1
|
Han H, Li YJ, Alam SM, Zhou T, Khan MA, Thu AM, Liu YZ. AP2 transcription factor CsAIL6 negatively regulates citric acid accumulation in citrus fruits by interacting with a WD40 protein CsAN11. HORTICULTURE RESEARCH 2025; 12:uhaf002. [PMID: 40078718 PMCID: PMC11896974 DOI: 10.1093/hr/uhaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
Citric acid accumulation is an essential process in citrus fruits that determines fruit flavor and marketability. The MBW complex transcription factor genes, CsAN11, CsAN1, and CsPH4 play key roles in regulating citric acid accumulation. Although how to regulate CsAN1 or CsPH4 was widely investigated, studies on the regulation of CsAN11 are scarce. In this study, we characterized the AP2/ERF (APETALA2/ethylene response factor) transcription factor gene CsAIL6, which is lowly expressed in high-acid citrus varieties and highly expressed in low-acid citrus varieties. Overexpressing CsAIL6 obviously decreased the citric acid content in citrus fruits, calli, or tomatoes, whereas silencing CsAIL6 significantly increased the fruit citric acid content. Additionally, transcript levels of CsAN11, CsAN1, and CsPH4 were significantly increased by silencing CsAIL6; only the CsAN11 transcript level was significantly decreased by overexpressing CsAIL6. Similarly, only the tomato AN11 (SIAN11) transcript level in CsAIL6 stably overexpressing fruits was markedly lower than that in wild-type (WT) fruits. Further experiments revealed that overexpressing CsAN11 significantly increased the organic acid content but had no obvious influence on the CsAIL6 transcript level; in addition, CsAIL6 only interacts with CsAN11, rather than with CsAN1 and CsPH4 of the MBW complex. Taken together, our findings verified that CsAIL6 negatively regulates citric acid accumulation through directly interacting with the WD40 protein CsAN11, which provides a new mechanism for citric acid accumulation in fruits through the regulation of the MBW complex.
Collapse
Affiliation(s)
- Han Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yu-Jia Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Tian Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Aye Myat Thu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| |
Collapse
|
2
|
Jiang W, Yan Y, Yue S, Wei J, Li W, Liang Y, Xu M, Xia Y, Yi D, Wang Y, Zhao Y, Wang Y, Li J, Nan L, Pang Y. The P-type ATPase gene AHA5 is involved in proanthocyanidins accumulation in Medicago truncatula. Int J Biol Macromol 2025; 294:139508. [PMID: 39761881 DOI: 10.1016/j.ijbiomac.2025.139508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. The proton membrane H+-ATPase (AHA) is required for PA transportation in vacuoles, but it remains unclear which AHA gene(s) encode tonoplast proton pump in M. truncatula. Here, we identified three Tnt1 mutant lines of MtAHA5, resulting in PAs deficit in seeds. MtAHA5 was preferentially expressed in developing seeds, exhibiting its highest transcript levels at early stages. Although MtAHA3, MtAHA4, and MtAHA9 shared similar transcript patterns with MtAHA5 and other structural genes involved in PA biosynthesis, their mutant lines did not exhibit any PA-deficit phenotypes. Subcellular localization analysis demonstrated that MtAHA5 is targeted to the tonoplast in tobacco leaves; conversely, MtAHA3 and MtAHA9 are localized to the cytoplasm, suggesting that MtAHA5 acts as a tonoplast proton pump but not MtAHA3 or MtAHA9. Further genetic analyses revealed that MtAHA5 could complement the PA-deficit phenotype in mtaha5 mutants and ataha10 mutants. Transient transcription assays indicated that MtAHA5 is activated by the MBW complex to regulate the PA accumulation. Collectively, our findings suggest that MtAHA5 serves as a tonoplast proton pump to generate the driving force for MATE1-mediated transport of PA precursors into vacuoles.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yinuo Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyao Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Jiebing Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenxiang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Mengrong Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010018, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yongxin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010018, China.
| | - Yuxiang Wang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Jun Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Lili Nan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Song F, Ji C, Wang T, Zhang Z, Duan Y, Yu M, Song X, Jiang Y, He L, Wang Z, Ma X, Zhang Y, Pan Z, Wu L. Genome-Wide Identification, Expression, and Protein Interaction of GRAS Family Genes During Arbuscular Mycorrhizal Symbiosis in Poncirus trifoliata. Int J Mol Sci 2025; 26:2082. [PMID: 40076705 PMCID: PMC11900033 DOI: 10.3390/ijms26052082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Arbuscular mycorrhizal (AM) fungi establish mutualistic symbiosis with most land plants, facilitating mineral nutrient uptake in exchange for photosynthates. As one of the most commercially used rootstocks in citrus, Poncirus trifoliata heavily depends on AM fungi for nutrient absorption. The GRAS gene family plays essential roles in plant growth and development, signaling transduction, and responses to biotic and abiotic stresses. However, the identification and functional characterization of GRAS family genes in P. trifoliata remains largely unexplored. In this study, a comprehensive genome-wide analysis of PtGRAS family genes was conducted, including their identification, physicochemical properties, phylogenetic relationships, gene structures, conserved domains, chromosome localization, and collinear relationships. Additionally, the expression profiles and protein interaction of these genes under AM symbiosis were systematically investigated. As a result, 41 GRAS genes were identified in the P. trifoliata genome, and classified into nine distinct clades. Collinearity analysis revealed seven segmental duplications but no tandem duplications, suggesting that segmental duplication played a more important role in the expansion of the PtGRAS gene family compared to tandem duplication. Additionally, 18 PtGRAS genes were differentially expressed in response to AM symbiosis, including orthologs of RAD1, RAM1, and DELLA3 in P. trifoliata. Yeast two-hybrid (Y2H) screening further revealed that PtGRAS6 and PtGRAS20 interacted with both PtGRAS12 and PtGRAS18, respectively. The interactions were subsequently validated through bimolecular fluorescence complementation (BiFC) assays. These findings underscored the crucial role of GRAS genes in AM symbiosis in P. trifoliata, and provided valuable candidate genes for improving nutrient uptake and stress resistance in citrus rootstocks through molecular breeding approaches.
Collapse
Affiliation(s)
- Fang Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Chuanya Ji
- Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China (Z.P.)
| | - Zelu Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Yaoyuan Duan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China (Z.P.)
| | - Miao Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China (Z.P.)
| | - Xin Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Yingchun Jiang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Ligang He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Zhijing Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| | - Yu Zhang
- Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhiyong Pan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China (Z.P.)
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.S.)
| |
Collapse
|
4
|
Hu B, Yuan T, Lu Z, Huang R, He J, Yang K, Wu Q, Ai W, Zhang W, Zheng W, Wu X, Wang X, Xu Y, Deng X, Xu Q. "Candidatus Liberibacter asiaticus" Infection Induces Citric Acid Accumulation and Immune Responses Mediated by the Transcription Factor CitPH4. MOLECULAR PLANT PATHOLOGY 2025; 26:e70062. [PMID: 39943673 PMCID: PMC11821725 DOI: 10.1111/mpp.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
Citrus huanglongbing (HLB), caused by "Candidatus Liberibacter" spp., is one of the most disastrous citrus diseases worldwide. HLB-affected citrus fruits are significantly more acidic than healthy fruits. However, the molecular mechanism behind this phenomenon remains to be elucidated. Here, we report that HLB-affected fruits have higher levels of citric acid (CA) than healthy fruits. Moreover, Citrus PH4 (CitPH4), which encodes a MYB transcription factor that functions as a key regulator of CA accumulation, was upregulated in HLB-affected fruits relative to healthy fruits. Heterologous overexpression of CitPH4 in tobacco (Nicotiana tabacum) plants enhanced tolerance to HLB. Subsequently, overexpression and gene-editing experiments indicated that CitPH4 can affect the salicylic acid (SA) pathway, which directly binds to and activates the promoter of CsPBS3, a key gene of SA biosynthesis. HLB-affected fruits had higher SA levels than healthy fruits. Furthermore, application of SA activated CA biosynthesis and application of CA activated SA biosynthesis and signalling in citrus fruits and decreased "Candidatus Liberibacter asiaticus" (CLas) titres in infected leaves. This work suggests that CitPH4 is a key node between CA and SA, thus revealing crosstalk between defence responses and fruit quality in citrus.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Rongyan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiaxian He
- College of HorticultureSichuan Agricultural UniversityChengduChina
| | - Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qinchun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Wanqi Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiaoxiao Wu
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty CropsGuilinChina
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Huang Y, Makkumrai W, Fu J, Deng C, Wu Q, Wang S, Wang L, Wu X, Gao J, Chen C, Guo L, Chen P, Wu F, Deng X, Wang X, Xu Q. Genomic analysis provides insights into the origin and divergence of fruit flavor and flesh color of pummelo. THE NEW PHYTOLOGIST 2025; 245:378-391. [PMID: 39526460 DOI: 10.1111/nph.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Pummelo (Citrus maxima) is one of the most important citrus crops and have genetically contributed sweet orange, lemon and most citrus cultivars. It has been cultivated for c. 4000 years in China and is also distributed in many Southeast Asian countries. Nevertheless, the origin and dispersal of pummelo remain elusive. We conducted whole-genome sequencing for 290 pummelo accessions from China and Southeast Asia (SEA). Our findings indicated that pummelo was originated in Yunnan province. The divergence of the China-SEA accessions occurred c. 2000 years ago and the divergence was likely facilitated through the Maritime Silk Road. We detected the divergence of genomic regions associated with fruit flavor and color, indicating different selection by human activities in different regions. A gene encoding lycopene cyclase 2 (LCYB2) exhibited a high degree of divergence in expression and sequence between red-flesh and white-flesh pummelos. A SNP in the coding region of LCYB2 resulted in a reduction in lycopene β-cyclizing enzyme activity, leading to the accumulation of lycopene and the development of the red-flesh trait. This study reveals the origin and evolutionary history of pummelo and provides insights into the genomic basis for the divergence of fruit flavor and color.
Collapse
Affiliation(s)
- Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Warangkana Makkumrai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agriculture, Horticultural Research Institute, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongling Deng
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qingjiang Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaohua Wang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxiao Wu
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Junyan Gao
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Lina Guo
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, 334000, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Wang TT, Song X, Zhang M, Fan YJ, Ren J, Duan YY, Guan SP, Luo X, Yang WH, Cao HX, Wu XM, Guo WW, Xie KD. CsCPC, an R3-MYB transcription factor, acts as a negative regulator of citric acid accumulation in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17189. [PMID: 39673730 DOI: 10.1111/tpj.17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
The citric acid accumulation during fruit ripening determines the quality of fleshy fruits. However, the molecular mechanism underlying citric acid accumulation is not clearly understood yet in citrus due to the scarcity of paired germplasm that exhibits significant difference in organic acid accumulation. Two citrus triploid hybrids with distinct citric acid content in their mature fruits were herein identified from a previously conducted interploidy cross in our group, providing an ideal paired material for studying acid accumulation in citrus. Through a comparative transcriptome analysis of the pulps of the above two triploid hybrids, an R3-MYB transcription factor, CAPRICE (CsCPC), was identified to be a regulator of citric acid accumulation in citrus fruits. Through transgenic experiments involving overexpression (in callus and kumquat fruits) and RNAi (in lemon leaves), we demonstrated that CsCPC suppresses citric acid accumulation by negatively regulating the expression of CsPH1 and CsPH5. Moreover, CsCPC competed with an R2R3-MYB CsPH4 for binding to ANTHOCYANIN1 (CsAN1) and thus disturbed the activation of CsPH1 and CsPH5 that encode vacuolar P-ATPase, which eventually led to a decrease in citric acid content. CsPH4 activated the expression of CsCPC and thus formed an activator-repressor feedback loop, which ultimately inhibited citric acid accumulation in citrus fruit. In summary, this study reveals a new regulatory mechanism of CsCPC-mediated inhibition of citric acid accumulation in citrus fruits, which would support the improvement of citrus fruit quality.
Collapse
Affiliation(s)
- Ting-Ting Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miao Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan-Jie Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ren
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao-Yuan Duan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Ping Guan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Hui Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui-Xiang Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
8
|
Atkins E, Scialò E, Catalano C, Hernández CC, Wegel E, Hill L, Licciardello C, Peña L, Garcia-Lor A, Martin C, Butelli E. Distinctive acidity in citrus fruit is linked to loss of proanthocyanidin biosynthesis. iScience 2024; 27:110923. [PMID: 39398238 PMCID: PMC11467675 DOI: 10.1016/j.isci.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
The distinctive acidity of citrus fruit is determined by a regulatory complex of MYB and bHLH transcription factors together with a WDR protein (MBW complex) which operates in the unique juice vesicles of the fruit. We describe a mutation affecting the MYB protein, named Nicole, in sweet orange and identify its target genes that determine hyperacidification, specifically. We propose that the acidity, typical of citrus fruits, was the result of a loss of the ability of Nicole to activate the gene encoding anthocyanidin reductase, an enzyme essential for the synthesis of proanthocyanidins, which are absent in citrus fruit.
Collapse
Affiliation(s)
| | | | | | | | - Eva Wegel
- John Innes Centre, Norwich NR4 7UH, UK
| | | | - Concetta Licciardello
- CREA, Research Center for Olive Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Leandro Peña
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Andrés Garcia-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | | | | |
Collapse
|
9
|
Miao S, Wei X, Zhu L, Ma B, Li M. The art of tartness: the genetics of organic acid content in fresh fruits. HORTICULTURE RESEARCH 2024; 11:uhae225. [PMID: 39415975 PMCID: PMC11480666 DOI: 10.1093/hr/uhae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Organic acids are major determinants of fruit flavor and a primary focus of fruit crop breeding. The accumulation of organic acids is determined by their synthesis, degradation, and transport, all of which are manipulated by sophisticated genetic mechanisms. Constant exploration of the genetic basis of organic acid accumulation, especially through linkage analysis, association analysis, and evolutionary analysis, have identified numerous loci in recent decades. In this review, the genetic loci and genes responsible for malate and citrate contents in fruits are discussed from the genetic perspective. Technologies such as gene transformation and genome editing as well as efficient breeding using marker-assisted selection (MAS) and genomic selection (GS) are expected to break the bottleneck of traditional fruit crop breeding and promote fruit quality improvement.
Collapse
Affiliation(s)
- Shixue Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Li X, Zeng Y, Wang T, Jiang B, Liao M, Lv Y, Li J, Zhong Y. Dynamic Analysis of the Fruit Sugar-Acid Profile in a Fresh-Sweet Mutant and Wild Type in 'Shatangju' ( Citrus reticulata cv.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2722. [PMID: 39409592 PMCID: PMC11478557 DOI: 10.3390/plants13192722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Citrate is a major determinant of fruit flavor quality. Currently, citrus species and/or varieties with significant alterations in citrate level have greatly advanced the molecular basis of citrate accumulation in fruit. However, in-depth dissections of the molecular mechanism specific to citrate accumulation are still limited due to the lack of mutants, especially within one single variety. In this study, a fresh-sweet 'Shatangju' mutant (Citrus reticulata cv.) was obtained during a survey of citrus resources in Guangdong, China, and the phenotype, fruit morphology, and primary flavor profiles were comparatively analyzed. Unlike the wild-type 'Shatangju' (WT), the mutant (MT) material exhibited a dwarfed and multi-branched tree shape, delayed flowering and fruit ripening at maturity, a prolonged fruit tree-retention time, and a decreased single fruit weight at maturity. Dynamic measurement of the metabolite levels further suggested that the contents and fluctuation patterns of vitamin C, malate, quinate, and oxalate showed no obvious difference between MT and MT fruits, while the citrate level in MT fruits significantly decreased over various developmental stages, ranging from 0.356 to 1.91 mg g-1 FW. In addition, the accumulation patterns of the major soluble sugars (sucrose, fructose, and glucose), as well as the sugar/acid ratio, were also altered in MT fruits during development. Taken together, this study provides a novel acid-free 'Shatangju' mutant, which can serve as a powerful tool for the research of fruit flavor quality, especially for the comprehensive understanding of the molecular mechanism of citrate accumulation in fruits.
Collapse
Affiliation(s)
- Xiangyang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Yuan Zeng
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ting Wang
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
| | - Mingjing Liao
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanda Lv
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Juan Li
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| |
Collapse
|
11
|
Zheng L, Ma W, Liu P, Song S, Wang L, Yang W, Ren H, Wei X, Zhu L, Peng J, Ma F, Li M, Ma B. Transcriptional factor MdESE3 controls fruit acidity by activating genes regulating malic acid content in apple. PLANT PHYSIOLOGY 2024; 196:261-272. [PMID: 38758108 DOI: 10.1093/plphys/kiae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Peipei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujie Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqing Peng
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Zhang L, Xing L, Dai J, Li Z, Zhang A, Wang T, Liu W, Li X, Han D. Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana. Int J Mol Sci 2024; 25:7437. [PMID: 39000546 PMCID: PMC11242199 DOI: 10.3390/ijms25137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Liwei Xing
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Jing Dai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Aoning Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Tianhe Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| |
Collapse
|
14
|
Ma X, Sheng L, Li F, Zhou T, Guo J, Chang Y, Yang J, Jin Y, Chen Y, Lu X. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway. THE NEW PHYTOLOGIST 2024; 242:1131-1145. [PMID: 38482565 DOI: 10.1111/nph.19671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024]
Abstract
Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.
Collapse
Affiliation(s)
- Xiaochuan Ma
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Ling Sheng
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Feifei Li
- Institute of Horticulture, Hunan Academy of Agricultural Science, 410125, Changsha, China
| | - Tie Zhou
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Jing Guo
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuanyuan Chang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Junfeng Yang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yan Jin
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuewen Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Xiaopeng Lu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| |
Collapse
|
15
|
Liu H, Zhao X, Bi J, Dong X, Zhang C. A natural mutation in the promoter of the aconitase gene ZjACO3 influences fruit citric acid content in jujube. HORTICULTURE RESEARCH 2024; 11:uhae003. [PMID: 38464475 PMCID: PMC10923642 DOI: 10.1093/hr/uhae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Jujube (Ziziphus jujuba Mill.) is the most economically important fruit tree of the Rhamnaceae and was domesticated from wild or sour jujube (Z. jujuba Mill. var. spinosa Hu). During the process of domestication, there was a substantial reduction in the content of organic acids, particularly malate and citrate, which greatly influence the taste and nutritional value of the fruit. We previously demonstrated that ZjALMT4 is crucial for malate accumulation. However, the mechanism of citrate degradation in jujube remains poorly understood. In the present study, aconitase ZjACO3 was shown to participate in citric acid degradation in the cytoplasm through the GABA pathway. Interestingly, we discovered an E-box mutation in the ZjACO3 promoter (-484A > G; CAAGTG in sour jujube mutated to CAGGTG in cultivated jujube) that was strongly correlated with fruit citrate content; 'A' represented a high-citrate genotype and 'G' represented a low-citrate genotype. We developed and validated an ACO-based Kompetitive allele-specific PCR (KASP) marker for determining citric acid content. Yeast one-hybrid screening, transient dual-luciferase assays, and overexpression analyses showed that the transcription factor ZjbHLH113 protein directly binds to CAGGTG in the promoter of ZjACO3 in cultivated jujube plants, transcriptionally activating ZjACO3 expression, and enhancing citric acid degradation. Conversely, binding ability of the ZjbHLH113 protein to CAAGTG was weakened in sour jujube, thereby promoting citrate accumulation in the fruit. These findings will assist in elucidating the mechanism by which ZjACO3 modulates citrate accumulation in sour jujube and its cultivars.
Collapse
Affiliation(s)
- Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiangning Zhao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiaochang Dong
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, 271000, China
| | - Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| |
Collapse
|
16
|
Yu H, Zhang C, Lu C, Wang Y, Ge C, Huang G, Wang H. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development. HORTICULTURE RESEARCH 2024; 11:uhae005. [PMID: 38464476 PMCID: PMC10923643 DOI: 10.1093/hr/uhae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Citric acid gives lemons their unique flavor, which impacts their sensory traits and market value. However, the intricate process of citric acid accumulation during lemon fruit growth remains incompletely understood. Here, we achieved a chromosomal-level genome assembly for the 'Xiangshui' lemon variety, spanning 364.85 Mb across nine chromosomes. This assembly revealed 27 945 genes and 51.37% repetitive sequences, tracing the divergence from citron 2.85 million years ago. DNA methylome analysis of lemon fruits across different developmental stages revealed significant variations in DNA methylation. We observed decreased CG and CHG methylation but increased CHH methylation. Notably, the expression of RdDM pathway-related genes increased with fruit development, suggesting a connection with elevated CHH methylation, which is potentially influenced by the canonical RdDM pathway. Furthermore, we observed that elevated CHH DNA methylation within promoters significantly influenced the expression of key genes, critically contributing to vital biological processes, such as citric acid accumulation. In particular, the pivotal gene phosphoenolpyruvate carboxykinase (ClPEPCK), which regulates the tricarboxylic acid cycle, was strikingly upregulated during fruit development, concomitant with increased CHH methylation in its promoter region. Other essential genes associated with citric acid accumulation, such as the MYB transcription factor (ClPH1/4/5) and ANTHOCYANIN 1 (ClAN1), were strongly correlated with DNA methylation levels. These results strongly indicate that DNA methylation crucially orchestrates the metabolic synthesis of citric acid. In conclusion, our study revealed dynamic changes in DNA methylation during lemon fruit development, underscoring the significant role of DNA methylation in controlling the citric acid metabolic pathway.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Chao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Chuang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yana Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Congcong Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Guixiang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
18
|
Mao Z, Wang Y, Li M, Zhang S, Zhao Z, Xu Q, Liu JH, Li C. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. HORTICULTURE RESEARCH 2024; 11:uhad249. [PMID: 38288255 PMCID: PMC10822839 DOI: 10.1093/hr/uhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 01/31/2024]
Abstract
Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.
Collapse
Affiliation(s)
- Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
19
|
Zhang RX, Liu Y, Zhang X, Chen X, Sun J, Zhao Y, Zhang J, Yao JL, Liao L, Zhou H, Han Y. Two adjacent NAC transcription factors regulate fruit maturity date and flavor in peach. THE NEW PHYTOLOGIST 2024; 241:632-649. [PMID: 37933224 DOI: 10.1111/nph.19372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Although maturity date (MD) is an essential factor affecting fresh fruit marketing and has a pleiotropic effect on fruit taste qualities, the underlying mechanisms remain largely unclear. In this study, we functionally characterized two adjacent NAM-ATAF1/2-CUC2 (NAC) transcription factors (TFs), PpNAC1 and PpNAC5, both of which were associated with fruit MD in peach. PpNAC1 and PpNAC5 were found capable of activating transcription of genes associated with cell elongation, cell wall degradation and ethylene biosynthesis, suggesting their regulatory roles in fruit enlargement and ripening. Furthermore, PpNAC1 and PpNAC5 had pleiotropic effects on fruit taste due to their ability to activate transcription of genes for sugar accumulation and organic acid degradation. Interestingly, both PpNAC1 and PpNAC5 orthologues were found in fruit-producing angiosperms and adjacently arranged in all 91 tested dicots but absent in fruitless gymnosperms, suggesting their important roles in fruit development. Our results provide insight into the regulatory roles of NAC TFs in MD and fruit taste.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jinyun Zhang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hui Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
20
|
Xiang Y, Huang XY, Zhao YW, Wang CK, Sun Q, Hu DG. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108227. [PMID: 38043254 DOI: 10.1016/j.plaphy.2023.108227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.
Collapse
Affiliation(s)
- Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
21
|
Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, Wang WY, Liu XL, Sun Q, Hu DG. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. ABIOTECH 2023; 4:303-314. [PMID: 38106434 PMCID: PMC10721769 DOI: 10.1007/s42994-023-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 12/19/2023]
Abstract
As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00115-7.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
22
|
Huang Y, He J, Xu Y, Zheng W, Wang S, Chen P, Zeng B, Yang S, Jiang X, Liu Z, Wang L, Wang X, Liu S, Lu Z, Liu Z, Yu H, Yue J, Gao J, Zhou X, Long C, Zeng X, Guo YJ, Zhang WF, Xie Z, Li C, Ma Z, Jiao W, Zhang F, Larkin RM, Krueger RR, Smith MW, Ming R, Deng X, Xu Q. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat Genet 2023; 55:1964-1975. [PMID: 37783780 DOI: 10.1038/s41588-023-01516-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.
Collapse
Affiliation(s)
- Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Peng Chen
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Bin Zeng
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Shuizhi Yang
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Xiaolin Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zishuang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ziang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huiwen Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianqiang Yue
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Junyan Gao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Chunrui Long
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station, Ministry of Agriculture and Rural Affairs, Lhasa, People's Republic of China
| | - Yong-Jie Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Fu Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, People's Republic of China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaocheng Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenbiao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robert R Krueger
- United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg, Queensland, Australia
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Xu L, Zang E, Sun S, Li M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit Rev Food Sci Nutr 2023; 63:11859-11879. [PMID: 35816297 DOI: 10.1080/10408398.2022.2097195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables (F&V) are an indispensable part of a healthy diet. The volatile and nonvolatile compounds present in F&V constitute unique flavor substances. This paper reviews the main flavor substances present in F&V, as well as the biosynthetic pathways and molecular regulation mechanisms of these compounds. A series of compounds introduced include aromatic substances, soluble sugars and organic acids, which constitute the key flavor substances of F&V. Esters, phenols, alcohols, amino acids and terpenes are the main volatile aromatic substances, and nonvolatile substances are represented by amino acids, fatty acids and carbohydrates; The combination of these ingredients is the cause of the sour, sweet, bitter, astringent and spicy taste of these foods. This provides a theoretical basis for the study of the interaction between volatile and nonvolatile substances in F&V, and also provides a research direction for the healthy development of food in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Erhuan Zang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Shuying Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Minhui Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| |
Collapse
|
24
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Wang J, Xu R, Qiu S, Wang W, Zheng F. CsTT8 regulates anthocyanin accumulation in blood orange through alternative splicing transcription. HORTICULTURE RESEARCH 2023; 10:uhad190. [PMID: 37927409 PMCID: PMC10623405 DOI: 10.1093/hr/uhad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
A homologous gene of basic-helix-loop-helix AtTT8 in Arabidopsis thaliana was identified in juice sac cells of pulp tissues from blood orange (Citrus sinensis cv 'Tarocco'), which was designated as CsTT8 in this study. Additionally, the mRNA levels of TT8 with the full-length open reading frame were significantly higher in 'Tarocco' than in mutant fruit lacking pigment in pulp or peel tissues. However, an alternative splicing transcript, Δ15-TT8, with the fourth exon skipped, was also identified from transcripts different in length from that in 'Tarocco'. The mRNA levels of Δ15-TT8 were higher in mutant fruit lacking pigment in pulp or peel tissues than in the wild type. Therefore, the TT8/Δ15-TT8 mRNA level ratio was found to be crucial for sufficient pigment in either pulp or peel tissues. TT8 from blood orange fruit demonstrated the capacity for nucleus localization and binding to other proteins. In contrast, Δ15-TT8, lacking the fourth exon, lost its ability to interact with RUBY1 and to localize at the nucleus. Using a dual luciferase reporter assay and transient overexpression in tobacco, we proved that two regulatory complexes formed by a functional TT8 with different MYB(v-myb avian myeloblastosis viral oncogene homolog)-type partners significantly promoted expression of an anthocyanin biosynthetic gene and a proton pumping gene, leading to anthocyanin and citrate production. Our findings suggest that TT8, rather than dysfunctional Δ15-TT8, is possibly involved in modulating anthocyanin biosynthesis and its transport into vacuoles by proton gradients. However, increased mRNA levels of the dysfunctional alternative splicing transcript may act as a negative feedback to downregulate TT8 expression and limit anthocyanin accumulation in blood oranges.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| | - Rui Xu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shuangping Qiu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weichun Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fan Zheng
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| |
Collapse
|
26
|
Yang M, Song J, Zhang X, Lu R, Wang A, Zhai R, Wang Z, Yang C, Xu L. PbWRKY26 positively regulates malate accumulation in pear fruit by activating PbMDH3. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154061. [PMID: 37562312 DOI: 10.1016/j.jplph.2023.154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Malate is the main organic acid that affects fruit acidity and flavor in pear (Pyrus spp.). However, the regulatory mechanism of malic acid accumulation in pear remains unclear. We identified PbWRKY26 as a candidate gene using mRNA-seq, and quantification analysis verified the expression level. The expression of PbWRKY26 was positively correlated with the malic acid content in two P. pyrifolia cultivars ('Cuiguan', 'Hongsucui') and two P. ussuriensis cultivars ('Qiuxiang', 'Hanhong'), with respective correlation coefficients of 0.748*, 0.871**, 0.889**, and 0.910** (*, P < 0.05; **, P < 0.01). The expression of PbWRKY26 enhanced the malate content in overexpression transgenic pear fruit and callus. In contrast, silencing PbWRKY26 decreased the pear fruit malic acid content. Analysis of the neighbor-joining phylogenetic tree indicated that PbWRKY26 was a PH3 homolog. The WRKY26 (PH3) has been identified to regulate a proton pump gene, PH5, in a lot of plant species, but the LUC and Y1H assays showed that PbWRKY26 could not bind to PbPH5 promoter in our study. Interestingly, a malate dehydrogenase gene, PbMDH3, was identified to be regulated by PbWRKY26. This study might be valuable to understand the metabolic regulatory network associated with malate accumulation.
Collapse
Affiliation(s)
- Meiyi Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Junxing Song
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Ruitao Lu
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Azheng Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| |
Collapse
|
27
|
Zheng L, Liao L, Duan C, Ma W, Peng Y, Yuan Y, Han Y, Ma F, Li M, Ma B. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. PLANT PHYSIOLOGY 2023; 192:1877-1891. [PMID: 36810940 PMCID: PMC10315266 DOI: 10.1093/plphys/kiad111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an A→T SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Chenbo Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
28
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
29
|
Wang P, Lu S, Cao X, Ma Z, Chen B, Mao J. Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple. TREE PHYSIOLOGY 2023; 43:851-866. [PMID: 36579825 DOI: 10.1093/treephys/tpac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Acidity is a determinant of the organoleptic quality of apple, whereas its regulatory mechanism under water stress remains obscure. Fruit from apple 'Yanfu 3' of Fuji trees grown under normal water irrigation (CK), excessive water deficit treatment (DRT) and excessive water irrigation treatment (WAT) were sampled at 85, 100, 115, 130, 145, 160 and 175 days after full bloom designated stages S1, S2, S3, S4, S5, S6 and S7, respectively. DRT treatment reduced the individual fruit weight and fruit moisture content, and increased fruit firmness. The malate content of DRT treatment was higher than that of CK and WAT from stages S1 to S7. RNA sequencing (RNA-seq) analysis of the transcriptome at stages S4, S6 and S7 indicated that malate anabolism was associated with cysteine and methionine, auxin signaling, glyoxylate and dicarboxylate and pyruvate metabolism. Overexpression of MdPEPC4 increased the malate content in apple calli induced by 4% PEG. Our study provides novel insights into the effects of water stress on the molecular mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
30
|
Nakandala U, Masouleh AK, Smith MW, Furtado A, Mason P, Constantin L, Henry RJ. Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. HORTICULTURE RESEARCH 2023; 10:uhad058. [PMID: 37213680 PMCID: PMC10199705 DOI: 10.1093/hr/uhad058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 05/23/2023]
Abstract
Recent advances in genome sequencing and assembly techniques have made it possible to achieve chromosome level reference genomes for citrus. Relatively few genomes have been anchored at the chromosome level and/or are haplotype phased, with the available genomes of varying accuracy and completeness. We now report a phased high-quality chromosome level genome assembly for an Australian native citrus species; Citrus australis (round lime) using highly accurate PacBio HiFi long reads, complemented with Hi-C scaffolding. Hifiasm with Hi-C integrated assembly resulted in a 331 Mb genome of C. australis with two haplotypes of nine pseudochromosomes with an N50 of 36.3 Mb and 98.8% genome assembly completeness (BUSCO). Repeat analysis showed that more than 50% of the genome contained interspersed repeats. Among them, LTR elements were the predominant type (21.0%), of which LTR Gypsy (9.8%) and LTR copia (7.7%) elements were the most abundant repeats. A total of 29 464 genes and 32 009 transcripts were identified in the genome. Of these, 28 222 CDS (25 753 genes) had BLAST hits and 21 401 CDS (75.8%) were annotated with at least one GO term. Citrus specific genes for antimicrobial peptides, defense, volatile compounds and acidity regulation were identified. The synteny analysis showed conserved regions between the two haplotypes with some structural variations in Chromosomes 2, 4, 7 and 8. This chromosome scale, and haplotype resolved C. australis genome will facilitate the study of important genes for citrus breeding and will also allow the enhanced definition of the evolutionary relationships between wild and domesticated citrus species.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg Research Station, Bundaberg, Queensland 4670, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Lena Constantin
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
31
|
Yang M, Hou G, Peng Y, Wang L, Liu X, Jiang Y, He C, She M, Zhao M, Chen Q, Li M, Zhang Y, Lin Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1138865. [PMID: 37082348 PMCID: PMC10110876 DOI: 10.3389/fpls.2023.1138865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - GouYan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - YuTing Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - LiangXin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - XiaoYang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - YuYan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - CaiXia He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - MuSha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - ManTong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
33
|
Guiguet A, McCartney NB, Gilbert KJ, Tooker JF, Deans AR, Ali JG, Hines HM. Extreme acidity in a cynipid gall: a potential new defensive strategy against natural enemies. Biol Lett 2023; 19:20220513. [PMID: 36855854 PMCID: PMC9975648 DOI: 10.1098/rsbl.2022.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis, Cynipidae, Hymenoptera) induced on red oak (Quercus rubra), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography-mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids.
Collapse
Affiliation(s)
- Antoine Guiguet
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Nathaniel B. McCartney
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Kadeem J. Gilbert
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
- Department of Plant Biology, Program in Ecology and Evolutionary Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Andrew R. Deans
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jared G. Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Heather M. Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
34
|
Jiang X, Liu K, Peng H, Fang J, Zhang A, Han Y, Zhang X. Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch). BMC PLANT BIOLOGY 2023; 23:16. [PMID: 36617558 PMCID: PMC9827700 DOI: 10.1186/s12870-023-04037-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Organic acids are important components that determine the fruit flavor of peach (Prunus persica L. Batsch). However, the dynamics of organic acid diversity during fruit ripening and the key genes that modulate the organic acids metabolism remain largely unknown in this kind of fruit tree which yield ranks sixth in the world. RESULTS In this study, we used 3D transcriptome data containing three dimensions of information, namely time, phenotype and gene expression, from 5 different varieties of peach to construct gene co-expression networks throughout fruit ripening of peach. With the network inferred, the time-ordered network comparative analysis was performed to select high-acid specific gene co-expression network and then clarify the regulatory factors controlling organic acid accumulation. As a result, network modules related to organic acid synthesis and metabolism under high-acid and low-acid comparison conditions were identified for our following research. In addition, we obtained 20 candidate genes as regulatory factors related to organic acid metabolism in peach. CONCLUSIONS The study provides new insights into the dynamics of organic acid accumulation during fruit ripening, complements the results of classical co-expression network analysis and establishes a foundation for key genes discovery from time-series multiple species transcriptome data.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kangchen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixiang Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
35
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
36
|
Wang J, Yin Y, Gao H, Sheng L. Identification of MYB Transcription Factors Involving in Fruit Quality Regulation of Fragaria × ananassa Duch. Genes (Basel) 2022; 14:68. [PMID: 36672809 PMCID: PMC9859318 DOI: 10.3390/genes14010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The cultivated strawberry (Fragaria × ananassa Duch.) is an important horticultural crop. The economic values of strawberry cultivars are decided by their fruit qualities including taste, color and aroma. The important role of MYB transcription factors in fruit quality regulation is recognized increasingly with the identification of MYB genes involved in metabolism. A total of 407 MYB genes of F. × ananassa (FaMYBs) were identified in the genome-wide scale and named according to subgenome locations. The 407 FaMYBs were clustered into 36 groups based on phylogenetic analysis. According to synteny analysis, whole genome duplication and segmental duplication contributed over 90% of the expansion of the FaMYBs family. A total of 101 FaMYB loci with 1-6 alleles were identified by the homologous gene groups on homologous chromosomes. The differentially expressed FaMYB profiles of three cultivars with different fruit quality and fruit ripe processes provided the 8 candidate loci involved in fruit quality regulation. In this experiment, 7, 5, and 4 FaMYBs were screeded as candidate genes involved in the regulation of metabolism/transportation of anthocyanins, sugars or organic acids and 4-hydroxy-2, 5-dimethyl-3(2H)-furanone, respectively. These results pointed out the key FaMYBs for further functional analysis of gene regulation of strawberry fruit quality and would be helpful in the clarification on ofe roles of MYBs in the metabolism of fruit crops.
Collapse
Affiliation(s)
| | | | | | - Lixia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Qiu D, Zhu C, Fan R, Mao G, Wu P, Zeng J. Arsenic inhibits citric acid accumulation via downregulating vacuolar proton pump gene expression in citrus fruits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114153. [PMID: 36252515 DOI: 10.1016/j.ecoenv.2022.114153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citric acid content is a critical quality determinant in citrus (Citrus spp.) fruits. Although arsenic (As) can effectively reduce citric acid content to improve citrus fruit quality, it can have adverse environmental effects. The discovery of nontoxic substitutes is hampered by the incomplete elucidation of the underlying mechanisms of As action in citrus fruits. Metabolic, transcriptomic, and physiological analyses were employed to investigate As action on citric acid accumulation to discover the mechanisms of As action in citrus. The enzyme activity related to citrate biosynthesis was not inhibited and the content of the involved metabolites was not reduced in As-treated fruits. However, the proton pump genes CitPH5 and CitPH1 control the vacuolar citric acid accumulation and transcription factor genes CitTT8 and CitMYB5, which regulate CitPH5 and CitPH1, were downregulated. The oxidative stress-response genes were upregulated in As-treated fruits. The reactive oxygen species (ROS) treatment also downregulated CitTT8 and CitMYB5 in juice cells. The mitochondrial ROS production rate increased in As-treated fruits. AsIII was more potent in stimulating isolated mitochondria to overproduce ROS compared to AsV. Our results indicate that the As inhibition of citric acid accumulation may be primarily due to the transcriptional downregulation of CitPH5, CitPH1, CitTT8, and CitMYB5. As-induced oxidative stress signaling may operate upstream to downregulate these acid regulator genes. Mitochondrial thiol proteins may be the principal targets of As action in citrus fruits.
Collapse
Affiliation(s)
- Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Ruiyi Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Genlin Mao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Pingzhi Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
38
|
Gao Y, Yao Y, Chen X, Wu J, Wu Q, Liu S, Guo A, Zhang X. Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:971506. [PMID: 36161024 PMCID: PMC9493369 DOI: 10.3389/fpls.2022.971506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Pineapple (Ananas comosus L.) is one of the most valuable subtropical fruit crop in the world. The sweet-acidic taste of the pineapple fruits is a major contributor to the characteristic of fruit quality, but its formation mechanism remains elusive. Here, targeted metabolomic and transcriptomic analyses were performed during the fruit developmental stages in two pineapple cultivars ("Comte de Paris" and "MD-2") to gain a global view of the metabolism and transport pathways involved in sugar and organic acid accumulation. Assessment of the levels of different sugar and acid components during fruit development revealed that the predominant sugar and organic acid in mature fruits of both cultivars was sucrose and citric acid, respectively. Weighted gene coexpression network analysis of metabolic phenotypes and gene expression profiling enabled the identification of 21 genes associated with sucrose accumulation and 19 genes associated with citric acid accumulation. The coordinated interaction of the 21 genes correlated with sucrose irreversible hydrolysis, resynthesis, and transport could be responsible for sucrose accumulation in pineapple fruit. In addition, citric acid accumulation might be controlled by the coordinated interaction of the pyruvate-to-acetyl-CoA-to-citrate pathway, gamma-aminobutyric acid pathway, and tonoplast proton pumps in pineapple. These results provide deep insights into the metabolic regulation of sweetness and acidity in pineapple.
Collapse
Affiliation(s)
- Yuyao Gao
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yanli Yao
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xin Chen
- Taixing Institute of Agricultural Sciences, Taixing, China
| | - Jianyang Wu
- Department of Science Education, Zhanjiang Preschool Education College, Zhanjiang, China
| | - Qingsong Wu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shenghui Liu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Anping Guo
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
39
|
Perez-Roman E, Borredá C, Tadeo FR, Talon M. Transcriptome analysis of the pulp of citrus fruitlets suggests that domestication enhanced growth processes and reduced chemical defenses increasing palatability. FRONTIERS IN PLANT SCIENCE 2022; 13:982683. [PMID: 36119632 PMCID: PMC9478336 DOI: 10.3389/fpls.2022.982683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
To identify key traits brought about by citrus domestication, we have analyzed the transcriptomes of the pulp of developing fruitlets of inedible wild Ichang papeda (Citrus ichangensis), acidic Sun Chu Sha Kat mandarin (C. reticulata) and three palatable segregants of a cross between commercial Clementine (C. x clementina) and W. Murcott (C. x reticulata) mandarins, two pummelo/mandarin admixtures of worldwide distribution. RNA-seq comparison between the wild citrus and the ancestral sour mandarin identified 7267 differentially expressed genes, out of which 2342 were mapped to 117 KEGG pathways. From the remaining genes, a set of 2832 genes was functionally annotated and grouped into 45 user-defined categories. The data suggest that domestication promoted fundamental growth processes to the detriment of the production of chemical defenses, namely, alkaloids, terpenoids, phenylpropanoids, flavonoids, glucosinolates and cyanogenic glucosides. In the papeda, the generation of energy to support a more active secondary metabolism appears to be dependent upon upregulation of glycolysis, fatty acid degradation, Calvin cycle, oxidative phosphorylation, and ATP-citrate lyase and GABA pathways. In the acidic mandarin, downregulation of cytosolic citrate degradation was concomitant with vacuolar citrate accumulation. These changes affected nitrogen and carbon allocation in both species leading to major differences in organoleptic properties since the reduction of unpleasant secondary metabolites increases palatability while acidity reduces acceptability. The comparison between the segregants and the acidic mandarin identified 357 transcripts characterized by the occurrence in the three segregants of additional downregulation of secondary metabolites and basic structural cell wall components. The segregants also showed upregulation of genes involved in the synthesis of methyl anthranilate and furaneol, key substances of pleasant fruity aroma and flavor, and of sugar transporters relevant for sugar accumulation. Transcriptome and qPCR analysis in developing and ripe fruit of a set of genes previously associated with citric acid accumulation, demonstrated that lower acidity is linked to downregulation of these regulatory genes in the segregants. The results suggest that the transition of inedible papeda to sour mandarin implicated drastic gene expression reprograming of pivotal pathways of the primary and secondary metabolism, while palatable mandarins evolved through progressive refining of palatability properties, especially acidity.
Collapse
|
40
|
Structure of V-ATPase from citrus fruit. Structure 2022; 30:1403-1410.e4. [PMID: 36041457 DOI: 10.1016/j.str.2022.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
We used the Legionella pneumophila effector SidK to affinity purify the endogenous vacuolar-type ATPases (V-ATPases) from lemon fruit. The preparation was sufficient for cryoelectron microscopy, allowing structure determination of the enzyme in two rotational states. The structure defines the ATP:H+ ratio of the enzyme, demonstrating that it can establish a maximum ΔpH of ∼3, which is insufficient to maintain the low pH observed in the vacuoles of juice sac cells in lemons and other citrus fruit. Compared with yeast and mammalian enzymes, the membrane region of the plant V-ATPase lacks subunit f and possesses an unusual configuration of transmembrane α helices. Subunit H, which inhibits ATP hydrolysis in the isolated catalytic region of V-ATPase, adopts two different conformations in the intact complex, hinting at a role in modulating activity in the intact enzyme.
Collapse
|
41
|
Thilmony R, Dasgupta K, Shao M, Harris D, Hartman J, Harden LA, Chan R, Thomson JG. Tissue-specific expression of Ruby in Mexican lime ( C. aurantifolia) confers anthocyanin accumulation in fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:945738. [PMID: 36003820 PMCID: PMC9393592 DOI: 10.3389/fpls.2022.945738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Tissue specific promoters are important tools for the precise genetic engineering of crop plants. Four fruit-preferential promoters were examined for their ability to confer a novel fruit trait in transgenic Mexican lime (Citrus aurantifolia). The Ruby transcription factor activates fruit anthocyanin accumulation within Moro blood orange and has been shown to function in activating anthocyanin accumulation in heterologous plant species. Although the CitVO1, CitUNK, SlE8, and PamMybA promoters were previously shown to confer strong fruit-preferential expression in transgenic tomato, they exhibited no detectable expression in transgenic Mexican lime trees. In contrast, the CitWax promoter exhibited high fruit-preferential expression of Ruby, conferring strong anthocyanin accumulation within the fruit juice sac tissue and moderate activity in floral/reproductive tissues. In some of the transgenic trees with high levels of flower and fruit anthocyanin accumulation, juvenile leaves also exhibited purple coloration, but the color disappeared as the leaves matured. We show that the CitWax promoter enables the expression of Ruby to produce anthocyanin colored fruit desired by consumers. The production of this antioxidant metabolite increases the fruits nutritional value and may provide added health benefits.
Collapse
Affiliation(s)
- Roger Thilmony
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Kasturi Dasgupta
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
- Citrus Research Board, Visalia, CA, United States
| | - Min Shao
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
- Citrus Research Board, Visalia, CA, United States
| | - Daren Harris
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Jake Hartman
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - Ron Chan
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| | - James G. Thomson
- Crop Improvement and Genetics, Western Regional Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Albany, CA, United States
| |
Collapse
|
42
|
Lu Z, Huang Y, Mao S, Wu F, Liu Y, Mao X, Adhikari PB, Xu Y, Wang L, Zuo H, Rao MJ, Xu Q. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. HORTICULTURE RESEARCH 2022; 9:uhac175. [PMID: 36238347 PMCID: PMC9552194 DOI: 10.1093/hr/uhac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Citric acid and anthocyanin contents were co-selected during Citrus domestication. Pummelo is a founding species in the Citrus genus, but the domestication of pummelo has not been well studied. Here, we compared the citric acid and anthocyanin contents of a low citric acid pummelo (Citrus maxima LCA) and its high citric acid variety (HCA) from the same cultivation area in China. Our study revealed that, unlike the LCA type, the HCA variety accumulated anthocyanin in the pericarp early in fruit development. To investigate the genetic basis of acid and anthocyanin enrichment in HCA pulp and pericarp, respectively, we generated a chromosome-scale HCA genome using long-read sequence reads and Hi-C sequencing data. Transcriptome analysis and transient overexpression assays showed that the accumulation of citric acid and anthocyanin was associated with high expression of CgANTHOCYANIN1 (CgAN1), and two different MYBs transcription factors (CgPH4 and CgRuby1), respectively. Moreover, the CgAN1 promoter was more methylated in the LCA pulp than in the HCA pulp. Treatment with a DNA methylation inhibitor, 5-azacytidine, alleviated the CgAN1 promoter hypermethylation in the LCA pulp, leading to increased CgAN1 expression and citric acid content. This study provides a new high-quality pummelo genome and insight into the molecular mechanism behind the change in tissue-specific citric acid and anthocyanin accumulation during pummelo domestication and provides a conceptual basis for precise genetic manipulation in fruit flavor breeding.
Collapse
Affiliation(s)
- Zhihao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sangyin Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Yong Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiangqing Mao
- Service Center for Agriculture and Rural Area, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Prakash Babu Adhikari
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zuo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | |
Collapse
|
43
|
He J, Xu Y, Huang D, Fu J, Liu Z, Wang L, Zhang Y, Xu R, Li L, Deng X, Xu Q. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3610-3624. [PMID: 35263759 DOI: 10.1093/jxb/erac069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 05/24/2023]
Abstract
Deciphering the genetic basis of organoleptic traits is critical for improving the quality of fruits, which greatly shapes their appeal to consumers. Here, we characterize the citrus R3-MYB transcription factor TRIPTYCHON-LIKE (CitTRL), which is closely associated with the levels of citric acid, proanthocyanidins (PAs), and anthocyanins. Overexpression of CitTRL lowered acidity levels and PA contents in citrus calli as well as anthocyanin and PA contents in Arabidopsis leaves and seeds. CitTRL interacts with the two basic helix-loop-helix (bHLH) proteins CitbHLH1 and ANTHOCYANIN 1 (CitAN1) to regulate fruit quality. We show that CitTRL competes with the R2R3-MYB CitRuby1 for binding to CitbHLH1 or CitAN1, thereby repressing their activation of anthocyanin structural genes. CitTRL also competes with a second R2R3-MYB, CitPH4, for binding to CitAN1, thus altering the expression of the vacuolar proton-pump gene PH5 and Leucoanthocyanidin reductase, responsible for vacuolar acidification and proanthocyanidins biosynthesis, respectively. Moreover, CitPH4 activates CitTRL transcription, thus forming an activator-repressor loop to prevent the overaccumulation of citric acid and PAs. Overall, this study demonstrates that CitTRL acts as a repressor of the accumulation of citric acid, PAs, and anthocyanins by a cross-regulation mechanism. Our results provide an opportunity to simultaneously manipulate these key traits as a means to produce citrus fruits that are both visually and organoleptically appealing.
Collapse
Affiliation(s)
- Jiaxian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ding Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ziang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
44
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
45
|
Zhang L, Ma B, Wang C, Chen X, Ruan YL, Yuan Y, Ma F, Li M. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). PLANT PHYSIOLOGY 2022; 188:2059-2072. [PMID: 35078249 PMCID: PMC8968328 DOI: 10.1093/plphys/kiac023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 05/10/2023]
Abstract
The content of organic acids greatly influences the taste and storage life of fleshy fruit. Our current understanding of the molecular mechanism of organic acid accumulation in apple (Malus domestica) fruit focuses on the aluminum-activated malate transporter 9/Ma1 gene. In this study, we identified a candidate gene, MdWRKY126, for controlling fruit acidity independent of Ma1 using homozygous recessive mutants of Ma1, namely Belle de Boskoop "BSKP" and Aifeng "AF." Analyses of transgenic apple calli and flesh and tomato (Solanum lycopersicum) fruit demonstrated that MdWRKY126 was substantially associated with malate content. MdWRKY126 was directly bound to the promoter of the cytoplasmic NAD-dependent malate dehydrogenase MdMDH5 and promoted its expression, thereby enhancing the malate content of apple fruit. In MdWRKY126 overexpressing calli, the mRNA levels of malate-associated transporters and proton pump genes also significantly increased, which contributed to the transport of malate accumulated in the cytoplasm to the vacuole. These findings demonstrated that MdWRKY126 regulates malate anabolism in the cytoplasm and coordinates the transport between cytoplasm and vacuole to regulate malate accumulation. Our study provides useful information to improve our understanding of the complex mechanism regulating apple fruit acidity.
Collapse
Affiliation(s)
| | | | - Changzhi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
46
|
Liu S, Liu X, Gou B, Wang D, Liu C, Sun J, Yin X, Grierson D, Li S, Chen K. The Interaction Between CitMYB52 and CitbHLH2 Negatively Regulates Citrate Accumulation by Activating CitALMT in Citrus Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:848869. [PMID: 35386675 PMCID: PMC8978962 DOI: 10.3389/fpls.2022.848869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Citric acid plays significant roles in numerous physiological processes in plants, including carbon metabolism, signal transduction, and tolerance to environmental stress. For fruits, it has a major effect on fruit organoleptic quality by directly influencing consumer taste. Citric acid in citrus is mainly regulated by the balance between synthesis, degradation, and vacuolar storage. The genetic and molecular regulations of citric acid synthesis and degradation have been comprehensively elucidated. However, the transporters for citric acid in fruits are less well understood. Here, an aluminum-activated malate transporter, CitALMT, was characterized. Transient overexpression and stable transformation of CitALMT significantly reduced citrate concentration in citrus fruits and transgenic callus. Correspondingly, transient RNA interference-induced silencing of CitALMT and increased citrate significantly, indicating that CitALMT plays an important role in regulating citrate concentration in citrus fruits. In addition, dual-luciferase assays indicated that CitMYB52 and CitbHLH2 could trans-activate the promoter of CitALMT. EMSA analysis showed that CitbHLH2 could physically interact with the E-box motif in the CitALMT promoter. Bimolecular fluorescence complementation assays, yeast two-hybrid, coimmunoprecipitation and transient overexpression, and RNAi assay indicated that the interaction between CitMYB52 and CitbHLH2 could synergistically trans-activate CitALMT to negatively regulate citrate accumulation.
Collapse
Affiliation(s)
- Shengchao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xincheng Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bangrui Gou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | | | - Chunrong Liu
- Quzhou Academy of Agricultural Science, Quzhou, China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou, China
| | - Xueren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
48
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
49
|
Wang Q, Cao K, Cheng L, Li Y, Guo J, Yang X, Wang J, Khan IA, Zhu G, Fang W, Chen C, Wang X, Wu J, Xu Q, Wang L. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. HORTICULTURE RESEARCH 2022; 9:uhac026. [PMID: 35184194 PMCID: PMC9171119 DOI: 10.1093/hr/uhac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.
Collapse
Affiliation(s)
- Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
50
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|