli L, Kandiah E, Schiavo G, Zanotti G, Lanzavecchia A, Montecucco C. Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. J Clin Invest 2021; 131:151676. [PMID: 34618682 DOI: 10.1172/jci151676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
We used human monoclonal antibodies (humAbs) to study the mechanism of neuron intoxication by tetanus neurotoxin and to evaluate these antibodies as a safe preventive and therapeutic substitute for hyperimmune sera to treat tetanus in mice. By screening memory B cells from immune donors, we selected 2 tetanus neurotoxin-specific mAbs with exceptionally high neutralizing activities and extensively characterized them both structurally and functionally. We found that these antibodies interfered with the binding and translocation of the neurotoxin into neurons by interacting with 2 epitopes, whose identification pinpoints crucial events in the cellular pathogenesis of tetanus. Our observations explain the neutralization ability of these antibodies, which we found to be exceptionally potent in preventing experimental tetanus when injected into mice long before the toxin. Moreover, their Fab derivatives neutralized tetanus neurotoxin in post-exposure experiments, suggesting their potential for therapeutic use via intrathecal injection. As such, we believe these humAbs, as well as their Fab derivatives, meet the requirements to be considered for prophylactic and therapeutic use in human tetanus and are ready for clinical trials.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | - Oneda Leka
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology and.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Fondazione Istituto Nazionale Genetica Molecolare, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy
| |
Collapse
|
15
|
O'Neil PT, Vasquez-Montes V, Swint-Kruse L, Baldwin MR, Ladokhin AS. Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion. Biophys J 2021; 120:4763-4776. [PMID: 34555358 PMCID: PMC8595737 DOI: 10.1016/j.bpj.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Tetanus neurotoxin (TeNT) is an A-B toxin with three functional domains: endopeptidase, translocation (HCT), and receptor binding. Endosomal acidification triggers HCT to interact with and insert into the membrane, translocating the endopeptidase across the bilayer. Although the function of HCT is well defined, the mechanism by which it accomplishes this task is unknown. To gain insight into the HCT membrane interaction on both local and global scales, we utilized an isolated, beltless HCT variant (bHCT), which retained the ability to release potassium ions from vesicles. To examine which bHCT residues interact with the membrane, we widely sampled the surface of bHCT using 47 single-cysteine variants labeled with the environmentally sensitive fluorophore NBD. At neutral pH, no interaction was observed for any variant. In contrast, all NBD-labeled positions reported environmental change in the presence of acidic pH and membranes containing anionic lipids. We then examined the conformation of inserted bHCT using circular dichroism and intrinsic fluorescence. Upon entering the membrane, bHCT retained predominantly α-helical secondary structure, whereas the tertiary structure exhibited substantial refolding. The use of lipid-attached quenchers revealed that at least one of the three tryptophan residues penetrated deep into the hydrocarbon core of the membrane, suggesting formation of a bHCT transmembrane conformation. The possible conformational topology was further explored with the hydropathy analysis webtool MPEx, which identified a large, potential α-helical transmembrane region. Altogether, the spectroscopic evidence supports a model in which, upon acidification, the majority of TeNT bHCT entered the membrane with a concurrent change in tertiary structure.
Collapse
Affiliation(s)
- Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
16
|
Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep 2021; 30:2526-2539.e6. [PMID: 32101733 PMCID: PMC7138525 DOI: 10.1016/j.celrep.2020.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties. Botulinum neurotoxins (BoNTs) are extremely toxic biothreats. Lam et al. report the crystal structures and neutralizing mechanisms of six unique antitoxin VHHs against BoNT/A1 and BoNT/B1, the two major human pathogenic BoNTs. They then develop a platform for structure-based rational design of bifunctional VHH heterodimers with superior antitoxin potencies.
Collapse
|
17
|
Zuverink M, Barbieri JT. Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 1:123-134. [PMID: 33615314 PMCID: PMC7894615 DOI: 10.33696/neurol.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs), botulinum toxin and tetanus toxin, are the most toxic proteins for humans. Neurotoxicity is based upon the specificity of the CNTs for neural host receptors and substrates. CNTs are organized into three domains, a Light Chain (LC) that is a metalloprotease and a Heavy Chain (HC) that has two domains, an N-terminal LC translocation domain (HCN) and a C-terminal receptor binding domain (HCC). While catalysis and receptor binding functions of the CNTs have been developed, our understanding of LC translocation is limited. This is due to the intrinsic complexity of the translocation process and limited tools to assess the step-by-step events in LC translocation. Recently, we developed a novel, cell-based TT-reporter to measure LC translocation as the translocation of a β-lactamase reporter across a vesicle membrane in neurons. Using this approach, we identified a role for a cis-Loop, located within the HCN, in LC translocation. In this commentary, we describe our current understanding of how CNTs mediate LC translocation and place the role of the cis-Loop in the LC translocation process relative to other independent functions that have been implicated in LC translocation. Understanding the basis for LC translocation will enhance the use of CNTs in vaccine development and as human therapies.
Collapse
Affiliation(s)
- Madison Zuverink
- Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Road, BSB2 Rm. 2830, Microbiology and Immunology, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Zhang CM, Imoto Y, Hikima T, Inoue T. Structural flexibility of the tetanus neurotoxin revealed by crystallographic and solution scattering analyses. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100045. [PMID: 33598655 PMCID: PMC7868712 DOI: 10.1016/j.yjsbx.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the tetanus neurotoxin (TeNT) delivers its protease domain (LC) across the synaptic vesicle lumen into the cytosol via its receptor binding domain (HC) and translocation domain (HN), the molecular mechanism coordinating this membrane translocation remains unresolved. Here, we report the high-resolution crystal structures of full-length reduced TeNT (rTeNT, 2.3 Å), TeNT isolated HN (TeNT/iHN, 2.3 Å), TeNT isolated HC (TeNT/iHC, 1.5 Å), together with the solution structures of TeNT/iHN and beltless TeNT/iHN (TeNT/blHN). TeNT undergoes significant domains rotation of the HN and LC were demonstrated by structural comparison of rTeNT and non-reduced-TeNT (nrTeNT). A linker loop connects the HN and HC is essential for the self-domain rotation of TeNT. The TeNT-specific C869-C1093 disulfide bond is sensitive to the redox environment and its disruption provides linker loop flexibility, which enables domain arrangement of rTeNT distinct from that of nrTeNT. Furthermore, the mobility of C869 in the linker loop and the sensitivity to redox condition of C1093 were confirmed by crystal structure analysis of TeNT/iHC. On the other hand, the structural flexibility of HN was investigated by crystallographic and solution scattering analyses. It was found that the region (residues 698-769), which follows the translocation region had remarkable change in TeNT/iHN. Besides, the so-called belt region has a high propensity to swing around the upper half of TeNT/iHN at acidic pH. It provides the first overview of the dynamics of the Belt in solution. These newly obtained structural information that shed light on the transmembrane mechanism of TeNT.
Collapse
Affiliation(s)
- Chun-Ming Zhang
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Yoshihiro Imoto
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Takaaki Hikima
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, 679-6148, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| |
Collapse
|
19
|
Miyashita SI, Zhang J, Zhang S, Shoemaker CB, Dong M. Delivery of single-domain antibodies into neurons using a chimeric toxin-based platform is therapeutic in mouse models of botulism. Sci Transl Med 2021; 13:eaaz4197. [PMID: 33408184 DOI: 10.1126/scitranslmed.aaz4197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
21
|
Kohda T, Tsukamoto K, Torii Y, Kozaki S, Mukamoto M. Translocation domain of botulinum neurotoxin A subtype 2 potently induces entry into neuronal cells. Microbiol Immunol 2020; 64:502-511. [PMID: 32301520 DOI: 10.1111/1348-0421.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022]
Abstract
Botulinum neurotoxin (BoNT) is the causative agent of botulism in humans and animals. Only BoNT serotype A subtype 1 (BoNT/A1) is used clinically because of its high potency and long duration of action. BoNT/A1 and BoNT/A subtype 2 (BoNT/A2) have a high degree of amino acid sequence similarity in the light chain (LC) (96%), whereas their N-and C-terminal heavy chain (HN and HC ) differ by 13%. The LC acts as a zinc-dependent endopeptidase, HN as the translocation domain, and HC as the receptor-binding domain. BoNT/A2 and BoNT/A1 had similar potency in the mouse bioassay, but BoNT/A2 entered faster and more efficiently into neuronal cells. To identify the domains responsible for these characteristics, HN of BoNT/A1 and BoNT/A2 was exchanged to construct chimeric BoNT/A121 and BoNT/A212. After expression in Escherichia coli, chimeric and wild-type BoNT/As were purified as single-chain proteins and activated by conversion to disulfide-linked dichains. The toxicities of recombinant wild-type and chimeric BoNT/As were similar, but dropped to 60% compared with the values of native BoNT/As. The relative orders of SNAP-25 cleavage activity in neuronal cells and toxicity differed. BoNT/A121 and recombinant BoNT/A2 have similar SNAP-25 cleavage activity. BoNT/A2 HN is possibly responsible for the higher potency of BoNT/A2 than BoNT/A1.
Collapse
Affiliation(s)
- Tomoko Kohda
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yasushi Torii
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Shunji Kozaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Masafumi Mukamoto
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
22
|
Abstract
How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation. The clostridial neurotoxins (CNTs) comprise tetanus toxin (TT) and botulinum neurotoxin (BoNT [BT]) serotypes (A to G and X) and several recently identified CNT-like proteins, including BT/En and the mosquito BoNT-like toxin Pmp1. CNTs are produced as single proteins cleaved to a light chain (LC) and a heavy chain (HC) connected by an interchain disulfide bond. LC is a zinc metalloprotease (cleaving soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]), while HC contains an N-terminal translocation domain (HCN) and a C-terminal receptor binding domain (HCC). HCN-mediated LC translocation is the least understood function of CNT action. Here, β-lactamase (βlac) was used as a reporter in discovery-based live-cell assays to characterize TT-mediated LC translocation. Directed mutagenesis identified a role for a charged loop (767DKE769) connecting α15 and α16 (cis-loop) within HCN in LC translocation; aliphatic substitution inhibited LC translocation but not other toxin functions such as cell binding, intracellular trafficking, or HCN-mediated pore formation. K768 was conserved among the CNTs. In molecular simulations of the HCN with a membrane, the cis-loop did not bind with the cell membrane. Taken together, the results of these studies implicate the cis-loop in LC translocation, independently of pore formation. IMPORTANCE How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation.
Collapse
|
23
|
Gregory KS, Liu SM, Acharya KR. Crystal structure of botulinum neurotoxin subtype A3 cell binding domain in complex with GD1a co-receptor ganglioside. FEBS Open Bio 2020; 10:298-305. [PMID: 31945264 PMCID: PMC7050238 DOI: 10.1002/2211-5463.12790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are one of the most toxic proteins known to humans. Their molecular structure is comprised of three essential domains—a cell binding domain (HC), translocation domain and catalytic domain (light chain) . The HC domain facilitates the highly specific binding of BoNTs to the neuronal membrane via a dual‐receptor complex involving a protein receptor and a ganglioside. Variation in activity/toxicity across subtypes of serotype A has been attributed to changes in protein and ganglioside interactions, and their implications are important in the design of novel BoNT‐based therapeutics. Here, we present the structure of BoNT/A3 cell binding domain (HC/A3) in complex with the ganglioside GD1a at 1.75 Å resolution. The structure revealed that six residues interact with the three outermost monosaccharides of GD1a through several key hydrogen bonding interactions. A detailed comparison of structures of HC/A3 with HC/A1 revealed subtle conformational differences at the ganglioside binding site upon carbohydrate binding.
Collapse
Affiliation(s)
- Kyle S Gregory
- Department of Biology and Biochemistry, Claverton Down, University of Bath, UK
| | | | - K Ravi Acharya
- Department of Biology and Biochemistry, Claverton Down, University of Bath, UK
| |
Collapse
|
24
|
Huang Y, Soliakov A, Le Brun AP, Macdonald C, Johnson CL, Solovyova AS, Waller H, Moore GR, Lakey JH. Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A. Biochemistry 2019; 58:4882-4892. [PMID: 31686499 PMCID: PMC6899464 DOI: 10.1021/acs.biochem.9b00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Indexed: 11/28/2022]
Abstract
Numerous bacterial toxins and other virulence factors use low pH as a trigger to convert from water-soluble to membrane-inserted states. In the case of colicins, the pore-forming domain of colicin A (ColA-P) has been shown both to undergo a clear acidic unfolding transition and to require acidic lipids in the cytoplasmic membrane, whereas its close homologue colicin N shows neither behavior. Compared to that of ColN-P, the ColA-P primary structure reveals the replacement of several uncharged residues with aspartyl residues, which upon replacement with alanine induce an unfolded state at neutral pH. Here we investigate ColA-P's structural requirement for these critical aspartyl residues that are largely situated at the N-termini of α helices. As previously shown in model peptides, the charged carboxylate side chain can act as a stabilizing helix N-Cap group by interacting with free amide hydrogen bond donors. Because this could explain ColA-P destabilization when the aspartyl residues are protonated or replaced with alanyl residues, we test the hypothesis by inserting asparagine, glutamine, and glutamate residues at these sites. We combine urea (fluorescence and circular dichroism) and thermal (circular dichroism and differential scanning calorimetry) denaturation experiments with 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy of ColA-P at different pH values to provide a comprehensive description of the unfolding process and confirm the N-Cap hypothesis. Furthermore, we reveal that, in urea, the single domain ColA-P unfolds in two steps; low pH destabilizes the first step and stabilizes the second.
Collapse
Affiliation(s)
- Yan Huang
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, People’s Republic of China
| | - Andrei Soliakov
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Anton P. Le Brun
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- Australian
Centre for Neutron Scattering, Australian
Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
| | - Colin Macdonald
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher L. Johnson
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Alexandra S. Solovyova
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Helen Waller
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Geoffrey R. Moore
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Jeremy H. Lakey
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|
25
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
26
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
27
|
Monoclonal Antibody Combinations Prevent Serotype A and Serotype B Inhalational Botulism in a Guinea Pig Model. Toxins (Basel) 2019; 11:toxins11040208. [PMID: 30959899 PMCID: PMC6520708 DOI: 10.3390/toxins11040208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known, with a human LD50 of ~1 ng/kg. Equine antitoxin has a half-life in circulation of less than 1 day and is limited to a treatment rather than a prevention indication. The development of monoclonal antibodies (mAbs) may represent an alternative therapeutic option that can be produced at high quantities and of high quality and with half-lives of >10 days. Two different three mAb combinations are being developed that specifically neutralize BoNT serotypes A (BoNT/A) and B (BoNT/B). We investigated the pharmacokinetics of the anti-BoNT/A and anti-BoNT/B antibodies in guinea pigs (Cavia porcellus) and their ability to protect guinea pigs against an aerosol challenge of BoNT/A1 or BoNT/B1. Each antibody exhibited dose-dependent exposure and reached maximum circulating concentrations within 48 h post intraperitoneal or intramuscular injection. A single intramuscular dose of the three mAb combination protected guinea pigs against an aerosol challenge dose of 93 LD50 of BoNT/A1 and 116 LD50 of BoNT/B1 at 48 h post antibody administration. These mAbs are effective in preventing botulism after an aerosol challenge of BoNT/A1 and BoNT/B1 and may represent an alternative to vaccination to prevent type A or B botulism in those at risk of BoNT exposure.
Collapse
|
28
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|