1
|
Kop LFM, Koch H, Dalcin Martins P, Suarez C, Karačić S, Persson F, Wilén BM, Hagelia P, Jetten MSM, Lücker S. High diversity of nitrifying bacteria and archaea in biofilms from a subsea tunnel. FEMS Microbiol Ecol 2025; 101:fiaf032. [PMID: 40156577 PMCID: PMC11995701 DOI: 10.1093/femsec/fiaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial biofilm formation can contribute to the accelerated deterioration of steel-reinforced concrete structures and significantly impact their service life, making it critical to understand the diversity of the biofilm community and prevailing processes in these habitats. Here, we analyzed 16S rRNA gene amplicon and metagenomics sequencing data to study the abundance and diversity of nitrifiers within biofilms on the concrete surface of the Oslofjord subsea road tunnel in Norway. We showed that the abundance of nitrifiers varied greatly in time and space, with a mean abundance of 24.7 ± 15% but a wide range between 1.2% and 61.4%. We hypothesize that niche differentiation allows the coexistence of several nitrifier groups and that their high diversity increases the resilience to fluctuating environmental conditions. Strong correlations were observed between the nitrifying families Nitrosomonadaceae and Nitrospinaceae, and the iron-oxidizing family Mariprofundaceae. Metagenome-assembled genome analyses suggested that early Mariprofundaceae colonizers may provide a protected environment for nitrifiers in exchange for nitrogen compounds and vitamin B12, but further studies are needed to elucidate the spatial organization of the biofilms and the cooperative and competitive interactions in this environment. Together, this research provides novel insights into the diverse communities of nitrifiers living within biofilms on concrete surfaces and establishes a foundation for future experimental studies of concrete biofilms.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Paula Dalcin Martins
- Ecosystems and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, John Ericssons väg 1, 221 00 Lund, Sweden
| | - Sabina Karačić
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Universitätsklinikum Bonn, Venusberg – Campus 1, 53127 Bonn, Germany
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Innspurten 11C, 0663 Oslo Norway
- Müller-Sars Biological Station, Ørje, PO Box 64, NO-1871 Ørje, Norway
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Cui H, Wang S, Fan S, Long H, Lin J, Ding W, Zhang W. Branched-chain amino acid metabolism supports Roseobacteraceae positive interactions in marine biofilms. Appl Environ Microbiol 2025; 91:e0241124. [PMID: 39932299 PMCID: PMC11921356 DOI: 10.1128/aem.02411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 03/20/2025] Open
Abstract
Interspecies interactions are key factors affecting the stability of microbial communities. However, microbial interactions in marine biofilms, which constitute up to 80% of the microbial biomass in certain marine environments, are not well understood. We addressed this knowledge gap by coculturing four marine biofilm-derived Roseobacteraceae strains (Leisingera aquaemixtae M597, Roseibium aggregatum S1616, Alloyangia pacifica T6124, and Sulfitobacter indolifex W002) in 14 single carbon sources. Overall, 140 coculture experiments revealed 39.3% positive interactions compared to 8.3% negative interactions. When the carbon source was consumed by only one strain, the interaction between the strains was more likely to be positive. The interaction between S1616 and M597, when cultured in D-gluconic acid, was further studied as an example. S1616-M597 coculture displayed a higher D-gluconic acid consumption rate than S1616 monoculture, whereas M597 could not use D-gluconic acid as the sole carbon source. The supernatant of S1616 monoculture supported the growth of M597, and branched-chain amino acids in the supernatant were consumed. Transcriptomic analysis suggested that M597 induced the expression of genes for branched-chain amino acid biosynthesis in S1616. Additionally, metagenomic analysis revealed the wide distribution and a strongly correlated co-occurrence of the four strains in global oceanic biofilms. Together, our findings show that interspecies positive interactions are prevalent among marine-biofilm Roseobacteraceae, and the interactions are likely to be mediated by branched-chain amino acids metabolism. IMPORTANCE Interspecies interactions are crucial for microbial community structure and function. Despite well-studied social behaviors in model microorganisms, species interactions in natural marine biofilms especially Roseobacteraceae with complex metabolic pathways are not well understood. Our findings suggest that positive microbial interactions, which can be mediated by branched-chain amino acid biosynthesis, are common among marine-biofilm Roseobacteraceae. This study provides new insights into microbial interactions and the ecology of marine biofilms.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shuaitao Wang
- MOE Key Laboratory of Marine Genetics and Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jinshui Lin
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
O'Brien PA, Bell SC, Rix L, Turnlund AC, Kjeldsen SR, Webster NS, Negri AP, Abdul Wahab MA, Vanwonterghem I. Light and dark biofilm adaptation impacts larval settlement in diverse coral species. ENVIRONMENTAL MICROBIOME 2025; 20:11. [PMID: 39863912 PMCID: PMC11762876 DOI: 10.1186/s40793-025-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition. RESULTS We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species. CONCLUSIONS Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.
Collapse
Affiliation(s)
- Paul A O'Brien
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Abigail C Turnlund
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Shannon R Kjeldsen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD, Australia
| |
Collapse
|
4
|
Feng H, Liang S, Li R, Wang H, Cai R. Jannaschia maritima sp. nov., a novel marine bacterium isolated from the biofilm of concrete breakwater structures. Int J Syst Evol Microbiol 2025; 75. [PMID: 39836537 DOI: 10.1099/ijsem.0.006645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Marine biofilms were newly revealed as a bank of hidden microbial diversity and functional potential. In this study, a Gram-stain-negative, aerobic, oval and non-motile bacterium, designated LMIT008T, was isolated from the biofilm of concrete breakwater structures located in the coastal area of Shantou, PR China. Strain LMIT008T was found to grow at salinities of 1-7% NaCl, at pH 5-8 and at temperatures 10-40 °C. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain LMIT008T belonged to the genus Jannaschia and was closely related to the type strains Jannaschia aquimarina KCTC23555T (96.03%) and Jannaschia marina SHC-163T (95.31%). The draft genome size of the strain LMIT008T was 3.67 Mbp, and the genomic DNA G+C content was 69.83 mol%. The average nucleotide identity value between strain LMIT008T and the closely related type strain J. aquimarina KCTC23555T was 74.82%. The predominant cellular fatty acids were identified as summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) and C18 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. Ubiquinone-10 (Q-10) is the sole respiratory quinone. Further, genomic analysis of strain LMIT008T showed that the strain harbours abundant genes associated with biofilm formation and environmental adaption, explaining the potential strategies for living on concrete breakwater structures. Based on the morphological, phylogenetic, chemotaxonomic and phenotypic characterization, the strain LMIT008T was considered to represent a novel species in the genus of Jannaschia, for which the name Jannaschia maritima sp. nov. was proposed, with LMIT008T (=MCCC 1K08854T=KCTC 8321T) as the type strain.
Collapse
Affiliation(s)
- Hao Feng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
| | - Ruisi Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, PR China
| | - Runlin Cai
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, PR China
| |
Collapse
|
5
|
Ji L, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Temperature alters bacterial community structure in sediment of mountain stream. Sci Rep 2024; 14:31159. [PMID: 39732878 DOI: 10.1038/s41598-024-82497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities. Our findings identified that the phyla Acidobacteriota and Bacteroidota served as the strong discriminant for sedimental bacterial community in the non-freezing and freezing periods, respectively. In contrast, no significant difference was detected in bacterial functional composition. Mantel test and Redundancy analysis showed that temperature and nutrients played significant roles in determining the bacterial community structure and temperature critically influenced the bacterial metabolic processes. The results of partial least squares path model demonstrated that temperature affected the bacterial community structure in both directly (43.70%) and indirectly pathways (41.10%) by affecting the sediment parameters. However, the functional composition was not significantly affected by temperature and nutrients. Our results highlight that the change of temperature can significantly alters the structure of bacterial communities rather than functional composition and provides new insights into the response mechanisms of bacterial communities to environmental factors which contributes to the deep understanding of the driving factors as well as the protection strategies for microbial communities in mountain stream and aquatic ecosystem.
Collapse
Affiliation(s)
- Li Ji
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China.
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Zhao Liu
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Portas A, Carriot N, Barry-Martinet R, Ortalo-Magné A, Hajjoul H, Dormoy B, Culioli G, Quillien N, Briand JF. Shear stress controls prokaryotic and eukaryotic biofilm communities together with EPS and metabolomic expression in a semi-controlled coastal environment in the NW Mediterranean Sea. ENVIRONMENTAL MICROBIOME 2024; 19:109. [PMID: 39695832 DOI: 10.1186/s40793-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean). Shear stress appeared to be the primary factor influencing biomass, EPS production and community structure and composition. Especially, the transition from static to dynamic conditions, characterized by varying shear stress intensities, had a more pronounced effect on prokaryotic and eukaryotic beta-diversity than changes in shear stress intensity or seasonal physico-chemical parameters. In static samples, mobile microbe feeders such as arthropods and nematodes were predominant, whereas shear stress favored the colonization of sessile organisms and heterotrophic protists using the protective structure of biofilms for growth. The increase in shear stress resulted in a decrease in biomass but an overproduction of EPS, specifically exopolysaccharides, suggesting an adaptive response to withstand shear forces. Metabolite analysis highlighted the influence of shear stress on community dynamics. Specific metabolites associated with static conditions correlated positively with certain bacterial and algal groups, indirectly indicating reduced grazer control with increasing shear stress.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France.
- Laboratoire MAPIEM, Université de Toulon, Toulon, France.
| | - Nathan Carriot
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
| | | | | | - Houssam Hajjoul
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Bruno Dormoy
- Laboratoire d'Analyses de Surveillance et d'Expertise de La Marine (LASEM), Toulon, France
| | - Gérald Culioli
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
- IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
7
|
Li C, Zhang Y, Shi W, Peng Y, Han Y, Jiang S, Dong X, Zhang R. Viral diversity within marine biofilms and interactions with corrosive microbes. ENVIRONMENTAL RESEARCH 2024; 263:119991. [PMID: 39276831 DOI: 10.1016/j.envres.2024.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In marine environments, a wide variety of microbes like bacteria, and archaea influence on the corrosion of materials. Viruses are widely distributed in biofilms among these microbes and may affect the corrosion process through interactions with key corrosive prokaryotes. However, understanding of the viral communities within biofilms and their interactions with corrosive microbes remains is limited. To improve this knowledge gap, 53 metagenomes were utilized to investigate the diversity of viruses within biofilms on 8 different materials and their interactions with corrosive microbes. Notably, the viruses within biofilms predominantly belonged to Caudoviricetes, and phylogenetic analysis of Caudoviricetes and protein-sharing networks with other environments revealed the presence of numerous novel viral clades in biofilms. The virus‒host linkages revealed a close association between viruses and corrosive microbes in biofilms. This means that viruses may modulate host corrosion-related metabolism through auxiliary metabolic genes. It was observed that the virus could enhance host resistance to metals and antibiotics via horizontal gene transfer. Interestingly, viruses could protect themselves from host antiviral systems through anti-defense systems. This study illustrates the diversity of viruses within biofilms formed on materials and the intricate interactions between viruses and corrosive microbes, showing the potential roles of viruses in corrosive biofilms.
Collapse
Affiliation(s)
- Chengpeng Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenqing Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shuqing Jiang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
8
|
Fan S, Qin P, Lu J, Wang S, Zhang J, Wang Y, Cheng A, Cao Y, Ding W, Zhang W. Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides. IMETA 2024; 3:e244. [PMID: 39742298 PMCID: PMC11683478 DOI: 10.1002/imt2.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.
Collapse
Affiliation(s)
- Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Peng Qin
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Shuaitao Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Aifang Cheng
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Yan Cao
- College of Pulmonary & Critical Care MedicineChinese PLA General HospitalBeijingChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
9
|
Zhong C, Yamanouchi S, Li Y, Chen J, Wei T, Wang R, Zhou K, Cheng A, Hao W, Liu H, Konhauser KO, Iwasaki W, Qian PY. Marine biofilms: cyanobacteria factories for the global oceans. mSystems 2024; 9:e0031724. [PMID: 39404262 PMCID: PMC11575276 DOI: 10.1128/msystems.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024] Open
Abstract
Marine biofilms were newly revealed as a giant microbial diversity pool for global oceans. However, the cyanobacterial diversity in marine biofilms within the upper seawater column and its ecological and evolutionary implications remains undetermined. Here, we reconstructed a full picture of modern marine cyanobacteria habitats by re-analyzing 9.3 terabyte metagenomic data sets and 2,648 metagenome-assembled genomes (MAGs). The abundances of cyanobacteria lineages exclusively detected in marine biofilms were up to ninefold higher than those in seawater at similar sample size. Analyses revealed that cyanobacteria in marine biofilms are specialists with strong geographical and environmental constraints on their genome and functional adaption, which is in stark contrast to the generalistic features of seawater-derived cyanobacteria. Molecular dating suggests that the important diversifications in biofilm-forming cyanobacteria appear to coincide with the Great Oxidation Event (GOE), "boring billion" middle Proterozoic, and the Neoproterozoic Oxidation Event (NOE). These new insights suggest that marine biofilms are large and important cyanobacterial factories for the global oceans. IMPORTANCE Cyanobacteria, highly diverse microbial organisms, play a crucial role in Earth's oxygenation and biogeochemical cycling. However, their connection to these processes remains unclear, partly due to incomplete surveys of oceanic niches. Our study uncovered significant cyanobacterial diversity in marine biofilms, showing distinct niche differentiation compared to seawater counterparts. These patterns reflect three key stages of marine cyanobacterial diversification, coinciding with major geological events in the Earth's history.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Tong Wei
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ruojun Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weiduo Hao
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Cui H, Lu J, Ding W, Zhang W. Genomic Features and Antimicrobial Activity of Phaeobacter inhibens Strains from Marine Biofilms. Mar Drugs 2024; 22:492. [PMID: 39590772 PMCID: PMC11595833 DOI: 10.3390/md22110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Members of the genus Phaeobacter are widely distributed in the marine environment and are known for their ability to produce tropodithietic acid (TDA). Studies investigating the genomic and metabolic features of Phaeobacter strains from marine biofilms are sparse. Here, we analyze the complete genomes of 18 Phaeobacter strains isolated from biofilms on subtidal stones, with the aim of determining their potential to synthesize secondary metabolites. Based on whole-genome comparison and average nucleotide identity calculation, the isolated bacteria are classified as novel strains of Phaeobacter inhibens. Further analysis reveals a total of 153 biosynthetic gene clusters, which are assigned to 32 gene cluster families with low similarity to previously published ones. Complete TDA clusters are identified in 14 of the 18 strains, while in the other 4 strains the TDA clusters are rather incomplete and scattered across different chromosome and plasmid locations. Phylogenetic analysis suggests that their presence or absence may be potentially attributed to horizontal gene transfer. High-performance liquid chromatography-mass spectrometry analysis demonstrates the production of TDA in all the examined strains. Furthermore, the Phaeobacter strains have strong antibacterial activity against the pathogenic strain Vibrio owensii ems001, which is associated with acute hepatopancreatic necrosis in South American white shrimp. Altogether, this study ameliorates our knowledge of marine biofilm-associated Phaeobacter and offers new avenues for exploiting marine antimicrobial agents.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (H.C.); (J.L.)
| |
Collapse
|
11
|
Rajeev M, Jung I, Kang I, Cho JC. Genome-centric metagenomics provides insights into the core microbial community and functional profiles of biofloc aquaculture. mSystems 2024; 9:e0078224. [PMID: 39315779 PMCID: PMC11494986 DOI: 10.1128/msystems.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, South Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Ilnam Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| |
Collapse
|
12
|
Kokoulin MS, Kuzmich AS, Romanenko LA. Structure and in vitro antiproliferative activity against breast cancer cells of the cell-wall polysaccharide from the marine bacterium Kangiella japonica KMM 3899 T. Carbohydr Polym 2024; 341:122360. [PMID: 38876721 DOI: 10.1016/j.carbpol.2024.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Kangiella japonica KMM 3899T is a Gram-negative bacterium isolated from a sandy sediment sample collected from the Sea of Japan. Here the results of the structure and the biological activity against breast cancer cells of the cell-wall polysaccharide from K. japonica KMM 3899T have been described. The structure of the repeating unit of the polysaccharide was elucidated using chemical analysis and NMR spectroscopy: →4)-α-L-GalpNAc3AcA-(1 → 3)-α-D-GlcpNAc-(1 → 4)-β-D-GlcpNAc3NAcAN-(1→. The cell-wall polysaccharide had an antiproliferative effect against T-47D cells. Flow cytometric and Western blot analysis revealed that the polysaccharide induced S phase arrest and mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
13
|
Al-Balushi MA, Kyaw HH, Myint MTZ, Al-Abri M, Dobretsov S. Chemical Cleaning Techniques for Fouled RO Membranes: Enhancing Fouling Removal and Assessing Microbial Composition. MEMBRANES 2024; 14:204. [PMID: 39452816 PMCID: PMC11509379 DOI: 10.3390/membranes14100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Membrane fouling, a major challenge in desalination, is addressed in this study by investigating three different chemical cleaning protocols (A, B, and C) targeting fouled reverse osmosis (RO) membranes and microbial community composition. Cleaning protocols A and B involve different chemical treatments selected based on preliminary tests and literature review, while protocol C follows the manufacturer's standard recommendation. Membrane morphology, foulant composition, and microbial community variability in fouled, virgin, and cleaned membranes are studied. Effective biofilm removal is observed across all protocols using scanning electron microscopy (SEM), while spectroscopic techniques highlight interactions between foulants and membranes. Importantly, a critical gap in understanding how cleaning strategies influence microbial communities on membranes is addressed. Shifts in dominant bacterial phyla (Proteobacteria, Firmicutes, and Actinobacteria) after cleaning are identified through 16S rRNA amplicon sequencing. Cleaning A showed the best results in reducing microbial counts and restoring composition similar to virgin membranes. Additionally, chemical treatment increased dominance of resistant genera such as Staphylococcus, Bacillus, Citrobacter, and Burkholderia. This study emphasizes the necessity for tailored fouling cleaning strategies for RO membranes, with Cleaning A is a promising solution, paving the way for enhanced water purification technologies.
Collapse
Affiliation(s)
- Mohammed A. Al-Balushi
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, P.O. Box 34, Muscat 123, Oman
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agricultural, Fisheries Wealth & Water Resources, P.O. Box 3094, Muscat 111, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman; (H.H.K.); (M.A.-A.)
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoudh, P.O. Box 36, Muscat 123, Oman;
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman; (H.H.K.); (M.A.-A.)
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoudh, P.O. Box 33, Muscat 123, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, P.O. Box 34, Muscat 123, Oman
- UNESCO Chair in Marine Biotechnology, Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud, P.O. Box 50, Muscat 123, Oman
| |
Collapse
|
14
|
Papale M, Fazi S, Severini M, Scarinci R, Dell'Acqua O, Azzaro M, Venuti V, Fazio B, Fazio E, Crupi V, Irrera A, Rizzo C, Giudice AL, Caruso G. Structural properties and microbial diversity of the biofilm colonizing plastic substrates in Terra Nova Bay (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173773. [PMID: 38844237 DOI: 10.1016/j.scitotenv.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Maila Severini
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Roberta Scarinci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Ombretta Dell'Acqua
- DISTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes, National Research Council (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenza Crupi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessia Irrera
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
15
|
Shaw J, Yu YW. Fairy: fast approximate coverage for multi-sample metagenomic binning. MICROBIOME 2024; 12:151. [PMID: 39143609 PMCID: PMC11323348 DOI: 10.1186/s40168-024-01861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Metagenomic binning, the clustering of assembled contigs that belong to the same genome, is a crucial step for recovering metagenome-assembled genomes (MAGs). Contigs are linked by exploiting consistent signatures along a genome, such as read coverage patterns. Using coverage from multiple samples leads to higher-quality MAGs; however, standard pipelines require all-to-all read alignments for multiple samples to compute coverage, becoming a key computational bottleneck. RESULTS We present fairy ( https://github.com/bluenote-1577/fairy ), an approximate coverage calculation method for metagenomic binning. Fairy is a fast k-mer-based alignment-free method. For multi-sample binning, fairy can be > 250 × faster than read alignment and accurate enough for binning. Fairy is compatible with several existing binners on host and non-host-associated datasets. Using MetaBAT2, fairy recovers 98.5 % of MAGs with > 50 % completeness and < 5 % contamination relative to alignment with BWA. Notably, multi-sample binning with fairy is always better than single-sample binning using BWA ( > 1.5 × more > 50 % complete MAGs on average) while still being faster. For a public sediment metagenome project, we demonstrate that multi-sample binning recovers higher quality Asgard archaea MAGs than single-sample binning and that fairy's results are indistinguishable from read alignment. CONCLUSIONS Fairy is a new tool for approximately and quickly calculating multi-sample coverage for binning, resolving a computational bottleneck for metagenomics. Video Abstract.
Collapse
Affiliation(s)
- Jim Shaw
- Department of Mathematics, University of Toronto, Toronto, Canada.
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, Canada.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
16
|
Vigil BE, Ascue F, Ayala RY, Murúa P, Calderon MS, Bustamante DE. Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Sci Rep 2024; 14:18577. [PMID: 39127849 PMCID: PMC11316746 DOI: 10.1038/s41598-024-69538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Macroalgae are vital reservoirs for essential epibiotic microorganisms. Among these are growth-promoting bacteria that support the growth and healthy development of their host macroalgae, and these macroalgae can be utilized in agriculture as biostimulants, offering an alternative to traditional agrochemicals. However, to date, no comparative studies have been conducted on the functional profile and bacterial diversity associated with coastal macroalgae of Peru. In this study, we employed amplicon sequencing of the V3-V4 region of 16S rRNA gene in twelve host macroalgae collected from two rocky shores in central Peru to compare their bacterial communities. The results revealed high bacterial diversity across both sites, but differences in microbial composition were noted. The phyla Bacteroidota and Pseudomonadota were predominant. The functional prediction highlighted 44 significant metabolic pathways associated with the bacterial microbiota when comparing host macroalgae. These active pathways are related to metabolism and genetic and cellular information processing. No direct association was detected between the macroalgal genera and the associated microbiota, suggesting that the bacterial community is largely influenced by their genetic functions than the taxonomic composition of their hosts. Furthermore, some species of Chlorophyta and Rhodophyta were observed to host growth-promoting bacteria, such as Maribacter sp. and Sulfitobacter sp.
Collapse
Affiliation(s)
- Bianca E Vigil
- Programa de Maestría en Mejoramiento Genético de Plantas, Universidad Nacional Agraria La Molina, Lima, Peru
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Francisco Ascue
- Escuela de Posgrado de la Universidad de Ciencia y Tecnología (UTEC), Barranco, Lima, Peru
| | - Rosmery Y Ayala
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología (FICOPAT), Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
17
|
Cui H, Fan S, Ding W, Zhang W. Genomic Analysis of Novel Sulfitobacter Bacterial Strains Isolated from Marine Biofilms. Mar Drugs 2024; 22:289. [PMID: 39057398 PMCID: PMC11278168 DOI: 10.3390/md22070289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria from the genus Sulfitobacter are distributed across various marine habitats and play a significant role in sulfur cycling. However, the metabolic features of Sulfitobacter inhabiting marine biofilms are still not well understood. Here, complete genomes and paired metatranscriptomes of eight Sulfitobacter strains, isolated from biofilms on subtidal stones, have been analyzed to explore their central energy metabolism and potential of secondary metabolite biosynthesis. Based on average nucleotide identity and phylogenetic analysis, the eight strains were classified into six novel species and two novel strains. The reconstruction of the metabolic pathways indicated that all strains had a complete Entner-Doudoroff pathway, pentose phosphate pathway, and diverse pathways for amino acid metabolism, suggesting the presence of an optimized central carbon metabolism. Pangenome analysis further revealed the differences between the gene cluster distribution patterns among the eight strains, suggesting significant functional variation. Moreover, a total of 47 biosynthetic gene clusters were discovered, which were further classified into 37 gene cluster families that showed low similarity with previously documented clusters. Furthermore, metatranscriptomic analysis revealed the expressions of key functional genes involved in the biosynthesis of ribosomal peptides in in situ marine biofilms. Overall, this study sheds new light on the metabolic features, adaptive strategies, and value of genome mining in this group of biofilm-associated Sulfitobacter bacteria.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Shen Fan
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Wei Ding
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Weipeng Zhang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
| |
Collapse
|
18
|
Zapata-Peñasco I, Avelino-Jiménez I, Mendoza-Pérez J, Vázquez Guevara M, Gutiérrez-Ladrón de Guevara M, Valadez- Martínez M, Hernández-Maya L, Garibay-Febles V, Fregoso-Aguilar T, Fonseca-Campos J. Environmental stressor assessment of hydrocarbonoclastic bacteria biofilms from a marine oil spill. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00834. [PMID: 38948351 PMCID: PMC11211098 DOI: 10.1016/j.btre.2024.e00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 07/02/2024]
Abstract
The environmental and economic impact of an oil spill can be significant. Biotechnologies applied during a marine oil spill involve bioaugmentation with immobilised or encapsulated indigenous hydrocarbonoclastic species selected under laboratory conditions to improve degradation rates. The environmental factors that act as stressors and impact the effectiveness of hydrocarbon removal are one of the challenges associated with these applications. Understanding how native microbes react to environmental stresses is necessary for effective bioaugmentation. Herein, Micrococcus luteus and M. yunnanensis isolated from a marine oil spill mooring system showed hydrocarbonoclastic activity on Maya crude oil in a short time by means of total petroleum hydrocarbons (TPH) at 144 h: M. luteus up to 98.79 % and M. yunnanensis 97.77 % removal. The assessment of Micrococcus biofilms at different temperature (30 °C and 50 °C), pH (5, 6, 7, 8, 9), salinity (30, 50, 60, 70, 80 g/L), and crude oil concentration (1, 5, 15, 25, 35 %) showed different response to the stressors depending on the strain. According to response surface analysis, the main effect was temperature > salinity > hydrocarbon concentration. The hydrocarbonoclastic biofilm architecture was characterised using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Subtle but significant differences were observed: pili in M. luteus by SEM and the topographical differences measured by AFM Power Spectral Density (PSD) analysis, roughness was higher in M. luteus than in M. yunnanensis. In all three domains of life, the Universal Stress Protein (Usp) is crucial for stress adaptation. Herein, the uspA gene expression was analysed in Micrococcus biofilm under environmental stressors. The uspA expression increased up to 2.5-fold in M. luteus biofilms at 30 °C, and 1.3-fold at 50 °C. The highest uspA expression was recorded in M. yunnanensis biofilms at 50 °C with 2.5 and 3-fold with salinities of 50, 60, and 80 g/L at hydrocarbon concentrations of 15, 25, and 35 %. M. yunnanensis biofilms showed greater resilience than M. luteus biofilms when exposed to harsh environmental stressors. M. yunnanensis biofilms were thicker than M. luteus biofilms. Both biofilm responses to environmental stressors through uspA gene expression were consistent with the behaviours observed in the response surface analyses. The uspA gene is a suitable biomarker for assessing environmental stressors of potential microorganisms for bioremediation of marine oil spills and for biosensing the ecophysiological status of native microbiota in a marine petroleum environment.
Collapse
Affiliation(s)
- I. Zapata-Peñasco
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - I.A. Avelino-Jiménez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - J. Mendoza-Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Vázquez Guevara
- Facultad de Química, Universidad de Guanajuato, Noria Alta, Guanajuato, 36050, Mexico
| | - M. Gutiérrez-Ladrón de Guevara
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Valadez- Martínez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - L. Hernández-Maya
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - V. Garibay-Febles
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - T. Fregoso-Aguilar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - J. Fonseca-Campos
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av Instituto Politécnico Nacional, Gustavo A. Madero, 07340, Mexico
| |
Collapse
|
19
|
Laysandra L, Rusli RA, Chen YW, Chen SJ, Yeh YW, Tsai TL, Huang JH, Chuang KS, Njotoprajitno A, Chiu YC. Elastic and Self-Healing Copolymer Coatings with Antimicrobial Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25194-25209. [PMID: 38684227 PMCID: PMC11103657 DOI: 10.1021/acsami.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.
Collapse
Affiliation(s)
- Livy Laysandra
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Randy Arthur Rusli
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Wei Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shi-Ju Chen
- Taipei
Municipal Zhongshan Girls High School, Taipei 10617, Taiwan
| | - Yao-Wei Yeh
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Hsiung Huang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Kao-Shu Chuang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Andreas Njotoprajitno
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
Gao N, Shu Y, Wang Y, Sun M, Wei Z, Song C, Zhang W, Sun Y, Hu X, Bao Z, Ding W. Acute Ammonia Causes Pathogenic Dysbiosis of Shrimp Gut Biofilms. Int J Mol Sci 2024; 25:2614. [PMID: 38473861 PMCID: PMC10932075 DOI: 10.3390/ijms25052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yi Shu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yongming Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Meng Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Chenxi Song
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Yue Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Zhenmin Bao
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| |
Collapse
|
22
|
Kogay R, Zhaxybayeva O. Co-evolution of gene transfer agents and their alphaproteobacterial hosts. J Bacteriol 2024; 206:e0039823. [PMID: 38240570 PMCID: PMC10883770 DOI: 10.1128/jb.00398-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
Gene transfer agents (GTAs) are enigmatic elements that resemble small viruses and are known to be produced during nutritional stress by some bacteria and archaea. The production of GTAs is regulated by quorum sensing, under which a small fraction of the population acts as GTA producers, while the rest becomes GTA recipients. In contrast to canonical viruses, GTAs cannot propagate themselves because they package pieces of the producing cell's genome. In alphaproteobacteria, GTAs are mostly vertically inherited and reside in their hosts' genomes for hundreds of millions of years. While GTAs' ability to transfer genetic material within a population and their long-term preservation suggest an increased fitness of GTA-producing microbes, the associated benefits and type of selection that maintains GTAs are poorly understood. By comparing rates of evolutionary change in GTA genes to the rates in gene families abundantly present across 293 alphaproteobacterial genomes, we detected 59 gene families that likely co-evolve with GTA genes. These gene families are predominantly involved in stress response, DNA repair, and biofilm formation. We hypothesize that biofilm formation enables the physical proximity of GTA-producing cells, limiting GTA-derived benefits only to a group of closely related cells. We further conjecture that the population structure of biofilm-forming sub-populations ensures that the trait of GTA production is maintained despite the inevitable rise of "cheating" genotypes. Because release of GTA particles kills the producing cell, maintenance of GTAs is an exciting example of social evolution in a microbial population.IMPORTANCEGene transfer agents (GTAs) are viruses domesticated by some archaea and bacteria as vehicles for carrying pieces of the host genome. Produced under certain environmental conditions, GTA particles can deliver DNA to neighboring, closely related cells. The function of GTAs remains uncertain. While making GTAs is suicidal for a cell, GTA-encoding genes are widespread in genomes of alphaproteobacteria. Such GTA persistence implies functional benefits but raises questions about how selection maintains this lethal trait. By showing that GTA genes co-evolve with genes involved in stress response, DNA repair, and biofilm formation, we provide support for the hypothesis that GTAs facilitate DNA exchange during the stress conditions and present a model for how GTAs persist in biofilm-forming bacterial populations despite being lethal.
Collapse
Affiliation(s)
- Roman Kogay
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
Hasegawa-Takano M, Hosaka T, Kojima K, Nishimura Y, Kurihara M, Nakajima Y, Ishizuka-Katsura Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria. THE ISME JOURNAL 2024; 18:wrae175. [PMID: 39485071 PMCID: PMC11528372 DOI: 10.1093/ismejo/wrae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
Collapse
Affiliation(s)
- Masumi Hasegawa-Takano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Marie Kurihara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Yoshiko Ishizuka-Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
24
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
25
|
Bech PK, Jarmusch SA, Rasmussen JA, Limborg MT, Gram L, Henriksen NNSE. Succession of microbial community composition and secondary metabolism during marine biofilm development. ISME COMMUNICATIONS 2024; 4:ycae006. [PMID: 38390522 PMCID: PMC10881302 DOI: 10.1093/ismeco/ycae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In nature, secondary metabolites mediate interactions between microorganisms residing in complex microbial communities. However, the degree to which community dynamics can be linked to secondary metabolite potential remains largely unknown. In this study, we address the relationship between community succession and secondary metabolism variation. We used 16S and 18S rRNA gene and adenylation domain amplicon sequencing, genome-resolved metagenomics, and untargeted metabolomics to track the taxons, biosynthetic gene clusters, and metabolome dynamics in situ of microorganisms during marine biofilm succession over 113 days. Two phases were identified during the community succession, with a clear shift around Day 29, where the alkaloid secondary metabolites, pseudanes, were also detected. The microbial secondary metabolite potential changed between the phases, and only a few community members, including Myxococotta spp., were responsible for the majority of the biosynthetic gene cluster potential in the early succession phase. In the late phase, bryozoans and benthic copepods were detected, and the microbial nonribosomal peptide potential drastically decreased in association with a reduction in the relative abundance of the prolific secondary metabolite producers. Conclusively, this study provides evidence that the early succession of the marine biofilm community favors prokaryotes with high nonribosomal peptide synthetase potential. In contrast, the late succession is dominated by multicellular eukaryotes and a reduction in bacterial nonribosomal peptide synthetase potential.
Collapse
Affiliation(s)
- Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Jacob Agerbo Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen K, DK-1014, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen K, DK-1014, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | |
Collapse
|
26
|
Martínez-Alvarez L, Ramond JB, Vikram S, León-Sobrino C, Maggs-Kölling G, Cowan DA. With a pinch of salt: metagenomic insights into Namib Desert salt pan microbial mats and halites reveal functionally adapted and competitive communities. Appl Environ Microbiol 2023; 89:e0062923. [PMID: 37971255 PMCID: PMC10734447 DOI: 10.1128/aem.00629-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE The hyperarid Namib Desert is one of the oldest deserts on Earth. It contains multiple clusters of playas which are saline-rich springs surrounded by halite evaporites. Playas are of great ecological importance, and their indigenous (poly)extremophilic microorganisms are potentially involved in the precipitation of minerals such as carbonates and sulfates and have been of great biotechnological importance. While there has been a considerable amount of microbial ecology research performed on various Namib Desert edaphic microbiomes, little is known about the microbial communities inhabiting its multiple playas. In this work, we provide a comprehensive taxonomic and functional potential characterization of the microbial, including viral, communities of sediment mats and halites from two distant salt pans of the Namib Desert, contributing toward a better understanding of the ecology of this biome.
Collapse
Affiliation(s)
- Laura Martínez-Alvarez
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa
| | - Jean-Baptiste Ramond
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa
- Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Surendra Vikram
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa
| | - Carlos León-Sobrino
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa
| | | | - Don A. Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
28
|
Zhou K, Wong TY, Long L, Anantharaman K, Zhang W, Wong WC, Zhang R, Qian PY. Genomic and transcriptomic insights into complex virus-prokaryote interactions in marine biofilms. THE ISME JOURNAL 2023; 17:2303-2312. [PMID: 37875603 PMCID: PMC10689801 DOI: 10.1038/s41396-023-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus-prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus-host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction-modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lexin Long
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Weipeng Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
29
|
Wang M, Lu J, Qin P, Wang S, Ding W, Fu HH, Zhang YZ, Zhang W. Biofilm formation stabilizes metabolism in a Roseobacteraceae bacterium under temperature increase. Appl Environ Microbiol 2023; 89:e0060123. [PMID: 37768087 PMCID: PMC10617445 DOI: 10.1128/aem.00601-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ocean warming profoundly impacts microbes in marine environments; yet, how lifestyle (e.g., free living versus biofilm associated) affects the bacterial response to rising temperature is not clear. Here, we compared transcriptional, enzymatic, and physiological responses of free-living and biofilm-associated Leisingera aquaemixtae M597, a member of the Roseobacteraceae family isolated from marine biofilms, to the increase in temperature from 25℃ to 31℃. Complete genome sequencing and metagenomics revealed the prevalence of M597 in global ocean biofilms. Transcriptomics suggested a significant effect on the expression of genes related to carbohydrate metabolism, nitrogen and sulfur metabolism, and phosphorus utilization of free-living M597 cells due to temperature increase, but such drastic alterations were not observed in its biofilms. In the free-living state, the transcription of the key enzyme participating in the Embden-Meyerhof-Parnas pathway was significantly increased due to the increase in temperature, accompanied by a substantial decrease in the Entner-Doudoroff pathway, but transcripts of these glycolytic enzymes in biofilm-forming strains were independent of the temperature variation. The correlation between the growth condition and the shift in glycolytic pathways under temperature change was confirmed by enzymatic activity assays. Furthermore, the rising temperature affected the growth rate and the production of intracellular reactive oxygen species when M597 cells were free living rather than in biofilms. Thus, biofilm formation stabilizes metabolism in M597 when grown under high temperature and this homeostasis is probably related to the glycolytic pathways.IMPORTANCEBiofilm formation is one of the most successful strategies employed by microbes against environmental fluctuations. In this study, using a marine Roseobacteraceae bacterium, we studied how biofilm formation affects the response of marine bacteria to the increase in temperature. This study enhances our understanding of the function of bacterial biofilms and the microbe-environment interactions in the framework of global climate change.
Collapse
Affiliation(s)
- Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jie Lu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Peng Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shuaitao Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
30
|
Yin X, Li X, Li Q, Wang B, Zheng L. Complete genome analysis reveals environmental adaptability of sulfur-oxidizing bacterium Thioclava nitratireducens M1-LQ-LJL-11 and symbiotic relationship with deep-sea hydrothermal vent Chrysomallon squamiferum. Mar Genomics 2023; 71:101058. [PMID: 37478643 DOI: 10.1016/j.margen.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
One sulfur-oxidizing bacterium Thioclava sp. M1-LQ-LJL-11 was isolated from the gill of Chrysomallon squamiferum collected from 2700 m deep hydrothermal named Longqi on the southwest Indian Ocean ridge. In order to understand its survival mechanism in hydrothermal extreme environment and symbiotic relationship with its host, the complete genome of strain M1-LQ-LJL-11 was sequenced and analyzed. A total of 6117 Mb of valid data was obtained, including 4096 coding genes, 61 non coding genes, including 9 rRNAs (among them, there are 3 in 23S rRNA, 3 in 5S rRNA, and 3 in 16S rRNA.), 52 tRNAs and 35 genomic islands. Strain M1-LQ-LJL-11 contains one chromosome and two plasmids. In the genome annotation information of the strain, we found 28 genes including cys sox, sor, sqr, tst related to sulfur metabolism and 17 metal resistance genes. Interestingly, a pair of quorum sensing system which probably regulating biofilm formation located in chromosome was found. These genes are critical for self-adaptation against severe environment as well as host survival. This study provides a basis understanding for the adaptive strategies of deep-sea hydrothermal bacteria and symbiotic relationship with its host in extreme environments through gene level.
Collapse
Affiliation(s)
- Xin Yin
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xiang Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bingshu Wang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Zheng
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
31
|
Mugge RL, Rakocinski CF, Woolsey M, Hamdan LJ. Proximity to built structures on the seabed promotes biofilm development and diversity. BIOFOULING 2023; 39:706-718. [PMID: 37746691 DOI: 10.1080/08927014.2023.2255141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The rapidly expanding built environment in the northern Gulf of Mexico includes thousands of human built structures (e.g. platforms, shipwrecks) on the seabed. Primary-colonizing microbial biofilms transform structures into artificial reefs capable of supporting biodiversity, yet little is known about formation and recruitment of biofilms. Short-term seafloor experiments containing steel surfaces were placed near six structures, including historic shipwrecks and modern decommissioned energy platforms. Biofilms were analyzed for changes in phylogenetic composition, richness, and diversity relative to proximity to the structures. The biofilm core microbiome was primarily composed of iron-oxidizing Mariprofundus, sulfur-oxidizing Sulfurimonas, and biofilm-forming Rhodobacteraceae. Alpha diversity and richness significantly declined as a function of distance from structures. This study explores how built structures influence marine biofilms and contributes knowledge on how anthropogenic activity impacts microbiomes on the seabed.
Collapse
Affiliation(s)
- Rachel L Mugge
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Chet F Rakocinski
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Max Woolsey
- Hydrographic Science Research Center, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
| | - Leila J Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
32
|
Su X, Cui H, Zhang W. Copiotrophy in a Marine-Biofilm-Derived Roseobacteraceae Bacterium Can Be Supported by Amino Acid Metabolism and Thiosulfate Oxidation. Int J Mol Sci 2023; 24:ijms24108617. [PMID: 37239957 DOI: 10.3390/ijms24108617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Copiotrophic bacteria that respond rapidly to nutrient availability, particularly high concentrations of carbon sources, play indispensable roles in marine carbon cycling. However, the molecular and metabolic mechanisms governing their response to carbon concentration gradients are not well understood. Here, we focused on a new member of the family Roseobacteraceae isolated from coastal marine biofilms and explored the growth strategy at different carbon concentrations. When cultured in a carbon-rich medium, the bacterium grew to significantly higher cell densities than Ruegeria pomeroyi DSS-3, although there was no difference when cultured in media with reduced carbon. Genomic analysis showed that the bacterium utilized various pathways involved in biofilm formation, amino acid metabolism, and energy production via the oxidation of inorganic sulfur compounds. Transcriptomic analysis indicated that 28.4% of genes were regulated by carbon concentration, with increased carbon concentration inducing the expression of key enzymes in the EMP, ED, PP, and TCA cycles, genes responsible for the transformation of amino acids into TCA intermediates, as well as the sox genes for thiosulfate oxidation. Metabolomics showed that amino acid metabolism was enhanced and preferred in the presence of a high carbon concentration. Mutation of the sox genes decreased cell proton motive force when grown with amino acids and thiosulfate. In conclusion, we propose that copiotrophy in this Roseobacteraceae bacterium can be supported by amino acid metabolism and thiosulfate oxidation.
Collapse
Affiliation(s)
- Xiaoyan Su
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Han Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
33
|
Ding W, Wang S, Qin P, Fan S, Su X, Cai P, Lu J, Cui H, Wang M, Shu Y, Wang Y, Fu HH, Zhang YZ, Li YX, Zhang W. Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms. Nat Commun 2023; 14:2033. [PMID: 37041201 PMCID: PMC10090131 DOI: 10.1038/s41467-023-37759-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Shougang Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Peng Qin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Su
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Han Cui
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yi Shu
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yongming Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
34
|
Lu J, Shu Y, Zhang H, Zhang S, Zhu C, Ding W, Zhang W. The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms. Int J Mol Sci 2023; 24:6491. [PMID: 37047466 PMCID: PMC10095273 DOI: 10.3390/ijms24076491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
The development of metagenomics has opened up a new era in the study of marine microbiota, which play important roles in biogeochemical cycles. In recent years, the global ocean sampling expeditions have spurred this research field toward a deeper understanding of the microbial diversities and functions spanning various lifestyles, planktonic (free-living) or sessile (biofilm-associated). In this review, we deliver a comprehensive summary of marine microbiome datasets generated in global ocean expeditions conducted over the last 20 years, including the Sorcerer II GOS Expedition, the Tara Oceans project, the bioGEOTRACES project, the Micro B3 project, the Bio-GO-SHIP project, and the Marine Biofilms. These datasets have revealed unprecedented insights into the microscopic life in our oceans and led to the publication of world-leading research. We also note the progress of metatranscriptomics and metaproteomics, which are confined to local marine microbiota. Furthermore, approaches to transforming the global ocean microbiome datasets are highlighted, and the state-of-the-art techniques that can be combined with data analyses, which can present fresh perspectives on marine molecular ecology and microbiology, are proposed.
Collapse
Affiliation(s)
- Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Yi Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
| | - Heng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
35
|
A Genomic Survey of the Natural Product Biosynthetic Potential of Actinomycetes Isolated from New Zealand Lichens. mSystems 2023; 8:e0103022. [PMID: 36749048 PMCID: PMC10134820 DOI: 10.1128/msystems.01030-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are prolific producers of industrially valuable and medically important compounds. Historically, the most efficient method of obtaining compounds has been bioactivity-guided isolation and characterization of drug-like molecules from culturable soil actinomycetes. Unfortunately, this pipeline has been met with an increasing number of rediscoveries, to the point where it is no longer considered an attractive approach for drug discovery. To address this challenge and to continue finding new compounds, researchers have increasingly focused on alternative environmental niches and screening methods. Here, we report the genetic investigation of actinomycetes from an underexplored source, New Zealand lichens. In this work, we obtain draft genome sequences for 322 lichen-associated actinomycetes. We then explore this genetic resource with an emphasis on biosynthetic potential. By enumerating biosynthetic gene clusters (BGCs) in our data sets and comparing these to various reference collections, we demonstrate that actinomycetes sourced from New Zealand lichens have the genetic capacity to produce large numbers of natural products, many of which are expected to be broadly different from those identified in previous efforts predominantly based on soil samples. Our data shed light on the actinomycete assemblage in New Zealand lichens and demonstrate that lichen-sourced actinobacteria could serve as reservoirs for discovering new secondary metabolites. IMPORTANCE Lichens are home to complex and distinctive microbial cohorts that have not been extensively explored for the ability to produce novel secondary metabolites. Here, we isolate and obtain genome sequence data for 322 actinomycetes from New Zealand lichens. In doing so, we delineate at least 85 potentially undescribed species, and show that lichen associated actinomycetes have the potential to yield many new secondary metabolites, and as such, might serve as a productive starting point for drug discovery efforts.
Collapse
|
36
|
Qu T, Zhao X, Guan C, Hou C, Chen J, Zhong Y, Lin Z, Xu Y, Tang X, Wang Y. Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Appl Environ Microbiol 2023; 89:e0181522. [PMID: 36533927 PMCID: PMC9888261 DOI: 10.1128/aem.01815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Sousa-Cardoso F, Teixeira-Santos R, Campos AF, Lima M, Gomes LC, Soares OSGP, Mergulhão FJ. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:381. [PMID: 36770342 PMCID: PMC9919625 DOI: 10.3390/nano13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating.
Collapse
Affiliation(s)
- Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Francisca Campos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
38
|
Levipan HA, Irgang R, Opazo LF, Araya-León H, Avendaño-Herrera R. Collective behavior and virulence arsenal of the fish pathogen Piscirickettsia salmonis in the biofilm realm. Front Cell Infect Microbiol 2022; 12:1067514. [PMID: 36544910 PMCID: PMC9760808 DOI: 10.3389/fcimb.2022.1067514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Piscirickettsiosis is a fish disease caused by the Gram-negative bacterium Piscirickettsia salmonis. This disease has a high socio-economic impact on the Chilean salmonid aquaculture industry. The bacterium has a cryptic character in the environment and their main reservoirs are yet unknown. Bacterial biofilms represent a ubiquitous mechanism of cell persistence in diverse natural environments and a risk factor for the pathogenesis of several infectious diseases, but their microbiological significance for waterborne veterinary diseases, including piscirickettsiosis, have seldom been evaluated. This study analyzed the in vitro biofilm behavior of P. salmonis LF-89T (genogroup LF-89) and CA5 (genogroup EM-90) using a multi-method approach and elucidated the potential arsenal of virulence of the P. salmonis LF-89T type strain in its biofilm state. P. salmonis exhibited a quick kinetics of biofilm formation that followed a multi-step and highly strain-dependent process. There were no major differences in enzymatic profiles or significant differences in cytotoxicity (as tested on the Chinook salmon embryo cell line) between biofilm-derived bacteria and planktonic equivalents. The potential arsenal of virulence of P. salmonis LF-89T in biofilms, as determined by whole-transcriptome sequencing and differential gene expression analysis, consisted of genes involved in cell adhesion, polysaccharide biosynthesis, transcriptional regulation, and gene mobility, among others. Importantly, the global gene expression profiles of P. salmonis LF-89T were not enriched with virulence-related genes upregulated in biofilm development stages at 24 and 48 h. An enrichment in virulence-related genes exclusively expressed in biofilms was also undetected. These results indicate that early and mature biofilm development stages of P. salmonis LF-89T were transcriptionally no more virulent than their planktonic counterparts, which was supported by cytotoxic trials, which, in turn, revealed that both modes of growth induced important and very similar levels of cytotoxicity on the salmon cell line. Our results suggest that the aforementioned biofilm development stages do not represent hot spots of virulence compared with planktonic counterparts. This study provides the first transcriptomic catalogue to select specific genes that could be useful to prevent or control the (in vitro and/or in vivo) adherence and/or biofilm formation by P. salmonis and gain further insights into piscirickettsiosis pathogenesis.
Collapse
Affiliation(s)
- Héctor A. Levipan
- Laboratorio de Ecopatología y Nanobiomateriales, Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Espectroscopía Atómica y Molecular (ATMOS-C), Universidad de Playa Ancha, Valparaíso, Chile,*Correspondence: Héctor A. Levipan, ; ; Ruben Avendaño-Herrera, ;
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - L. Felipe Opazo
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile,Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Henry Araya-León
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile,*Correspondence: Héctor A. Levipan, ; ; Ruben Avendaño-Herrera, ;
| |
Collapse
|
39
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
40
|
Loss of the Rhodobacter capsulatus Serine Acetyl Transferase Gene, cysE1, Impairs Gene Transfer by Gene Transfer Agents and Biofilm Phenotypes. Appl Environ Microbiol 2022; 88:e0094422. [PMID: 36098534 PMCID: PMC9552610 DOI: 10.1128/aem.00944-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are widespread in the environment, where they allow bacterial species to survive adverse conditions. Cells in biofilms are densely packed, and this proximity is likely to increase the frequency of horizontal gene transfer. Gene transfer agents (GTAs) are domesticated viruses with the potential to spread any gene between bacteria. GTA production is normally restricted to a small subpopulation of bacteria, and regulation of GTA loci is highly coordinated, but the environmental conditions that favor GTA production are poorly understood. Here, we identified a serine acetyltransferase gene, cysE1, in Rhodobacter capsulatus that is required for optimal receipt of GTA DNA, accumulation of extracellular polysaccharide, and biofilm formation. The cysE1 gene is directly downstream of the core Rhodobacter-like GTA (RcGTA) structural gene cluster and upregulated in an RcGTA overproducer strain, although it is expressed on a separate transcript. The data we present suggest that GTA production and biofilm are coregulated, which could have important implications for the study of rapid bacterial evolution and understanding the full impact of GTAs in the environment. IMPORTANCE Direct exchange of genes between bacteria leads to rapid evolution and is the major factor underlying the spread of antibiotic resistance. Gene transfer agents (GTAs) are an unusual but understudied mechanism for genetic exchange that are capable of transferring any gene from one bacterium to another, and therefore, GTAs are likely to be important factors in genome plasticity in the environment. Despite the potential impact of GTAs, our knowledge of their regulation is incomplete. In this paper, we present evidence that elements of the cysteine biosynthesis pathway are involved in coregulation of various phenotypes required for optimal biofilm formation by Rhodobacter capsulatus and successful infection by the archetypal RcGTA. Establishing the regulatory mechanisms controlling GTA-mediated gene transfer is a key stepping stone to allow a full understanding of their role in the environment and wider impact.
Collapse
|
41
|
Crits-Christoph A, Diamond S, Al-Shayeb B, Valentin-Alvarado L, Banfield JF. A widely distributed genus of soil Acidobacteria genomically enriched in biosynthetic gene clusters. ISME COMMUNICATIONS 2022; 2:70. [PMID: 37938723 PMCID: PMC9723581 DOI: 10.1038/s43705-022-00140-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 07/01/2023]
Abstract
Bacteria of the phylum Acidobacteria are one of the most abundant groups across soil ecosystems, yet they are represented by comparatively few sequenced genomes, leaving gaps in our understanding of their metabolic diversity. Recently, genomes of Acidobacteria species with unusually large repertoires of biosynthetic gene clusters (BGCs) were reconstructed from grassland soil metagenomes, but the degree to which species with this trait are widespread is still unknown. To investigate this, we assembled 46 metagenome-assembled genomes recovered from permanently saturated organic-rich soils of a vernal (spring) pool ecosystem in Northern California. We obtained high and medium-quality draft genomes for three novel species from Candidatus Angelobacter (a proposed subdivision 1 Acidobacterial genus), a genus that is genomically enriched in genes for specialized metabolite biosynthesis. Acidobacteria were particularly abundant in the vernal pool sediments, and a Ca. Angelobacter species was the most abundant bacterial species detected in some samples. We identified numerous diverse biosynthetic gene clusters in these genomes, and also in five additional genomes from other publicly available soil metagenomes for other related Ca. Angelobacter species. Metabolic analysis indicates that Ca. Angelobacter likely are aerobes that ferment organic carbon, with potential to contribute to carbon compound turnover in soils. Using metatranscriptomics, we identified in situ metabolic activity and expression of specialized metabolic traits for two species from this genus. In conclusion, we expand genomic sampling of the uncultivated Ca. Angelobacter, and show that they represent common and sometimes highly abundant members of dry and saturated soil communities, with a high degree of capacity for synthesis of diverse specialized metabolites.
Collapse
Affiliation(s)
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
42
|
Wu C, Tang J, Limlingan Malit JJ, Wang R, Sung HHY, Williams ID, Qian PY. Bathiapeptides: Polythiazole-Containing Peptides from a Marine Biofilm-Derived Bacillus sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:1751-1762. [PMID: 35703501 DOI: 10.1021/acs.jnatprod.2c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria in marine biofilms are a rich reservoir of natural products. To facilitate novel secondary metabolite discovery, we investigated the metabolic profile of a marine biofilm-derived Bacillus sp. B19-2 by combining bioinformatics and LC-UV-MS analyses. After dereplication and purification of putatively unknown compounds, a new family of compounds 1-8 was uncovered and named bathiapeptides. Structural elucidation using NMR, HRESIMS, ozonolysis, advanced Marfey's analysis, and X-ray diffraction revealed that bathiapeptides are polypeptides that contain a rare polythiazole moiety. These compounds exhibited strong cytotoxicity against Hep G2, HeLa, MCF-7, and MGC-803 cell lines, and the lowest IC50 value was 0.5 μM. An iterative biosynthesis logic in bathiapeptides' biosynthesis was proposed based on the identified chemical structures and putative gene cluster analysis.
Collapse
Affiliation(s)
- Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jianwei Tang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ruojun Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ian D Williams
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
43
|
Rischer M, Guo H, Beemelmanns C. Signalling molecules inducing metamorphosis in marine organisms. Nat Prod Rep 2022; 39:1833-1855. [PMID: 35822257 DOI: 10.1039/d1np00073j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: findings from early 1980s until early 2022Microbial-derived cues of marine biofilms induce settlement and metamorphosis of marine organisms, a process responsible for the emergence of diverse flora and fauna in marine habitats. Although this phenomenon is known for more than 80 years, the research field has only recently gained much momentum. Here, we summarize the currently existing biochemical and microbial knowledge about microbial signalling molecules, con-specific signals, and synthetic compounds that induce or prevent recruitment, settlement, and metamorphosis in invertebrate larvae. We discuss the possible modes of action and conclude with perspectives for future research directions in the field of marine chemical ecology.
Collapse
Affiliation(s)
- Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany. .,Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 21-23, Leipzig 04103, Germany
| |
Collapse
|
44
|
Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci Data 2022; 9:305. [PMID: 35715423 PMCID: PMC9205870 DOI: 10.1038/s41597-022-01392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
Marine microorganisms are immensely diverse and play fundamental roles in global geochemical cycling. Recent metagenome-assembled genome studies, with particular attention to large-scale projects such as Tara Oceans, have expanded the genomic repertoire of marine microorganisms. However, published marine metagenome data is still underexplored. We collected 2,057 marine metagenomes covering various marine environments and developed a new genome reconstruction pipeline. We reconstructed 52,325 qualified genomes composed of 8,466 prokaryotic species-level clusters spanning 59 phyla, including genomes from the deep-sea characterized as deeper than 1,000 m (n = 3,337), low-oxygen zones of <90 μmol O2 per kg water (n = 7,884), and polar regions (n = 7,752). Novelty evaluation using a genome taxonomy database shows that 6,256 species (73.9%) are novel and include genomes of high taxonomic novelty, such as new class candidates. These genomes collectively expanded the known phylogenetic diversity of marine prokaryotes by 34.2%, and the species representatives cover 26.5-42.0% of prokaryote-enriched metagenomes. Thoroughly leveraging accumulated metagenomic data, this genome resource, named the OceanDNA MAG catalog, illuminates uncharacterized marine microbial 'dark matter' lineages.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
45
|
Microbial Richness of Marine Biofilms Revealed by Sequencing Full-Length 16S rRNA Genes. Genes (Basel) 2022; 13:genes13061050. [PMID: 35741812 PMCID: PMC9223118 DOI: 10.3390/genes13061050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Marine biofilms are a collective of microbes that can grow on many different surfaces immersed in marine environments. Estimating the microbial richness and specificity of a marine biofilm community is a challenging task due to the high complexity in comparison with seawater. Here, we compared the resolution of full-length 16S rRNA gene sequencing technique of a PacBio platform for microbe identification in marine biofilms with the results of partial 16S rRNA gene sequencing of traditional Illumina PE250 platform. At the same time, the microbial richness, diversity, and composition of adjacent seawater communities in the same batch of samples were analyzed. Both techniques revealed higher species richness, as reflected by the Chao1 index, in the biofilms than that in the seawater communities. Moreover, compared with Illumina sequencing, PacBio sequencing detected more specific species for biofilms and less specific species for seawater. Members of Vibrio, Arcobacter, Photobacterium, Pseudoalteromonas, and Thalassomonas were significantly enriched in the biofilms, which is consistent with the previous understanding of species adapted to a surface-associated lifestyle and validates the taxonomic analyses in the current study. To conclude, the full-length sequencing of 16S rRNA genes has probably a stronger ability to analyze more complex microbial communities, such as marine biofilms, the species richness of which has probably been under-estimated in previous studies.
Collapse
|
46
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
47
|
Fan S, Wang M, Ding W, Li YX, Zhang YZ, Zhang W. Scientific and technological progress in the microbial exploration of the hadal zone. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:127-137. [PMID: 37073349 PMCID: PMC10077178 DOI: 10.1007/s42995-021-00110-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/11/2021] [Indexed: 05/03/2023]
Abstract
The hadal zone is the deepest point in the ocean with a depth that exceeds 6000 m. Exploration of the biological communities in hadal zone began in the 1950s (the first wave of hadal exploration) and substantial advances have been made since the turn of the twenty-first century (the second wave of hadal exploration), resulting in a focus on the hadal sphere as a research hotspot because of its unique physical and chemical conditions. A variety of prokaryotes are found in the hadal zone. The mechanisms used by these prokaryotes to manage the high hydrostatic pressures and acquire energy from the environment are of substantial interest. Moreover, the symbioses between microbes and hadal animals have barely been studied. In addition, equipment has been developed that can now mimic hadal environments in the laboratory and allow cultivation of microbes under simulated in situ pressure. This review provides a brief summary of recent progress in the mechanisms by which microbes adapt to high hydrostatic pressures, manage limited energy resources and coexist with animals in the hadal zone, as well as technical developments in the exploration of hadal microbial life.
Collapse
Affiliation(s)
- Shen Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Meng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
48
|
Wang R, Zhang W, Ding W, Liang Z, Long L, Wong WC, Qian PY. Profiling Signal Transduction in Global Marine Biofilms. Front Microbiol 2022; 12:768926. [PMID: 35069473 PMCID: PMC8776716 DOI: 10.3389/fmicb.2021.768926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Microbes use signal transduction systems in the processes of swarming motility, antibiotic resistance, virulence, conjugal plasmid transfer, and biofilm formation. However, the signal transduction systems in natural marine biofilms have hardly been profiled. Here we analyzed signal transduction genes in 101 marine biofilm and 91 seawater microbial metagenomes. The abundance of almost all signal transduction-related genes in biofilm microbial communities was significantly higher than that in seawater microbial communities, regardless of substrate types, locations, and durations for biofilm development. In addition, the dominant source microbes of signal transduction genes in marine biofilms were different from those in seawater samples. Co-occurrence network analysis on signal communication between microbes in marine biofilms and seawater microbial communities revealed potential inter-phyla interactions between microorganisms from marine biofilms and seawater. Moreover, phylogenetic tree construction and protein identity comparison displayed that proteins related to signal transductions from Red Sea biofilms were highly similar to those from Red Sea seawater microbial communities, revealing a possible biological basis of interspecies interactions between surface-associated and free-living microbial communities in a local marine environment. Our study revealed the special profile and enrichment of signal transduction systems in marine biofilms and suggested that marine biofilms participate in intercellular interactions of the local ecosystem where they were seeded.
Collapse
Affiliation(s)
- Ruojun Wang
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhicong Liang
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wai Chuen Wong
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
49
|
Pérez H, Vargas G, Silva R. Use of Nanotechnology to Mitigate Biofouling in Stainless Steel Devices Used in Food Processing, Healthcare, and Marine Environments. TOXICS 2022; 10:toxics10010035. [PMID: 35051077 PMCID: PMC8780138 DOI: 10.3390/toxics10010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/26/2023]
Abstract
In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria. Within the macroorganisms that then damage the steel, mollusks and crustaceans are the most commonly observed. The aim of this review was to identify the mechanisms involved in biofouling on stainless steel and to evaluate the research done on preventing or mitigating this problem using nanotechnology in humid environments in three areas of human activity: food manufacturing, the implantation of medical devices, and infrastructure in marine settings. Of these protective processes that modify the steel surfaces, three approaches were examined: the use of inorganic nanoparticles; the use of polymeric coatings; and, finally, the generation of nanotextures.
Collapse
Affiliation(s)
- Hugo Pérez
- Sustentabilidad de los Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Saltillo, Ramos Arizpe 25900, Mexico;
| | - Gregorio Vargas
- Sustentabilidad de los Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Saltillo, Ramos Arizpe 25900, Mexico;
- Correspondence:
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
50
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|