1
|
Ding R, Guida C, Pearce CI, Arenholz E, Grenèche JM, Gloter A, Scheinost AC, Kvashnina KO, Wang K, Fernandez-Martinez A, Mu Y, Rosso KM, Charlet L. Single rhenium atoms on nanomagnetite: Probing the recharge process that controls the fate of rhenium in the environment. SCIENCE ADVANCES 2025; 11:eadq3650. [PMID: 40378223 PMCID: PMC12083517 DOI: 10.1126/sciadv.adq3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.
Collapse
Affiliation(s)
- Rongrong Ding
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Carolina Guida
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- STARLAB, Department of Earth and Atmospheric Sciences, Central Michigan University, Brooks Hall 313A, Mount Pleasant, MI 48859, USA
- Grupo de Geología Médica y Forense, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 224, Oficina 411, Bogotá 111321, Colombia
| | | | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM, UMR CNRS 6283, Université du Maine, 72085 Le Mans Cedex, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, 91405 Orsay, France
| | - Andreas C. Scheinost
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Kristina O. Kvashnina
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Kaifeng Wang
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark
| | - Alejandro Fernandez-Martinez
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kevin M. Rosso
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laurent Charlet
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
| |
Collapse
|
2
|
Muhammad F, Chen X, Sun Q, Wang Y, Mo D, Li Y, Miao L, Wei H. Topotactic Transformation in Fe 3O 4 Induces Spontaneous Growth of Compositionally Diverse Nanostructures. Angew Chem Int Ed Engl 2025; 64:e202418925. [PMID: 39714597 DOI: 10.1002/anie.202418925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (Fe3O4 NPs) is topotactically transformed into maghemite (γ-Fe2O3). Benefiting from such oxidation susceptibility of ultrasmall Fe3O4 NPs, we achieved spontaneous growth of metals (Ag, Au, Pt, and Pd), a non-metal (Se), and a metal oxide (MnO2) based nanostructures onto the surface of Fe3O4. No spontaneous growth of nanostructures was observed when the oxidized Fe3O4 NPs were tested, likely due to the loss of the Fe2+-associated mobile electrons. The obtained nanostructures displayed appreciable antioxidant activities, which we utilized to effectively treat inflammation in the intestines. It is anticipated that this synthetic route, based on topotactic transformation, represents a significant advancement in synthesizing various chemically diverse hetero-nanostructures.
Collapse
Affiliation(s)
- Faheem Muhammad
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Xiwen Chen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qi Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuting Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Dongze Mo
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
3
|
Katheras AS, Karalis K, Krack M, Scheinost AC, Churakov SV. Computational Study on the Octahedral Surfaces of Magnetite Nanoparticles and Their Solvent Interaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21068-21076. [PMID: 39542692 DOI: 10.1021/acs.est.4c06531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Magnetite nanoparticles (MNPs) play an important role in geological and environmental systems because of their redox reactivity and ability to sequester a wide range of metals and metalloids. X-ray absorption spectroscopy conducted at metal and metalloid edges has suggested that the magnetite {111} faces of octahedrally shaped nanoparticles play a dominant role in the redox and sorption processes of these elements. However, studies directly probing the magnetite surfaces, especially in their fully solvated state, are scarce. Therefore, we investigated the speciation and stability over a wide Eh/pH range of octahedrally shaped MNPs of 2 nm size by means of Kohn-Sham density functional theory with Hubbard correction (DFT+U). By altering the protonation state of the crystals, a redox-sensitive response of the octahedrally coordinated Fe could be achieved. Furthermore, the preferential H distribution could be identified, highlighting the difference between the edges, vertices, and facets of the nanocrystals. Subsequently, the interactions of the MNPs with a solvent of pure water or a 0.5 M NaCl solution were studied by classical molecular dynamics (MD) simulations. Finally, a comparison of the corresponding macroscopic magnetite (111) surface to the investigated MNPs was conducted.
Collapse
Affiliation(s)
- Anita S Katheras
- Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Matthias Krack
- PSI Center for Scientific Computing, Theory and Data, 5232 Villigen PSI, Switzerland
| | - Andreas C Scheinost
- European Synchrotron Radiation Lab, The Rossendorf Beamline (BM20), 38043 Grenoble, France
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden-Rossendorf, Germany
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
- Laboratory for Waste Management (LES), Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
4
|
Shi Y, Wang L, Song S, Liu M, Zhang P, Zhong D, Wang Y, Niu Y, Xu Y. Controllable Silver Release for Efficient Treatment of Drug-Resistant Bacterial-Infected Wounds. Chembiochem 2024; 25:e202400406. [PMID: 38850275 DOI: 10.1002/cbic.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
The use of traditional Ag-based antibacterial agents is usually accompanied by uncontrollable silver release, which makes it difficult to find a balance between antibacterial performance and biosafety. Herein, we prepared a core-shell system of ZIF-8-derived amorphous carbon-coated Ag nanoparticles (Ag@C) as an ideal research model to reveal the synergistic effect and structure-activity relationship of the structural transformation of carbon shell and Ag core on the regulation of silver release behavior. It is found that Ag@C prepared at 600 °C (AC6) exhibits the best ion release kinetics due to the combination of relatively simple shell structure and lower crystallinity of the Ag core, thereby exerting stronger antibacterial properties (>99.999 %) at trace doses (20 μg mL-1) compared with most other Ag-based materials. Meanwhile, the carbon shell prevents the metal Ag from being directly exposed to the organism and thus endows AC6 with excellent biocompatibility. In animal experiments, AC6 can effectively promote wound healing by inactivating drug-resistant bacteria while regulating the expression of TNF-α and CD31. This work provides theoretical support for the scientific design and clinical application of controllable ion-releasing antibacterial agents.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Siqi Song
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Pengfei Zhang
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical School, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yanjing Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| |
Collapse
|
5
|
Park SH, Kim S, Park JW, Kim S, Cha W, Lee J. In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO 2 film. Nat Commun 2024; 15:5416. [PMID: 38937506 PMCID: PMC11211407 DOI: 10.1038/s41467-024-49862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Photocatalysis is a promising technique due to its capacity to efficiently harvest solar energy and its potential to address the global energy crisis. However, the structure-activity relationships of photocatalyst during wavelength-dependent photocatalytic reactions remains largely unexplored because it is difficult to measure under operating conditions. Here we show the photocatalytic strain evolution of a single Au nanoparticle (AuNP) supported on a TiO2 film by combining three-dimensional (3D) Bragg coherent X-ray diffraction imaging with an external light source. The wavelength-dependent generation of reactive oxygen species (ROS) has significant effects on the structural deformation of the AuNP, leading to its strain evolution. Density functional theory (DFT) calculations are employed to rationalize the induced strain caused by the adsorption of ROS on the AuNP surface. These observations provide insights of how the photocatalytic activity impacts on the structural deformation of AuNP, contributing to the general understanding of the atomic-level catalytic adsorption process.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Republic of Korea
| | - Seunghee Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsuk Cha
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Ulusoy S, Feygenson M, Thersleff T, Uusimaeki T, Valvo M, Roca AG, Nogués J, Svedlindh P, Salazar-Alvarez G. Elucidating the Lithiation Process in Fe 3-δO 4 Nanoparticles by Correlating Magnetic and Structural Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14799-14808. [PMID: 38478774 PMCID: PMC10982998 DOI: 10.1021/acsami.3c18334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Due to their high potential energy storage, magnetite (Fe3O4) nanoparticles have become appealing as anode materials in lithium-ion batteries. However, the details of the lithiation process are still not completely understood. Here, we investigate chemical lithiation in 70 nm cubic-shaped magnetite nanoparticles with varying degrees of lithiation, x = 0, 0.5, 1, and 1.5. The induced changes in the structural and magnetic properties were investigated using X-ray techniques along with electron microscopy and magnetic measurements. The results indicate that a structural transformation from spinel to rock salt phase occurs above a critical limit for the lithium concentration (xc), which is determined to be between 0.5< xc ≤ 1 for Fe3-δO4. Diffraction and magnetization measurements clearly show the formation of the antiferromagnetic LiFeO2 phase. Upon lithiation, magnetization measurements reveal an exchange bias in the hysteresis loops with an asymmetry, which can be attributed to the formation of mosaic-like LiFeO2 subdomains. The combined characterization techniques enabled us to unambiguously identify the phases and their distributions involved in the lithiation process. Correlating magnetic and structural properties opens the path to increasing the understanding of the processes involved in a variety of nonmagnetic applications of magnetic materials.
Collapse
Affiliation(s)
- Seda Ulusoy
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| | - Mikhail Feygenson
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
- European
Spallation Source ERIC, SE-22100 Lund, Sweden
- Jülich
Centre for Neutron Science (JCNS-1) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thomas Thersleff
- Department
Materials and Environmental Chemistry, Stockholm
University, 106 91 Stockholm, Sweden
| | - Toni Uusimaeki
- Department
Materials and Environmental Chemistry, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mario Valvo
- Department
Chemistry, Uppsala University, 752 37 Uppsala, Sweden
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Josep Nogués
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Peter Svedlindh
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| | - German Salazar-Alvarez
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
7
|
Yang F, Zhang J, Zhang Y. Modeling Corrosion Product Film Formation and Hydrogen Diffusion at the Crack Tip of Austenitic Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5799. [PMID: 37687491 PMCID: PMC10488482 DOI: 10.3390/ma16175799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Corrosion product films (CPFs) have significant effects on hydrogen permeation and the corrosion process at the crack tip. This paper established a two-dimensional calculation model to simulate the formation of CPFs at the crack tip and its effects on the crack tip stress status and hydrogen diffusion. The CPFs were simplified as a single-layer structure composed of Fe2O3, the effective CPFs boundary was modeled by the diffusion of oxygen, and the CPF-induced stress was modeled by hygroscopic expansion. The simulation was conducted with two stages; the first stage was to simulate the formation of CPFs formation and its effects on the crack tip stress status, while the second stage focused on the hydrogen diffusion with and without CPF formation under different external tensile loads. The results indicate that the highest compressive stress induced by the formation of CPFs is located at 50~60° of the crack contour and dramatically weakens the crack tip tensile stress at low-stress status. The CPFs can inhibit the hydrogen permeation into the crack tip, and the hydrostatic pressure effects on the redistribution of the permeated hydrogen are significant under larger external load conditions.
Collapse
Affiliation(s)
- Fuqiang Yang
- School of Science, Xi’an University of Science and Technology, Xi’an 710054, China
- College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK
| | - Jianzhou Zhang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (J.Z.); (Y.Z.)
| | - Yue Zhang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (J.Z.); (Y.Z.)
| |
Collapse
|
8
|
Li M, Xu W, Wu X, Zhang X, Fang Q, Cai T, Yang J, Hua Y. Enhanced mechanism of calcium towards uranium incorporation and stability in magnetite during electromineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131641. [PMID: 37329595 DOI: 10.1016/j.jhazmat.2023.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/19/2023]
Abstract
Doping uranium into a room-temperature stable Fe3O4 lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing Fe3O4. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations. Calcium incorporated into the Fe3O4 lattice increased the level and stability of doped uranium in Fe3O4. Uranium and calcium occupied the octahedral and tetrahedral sites of Fe3O4, respectively; the formation energy was only -10.23 eV due to strong hybridization effects between Fe1s, U4f, O2p, and Ca3d orbitals. Compared to the uranium-doped Fe3O4, uranium leaching ratios decreased by 19.2 % and 48.9 % under strongly acidic and alkaline conditions after 120 days. However, high concentrations of phosphate inhibited Fe3O4 crystallization. These results should provide new avenues for the development of multi-metal co-doping technologies and mineralization optimization to treat uranium-containing complex wastewater.
Collapse
Affiliation(s)
- Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wanqin Xu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaoyan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaowen Zhang
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jianping Yang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yilong Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Lavorato GC, de Almeida AA, Vericat C, Fonticelli MH. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. NANOTECHNOLOGY 2023; 34:192001. [PMID: 36825776 DOI: 10.1088/1361-6528/acb943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Adriele A de Almeida
- Instituto de Física 'Gleb Wataghin' (IFGW), Universidade Estadual de Campinas-UNICAMP, R. Sérgio Buarque de Holanda, 777-CEP: 13083-859, Campinas - SP, Brazil
| | - Carolina Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Mariano H Fonticelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
10
|
Nie M, Li X, Ding Y, Pan Y, Cai Y, Liu Y, Liu J. Effect of Stoichiometry on Nanomagnetite Sulfidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3002-3011. [PMID: 36745694 DOI: 10.1021/acs.est.2c08179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetite (Mt) has long been regarded as a stable phase with a low reactivity toward dissolved sulfide, but natural Mt with varying stoichiometries (the structural Fe(II)/Fe(III) ratio, xstru) might exhibit distinct reactivities in sulfidation. How Mt stoichiometry affects its sulfidation processes and products remains unknown. Here, we demonstrate that xstru is a master variable controlling the rates and extents of sulfide oxidation by magnetite nanoparticles (11 ± 2 nm). At pH = 7.0-8.0 and the initial Fe/S molar ratio of 10-50, the partially oxidized magnetite (xstru = 0.19-0.43) can oxidize dissolved sulfide to elemental sulfur (S0), but only surface adsorption of sulfide, without interfacial electron transfer (IET), occurs on the nearly stoichiometric magnetite (xstru = 0.47). The higher initial rate and extent of sulfide oxidation and S0 production are observed with the more oxidized magnetite that has the higher electron-accepting capability from surface-complexed sulfide (S(-II)(s)). The FeS clusters formed from magnetite sulfidation can be oxidized by the most oxidized magnetite with xstru = 0.19 but not by other magnetite particles. A linear relationship between the Gibbs free energy of reaction and the surface area-normalized initial rate of sulfide oxidation is observed in all experiments under the different conditions, suggesting the S(-II)(s)-magnetite IET dominates magnetite sulfidation at high Fe/S molar ratios and near-neutral pH.
Collapse
Affiliation(s)
- Mingjun Nie
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Yuguan Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Yuanfeng Cai
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Yuanyuan Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| |
Collapse
|
11
|
Klaes B, Thiele-Bruhn S, Wörner G, Höschen C, Mueller CW, Marx P, Arz HW, Breuer S, Kilian R. Iron (hydr)oxide formation in Andosols under extreme climate conditions. Sci Rep 2023; 13:2818. [PMID: 36797309 PMCID: PMC9935883 DOI: 10.1038/s41598-023-29727-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.
Collapse
Affiliation(s)
- Björn Klaes
- Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany. .,Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany.
| | - Sören Thiele-Bruhn
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Gerhard Wörner
- grid.7450.60000 0001 2364 4210Division of Geochemistry and Isotope Geology, GZG, Georg-August-University Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
| | - Carmen Höschen
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany
| | - Carsten W. Mueller
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany ,grid.5254.60000 0001 0674 042XDepartment for Geosciences and Environmental Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Denmark
| | - Philipp Marx
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Helge Wolfgang Arz
- grid.423940.80000 0001 2188 0463Marine Geology Section, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Sonja Breuer
- grid.15606.340000 0001 2155 4756Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Rolf Kilian
- grid.12391.380000 0001 2289 1527Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany ,grid.442242.60000 0001 2287 1761University of Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| |
Collapse
|
12
|
Sun K, White JC, He E, Van Gestel CAM, Qiu H. Surface Defects Regulate the in Vivo Bioenergetic Response of Earthworm Eisenia fetida Coelomocytes to Molybdenum Disulfide Nanosheets. ACS NANO 2023; 17:2639-2652. [PMID: 36651861 DOI: 10.1021/acsnano.2c10623] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional molybdenum disulfide (2D MoS2) nanomaterials are seeing increased use in several areas, and this will lead to their inevitable release into soils. Surface defects can occur on MoS2 nanosheets during synthesis or during environmental aging processes. The mechanisms of MoS2 nanosheet toxicity to soil invertebrates and the role of surface defects in that toxicity have not been fully elucidated. We integrated traditional toxicity end points, targeted energy metabolomics, and transcriptomics to compare the mechanistic differences in the toxicity of defect-free and defect-rich MoS2 nanosheets (DF-MoS2 and DR-MoS2) to Eisenia fetida using a coelomocyte-based in vivo assessment model. After organism-level exposure to DF-MoS2 for 96 h at 10 and 100 mg Mo/L, cellular reactive oxygen species (ROS) levels were elevated by 25.6-96.6% and the activity of mitochondrial respiratory electron transport chain (Mito-RETC) complex III was inhibited by 9.7-19.4%. The tricarboxylic acid cycling and glycolysis were also disrupted. DF-MoS2 preferentially up-regulated subcellular component motility processes related to microtubules and caused mitochondrial fission. Unlike DF-MoS2, DR-MoS2 triggered an increased degree of mitochondrial fusion, as well as more severe oxidative stress. The activities of Mito-RETC complexes (I, III, IV, V) associated with oxidative phosphorylation were significantly inhibited by 22.8-68.6%. Meanwhile, apoptotic pathways were activated upon DR-MoS2 exposure, which together with the depolarization of mitochondrial membrane potential, mediated significant apoptosis. In turn, genes related to cellular homeostasis and energy release were up-regulated to compensate for DR-MoS2-induced energy deprivation. Our study indicates that MoS2 nanosheets have nanospecific effects on E. fetida and also that the role of surface defects from synthesis or that accumulate from environmental impacts needs to be fully considered when evaluating the toxicity of these 2D materials.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
14
|
Hudiță A, Grumezescu V, Gherasim O, Grumezescu AM, Dorcioman G, Negut I, Oprea OC, Vasile BȘ, Gălățeanu B, Curuțiu C, Holban AM. MAPLE Processed Nanostructures for Antimicrobial Coatings. Int J Mol Sci 2022; 23:ijms232315355. [PMID: 36499682 PMCID: PMC9738358 DOI: 10.3390/ijms232315355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Despite their great benefits for debilitated patients, indwelling devices are prone to become easily colonized by resident and opportunistic microorganisms, which have the ability to attach to their surfaces and form highly specialized communities called biofilms. These are extremely resistant to host defense mechanisms and antibiotics, leading to treatment failure and device replacement, but also to life-threatening complications. In this study, we aimed to optimize a silica (SiO2)-coated magnetite (Fe3O4)-based nanosystem containing the natural antimicrobial agent, eugenol (E), suitable for MAPLE (matrix-assisted pulsed laser evaporation) deposition as a bioactive coating for biomedical applications. X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and transmission electron microscopy investigations were employed to characterize the obtained nanosystems. The in vitro tests evidenced the superior biocompatibility of such nanostructured coatings, as revealed by their non-cytotoxic activity and ability to promote cellular proliferation and sustain normal cellular development of dermal fibroblasts. Moreover, the obtained nanocoatings did not induce proinflammatory events in human blood samples. Our studies demonstrated that Fe3O4 NPs can improve the antimicrobial activity of E, while the use of a SiO2 matrix may increase its efficiency over prolonged periods of time. The Fe3O4@SiO2 nanosystems showed excellent biocompatibility, sustaining human dermal fibroblasts' viability, proliferation, and typical architecture. More, the novel coatings lack proinflammatory potential as revealed by the absence of proinflammatory cytokine expression in response to human blood sample interactions.
Collapse
Affiliation(s)
- Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
- Correspondence:
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei Street, 077206 Bucharest, Romania
| |
Collapse
|
15
|
Yang X, Liu S, Liang T, Yan X, Zhang Y, Zhou Y, Sarkar B, Ok YS. Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation-adsorption mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128117. [PMID: 34974405 DOI: 10.1016/j.jhazmat.2021.128117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Conventional adsorbents for decontaminating arsenic exhibit low efficacy for the removal of arsenite (As(III)). This study aims to develop a robust As adsorbent from natural magnetite (M0) via a facile ball milling process, and evaluate their performance for decontaminating As(III) and As(V) in water and soil systems. The ball milling process decreased the particle size and crystallinity of M0, resulting in pronounced As removal by the ball-milled magnetite (Mm). Ball milling under air facilitated the formation of Fe-OH and Fe-COOH functional groups on Mm interface, contributing to effective elimination of As(III) and As(V) via hydrogen bonding and complexation mechanisms. Synergistic oxidation effects of hydroxyl and carboxyl groups, and reactive oxygen species (O2·-, and ·OH) on the transformation of As(III) to As(V) during the adsorption were proposed to explain the enhanced As(III) removal by Mm. A short-term soil incubation experiment indicated that the addition of Mm (10 wt%) induced a decrease in the concentration of exchangeable As by 30.25%, and facilitated the transformation of water-soluble As into residual fraction. Ball milling thus is considered as an eco-friendly (chemical-free) and inexpensive (scalable, one-stage process) method for upgrading the performance of natural magnetite towards remediating As, particularly for tackling the highly mobile As(III).
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyan Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Yang D, Phillips NW, Song K, Barker C, Harder RJ, Cha W, Liu W, Hofmann F. In situ Bragg coherent X-ray diffraction imaging of corrosion in a Co-Fe alloy microcrystal. CrystEngComm 2022; 24:1334-1343. [PMID: 35634094 PMCID: PMC9074767 DOI: 10.1039/d1ce01586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
Abstract
Corrosion is a major concern for many industries, as corrosive environments can induce structural and morphological changes that lead to material dissolution and accelerate material failure. The progression of corrosion depends on nanoscale morphology, stress, and defects present. Experimentally monitoring this complex interplay is challenging. Here we implement in situ Bragg coherent X-ray diffraction imaging (BCDI) to probe the dissolution of a Co–Fe alloy microcrystal exposed to hydrochloric acid (HCl). By measuring five Bragg reflections from a single isolated microcrystal at ambient conditions, we compare the full three-dimensional (3D) strain state before corrosion and the strain along the [111] direction throughout the corrosion process. We find that the strained surface layer of the crystal dissolves to leave a progressively less strained surface. Interestingly, the average strain closer to the centre of the crystal increases during the corrosion process. We determine the localised corrosion rate from BCDI data, revealing the preferential dissolution of facets more exposed to the acid stream, highlighting an experimental geometry effect. These results bring new perspectives to understanding the interplay between crystal strain, morphology, and corrosion; a prerequisite for the design of more corrosion-resistant materials. Morphology, 3D lattice strain, and dissolution of a Co–Fe microcrystal was monitored using in situ Bragg coherent X-ray diffraction imaging.![]()
Collapse
Affiliation(s)
- David Yang
- Department of Engineering Science, University of Oxford Oxford OX1 3PJ UK
| | | | - Kay Song
- Department of Engineering Science, University of Oxford Oxford OX1 3PJ UK
| | - Clara Barker
- Department of Materials, University of Oxford Oxford OX1 3PH UK
| | - Ross J Harder
- Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Wenjun Liu
- Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford Oxford OX1 3PJ UK
| |
Collapse
|
17
|
Zou W, Wan Z, Yu X, Liu Z, Yuan P, Zhang X. Sulfur vacancies affect the environmental fate, corona formation, and microalgae toxicity of molybdenum disulfide nanoflakes. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126499. [PMID: 34214853 DOI: 10.1016/j.jhazmat.2021.126499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Sulfur vacancy (SV) defects have been engineered in two-dimensional (2D) transition metal dichalcogenides (TMDs) for high performance applications in various fields involving environmental protection. Understanding the influence of SVs on the environmental fate and toxicity of TMDs is critical for evaluating their risk. Our work discovered that SVs (with S/Mo ratios of 1.65 and 1.32) reduced the dispersibility and promoted aggregation of 2H phase molybdenum disulfide (2H-MoS2, a hot TMD) in aqueous solution. The generation capability of •O2- and •OH was increased and the dissolution of 2H-MoS2 was significantly accelerated after SVs formation. Different with pristine form, S-vacant 2H-MoS2 preferentially harvested proteins (i.e., forming protein corona) involved in antioxidation, photosynthetic electron transport, and the cytoskeleton structure of microalgae. These proteins contain a higher relative number of thiol groups, which exhibited stronger affinity to S-vacant than pristine 2H-MoS2, as elucidated by density functional theory calculations. Notably, SVs aggravated algal growth inhibition, oxidative damage, photosynthetic efficiency and cell membrane permeability reduction induced by 2H-MoS2 due to increased free radical yield and the specific binding of functional proteins. Our findings provide insights into the roles of SVs on the risk of MoS2 while highlighting the importance of rational design for TMDs application.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zepeng Wan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhenzhen Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Peng Yuan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
18
|
Radoń A, Kądziołka-Gaweł M, Łukowiec D, Gębara P, Cesarz-Andraczke K, Kolano-Burian A, Włodarczyk P, Polak M, Babilas R. Influence of Magnetite Nanoparticles Shape and Spontaneous Surface Oxidation on the Electron Transport Mechanism. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5241. [PMID: 34576465 PMCID: PMC8469694 DOI: 10.3390/ma14185241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The spontaneous oxidation of a magnetite surface and shape design are major aspects of synthesizing various nanostructures with unique magnetic and electrical properties, catalytic activity, and biocompatibility. In this article, the roles of different organic modifiers on the shape and formation of an oxidized layer composed of maghemite were discussed and described in the context of magnetic and electrical properties. It was confirmed that Fe3O4 nanoparticles synthesized in the presence of triphenylphosphine could be characterized by cuboidal shape, a relatively low average particle size (9.6 ± 2.0 nm), and high saturation magnetization equal to 55.2 emu/g. Furthermore, it has been confirmed that low-frequency conductivity and dielectric properties are related to surface disordering and oxidation. The electric energy storage possibility increased for nanoparticles with a disordered and oxidized surface, whereas the dielectric losses in these particles were strongly related to their size. The cuboidal magnetite nanoparticles synthesized in the presence of triphenylphosphine had an ultrahigh electrical conductivity (1.02 × 10-4 S/cm at 10 Hz) in comparison to the spherical ones. At higher temperatures, the maghemite content altered the behavior of electrons. The electrical conductivity can be described by correlated barrier hopping or overlapping large polaron tunneling. Interestingly, the activation energies of electrons transport by the surface were similar for all the analyzed nanoparticles in low- and high-temperature ranges.
Collapse
Affiliation(s)
- Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland; (A.K.-B.); (P.W.); (M.P.)
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100 Gliwice, Poland; (D.Ł.); (K.C.-A.); (R.B.)
| | - Mariola Kądziołka-Gaweł
- A. Chelkowski Institute of Physics, University of Silesia, 75 Pułku Piechoty 1A St., 41-500 Chorzów, Poland;
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100 Gliwice, Poland; (D.Ł.); (K.C.-A.); (R.B.)
| | - Piotr Gębara
- Institute of Physics, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Czestochowa, Poland;
| | - Katarzyna Cesarz-Andraczke
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100 Gliwice, Poland; (D.Ł.); (K.C.-A.); (R.B.)
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland; (A.K.-B.); (P.W.); (M.P.)
| | - Patryk Włodarczyk
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland; (A.K.-B.); (P.W.); (M.P.)
| | - Marcin Polak
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland; (A.K.-B.); (P.W.); (M.P.)
| | - Rafał Babilas
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100 Gliwice, Poland; (D.Ł.); (K.C.-A.); (R.B.)
| |
Collapse
|
19
|
Simulation-Based Defect Engineering in “α-Spodumene”. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Naturally occurring lithium-rich α-spodumene (α-LiAlSi2O6) is a technologically important mineral that has attracted considerable attention in ceramics, polymer industries, and rechargeable lithium ion batteries (LIBs). The defect chemistry and dopant properties of this material are studied using a well-established atomistic simulation technique based on classical pair-potentials. The most favorable intrinsic defect process is the Al-Si anti-site defect cluster (1.08 eV/defect). The second most favorable defect process is the Li-Al anti-site defect cluster (1.17 eV/defect). The Li-Frenkel is higher in energy by 0.33 eV than the Al-Si anti-site defect cluster. This process would ensure the formation of Li vacancies required for the Li diffusion via the vacancy-assisted mechanism. The Li-ion diffusion in this material is slow, with an activation energy of 2.62 eV. The most promising isovalent dopants on the Li, Al, and Si sites are found to be Na, Ga, and Ge, respectively. The formation of both Li interstitials and oxygen vacancies can be facilitated by doping of Ga on the Si site. The incorporation of lithium is studied using density functional theory simulations and the electronic structures of resultant complexes are discussed.
Collapse
|
20
|
Lv SY, Li M, Wu XY, Zhang XW, Hua YL, Bi L, Fang Q, Cai T. A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125885. [PMID: 34492823 DOI: 10.1016/j.jhazmat.2021.125885] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved. The electrochemical mineralization method was developed to rapidly purify uranium-containing wastewater through lattice doping in magnetite and recover uranium without generating any pollutants. An unexpected isolation of U3O8 from uranium-doped magnetite was discovered through in-situ XRD with a temperature variation from 300 °C to 700 °C. Through HRTEM and DFT calculation, it was confirmed that the destruction of the inverse spinel crystal structure during the gradual transformation of magnetite into γ-Fe2O3 and α-Fe2O3 promoted the migration, aggregation, and isolation of uranium atoms. Uniquely generated U3O8 and Fe2O3 were easily separated and over 80% uranium and 99.5% iron could be recovered. These results demonstrate a new strategy for uranium utilization and the environmentally friendly treatment of uranium-containing wastewater.
Collapse
Affiliation(s)
- Shao-Yan Lv
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China.
| | - Xiao-Yan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Wen Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yi-Long Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lei Bi
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Yang D, Phillips NW, Song K, Harder RJ, Cha W, Hofmann F. Annealing of focused ion beam damage in gold microcrystals: an in situ Bragg coherent X-ray diffraction imaging study. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:550-565. [PMID: 33650568 PMCID: PMC7941296 DOI: 10.1107/s1600577520016264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380-410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.
Collapse
Affiliation(s)
- David Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Nicholas W. Phillips
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Kay Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Ross J. Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
23
|
Tong Y, Feng A, Hou X, Zhou Q, Hu X. Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13938-13948. [PMID: 31671268 DOI: 10.1021/acs.est.9b04198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-layer molybdenum disulfide (SLMoS2) are applied as a hot 2D nanosheet in various fields involving water treatments. Both intentional design and environmental or biological processes induce many nanoholes in SLMoS2. However, the effects of nanoholes on the environmental stability and ecotoxicity of SLMoS2 remain largely unknown. The present work discovered that visible-light irradiation induced nanoholes (diameters, approximately 20 nm) in the plane of SLMoS2, with irregular edges and increased interplanar crystal spacing. The ratios of Mo to S in pristine and transformed SLMoS2 were 0.53 and 0.33, respectively. After 96 h exposure at concentrations from 0.1 to 1 mg/L, the above nanoholes promoted algal division, induced a stress-response hormesis, decreased the generation of •OH, and mitigated the cell shrinkage and wall rupture of Chlorella vulgaris induced by SLMoS2. In terms of stress response, the nanohole-bearing SLMoS2 induced fewer vacuoles and polyphosphate bodies of Chlorella vulgaris than the pristine form. Metabolomic analysis revealed that nanoholes perturbed the metabolisms of energy, carbohydrates, and fatty acids. This work proposes that nanoholes cause obvious effects on the environmental fate and ecotoxicity of SLMoS2 and that the environmental risks of engineered nanomaterials should be reevaluated using nanohole-bearing rather than pristine forms for testing.
Collapse
Affiliation(s)
- Yuchen Tong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Anqi Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| |
Collapse
|
24
|
Kim D, Chung M, Kim S, Yun K, Cha W, Harder R, Kim H. Defect Dynamics at a Single Pt Nanoparticle during Catalytic Oxidation. NANO LETTERS 2019; 19:5044-5052. [PMID: 31251070 DOI: 10.1021/acs.nanolett.9b01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Defects can affect all aspects of a material by altering its electronic properties and controlling its chemical reactivity. At defect sites, preferential adsorption of reactants and/or formation of chemical species at active sites are observed in heterogeneous catalysis. Understanding the structural response at defect sites during catalytic reactions provides a unique opportunity to exploit defect control of nanoparticle-based catalysts. However, it remains difficult to characterize the strain and defect evolution for a single nanocrystal catalyst in situ. Here, we report Bragg coherent X-ray diffraction imaging of defect dynamics in an individual Pt nanoparticle during catalytic methane oxidation. We observed that the initially tensile strained regions of the crystal became seed points for the development of further strain and subsequent disappearance of diffraction density during oxidation reactions. Our detailed understanding of the catalytically induced deformation at the defect sites and observed reversibility during the relevant steps of the catalytic oxidation process provide important insights of defect control and engineering of heterogeneous catalysts.
Collapse
Affiliation(s)
- Dongjin Kim
- Department of Physics , Sogang University , Seoul 04107 , Korea
| | - Myungwoo Chung
- Department of Physics , Sogang University , Seoul 04107 , Korea
| | - Sungwon Kim
- Department of Physics , Sogang University , Seoul 04107 , Korea
| | - Kyuseok Yun
- Department of Physics , Sogang University , Seoul 04107 , Korea
| | - Wonsuk Cha
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Ross Harder
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Hyunjung Kim
- Department of Physics , Sogang University , Seoul 04107 , Korea
| |
Collapse
|
25
|
Notini L, Byrne JM, Tomaszewski EJ, Latta DE, Zhou Z, Scherer MM, Kappler A. Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8883-8891. [PMID: 31284712 DOI: 10.1021/acs.est.9b03208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface defects have been shown to facilitate electron transfer between Fe(II) and goethite (α-FeOOH) in abiotic systems. It is unclear, however, whether defects also facilitate microbial goethite reduction in anoxic environments where electron transfer between cells and Fe(III) minerals is the limiting factor. Here, we used stable Fe isotopes to differentiate microbial reduction of goethite synthesized by hydrolysis from reduction of goethite that was further hydrothermally treated to remove surface defects. The goethites were reduced by Geobacter sulfurreducens in the presence of an external electron shuttle, and we used ICP-MS to distinguish Fe(II) produced from the reduction of the two types of goethite. When reduced separately, goethite with more defects has an initial rate of Fe(III) reduction about 2-fold higher than goethite containing fewer defects. However, when reduced together, the initial rate of reduction is 6-fold higher for goethite with more defects. Our results suggest that there is a suppression of the reduction of goethite with fewer defects in favor of the reduction of minerals with more defects. In the environment, minerals are likely to contain defects and our data demonstrates that even small changes at the surface of iron minerals may change their bioavailability and determine which minerals will be reduced.
Collapse
Affiliation(s)
- Luiza Notini
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - James M Byrne
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Elizabeth J Tomaszewski
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Drew E Latta
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Andreas Kappler
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| |
Collapse
|